
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 
 

 

62 

Manuscript received  September 5, 2007 

Manuscript revised  September 20, 2007 

A GA-based Feature Optimization Technique for Bearing 

Fault Diagnostics 

Jie Liu†,  Wilson Wang††, Farid Golnaraghi† 
  

†Dept. of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1 
††Dept. of Mechanical Engineering, Lakehead University, Thunder Bay, ON, Canada P7B 5E1 

 
Summary 
Rolling-element bearings are widely used in various mechanical 
and electrical systems. A reliable online bearing fault diagnostic 
technique is critically needed in industries to detect the 
occurrence of a fault so as to prevent system’s performance 
degradation and malfunction. To improve the fault diagnostic 
reliability and efficiency, a genetic algorithm based feature 
optimization technique is proposed in this work. In this scheme, 
the discrete wavelet packet analysis is utilized to decompose the 
raw vibration signal into several constituent signatures, from 
which the bearing health condition related features are 
formulated. Taking these features as a fundamental search space, 
the genetic algorithm based technique is adopted to choose the 
representative features that carry more discriminatory 
information for bearing health condition assessment. This 
optimization process is guided by a suggested fitness function. A 
neural fuzzy system is utilized for diagnostic classification 
operations. The performance of the proposed technique is 
evaluated by experimental tests. 
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1. Introduction 

Rolling element bearings are widely used in various types 

of mechanical and electronic systems. Accordingly, a 

reliable bearing fault detection technique is critically 
needed to prevent system’s performance degradation, 

malfunction or even catastrophic failures. Several methods 
have been proposed in the literature for bearing fault 

detection and fault type classification. Based on the 

properties of information carriers, these techniques can be 
classified into vibration monitoring [1]-[4], acoustic signal 

processing [5], lubricant analysis [6], temperature 
measurement [7], and electric current analysis [8]. Among 

them, vibration monitoring is the most commonly used 
approach in practice due to the ease of measurement and 

analysis. A detailed review of the bearing condition 

monitoring techniques based on vibration measurement 
can be found in [9]. In applications, most proposed 

techniques still rely on human interpretation to some 

extent. When a large number of features are present, 

however, several concerns have to be properly considered. 

Firstly, some features may provide confusing information 
to the diagnosis operations. Secondly, if a data-driven 

automatic classifier is employed, the number of data sets 
required for system training, as well as the computation 

efforts, may increase dramatically as the number of input 
features increases. Consequently, it is necessary to 

examine the whole set of candidate features and manually 

select the most representative ones based on expertise 
and/or certain criteria [10],[11]. This procedure, however, 

is usually time consuming, and can only be applied to 
some relatively simple classification applications. 

Therefore, a highly automatic feature optimization 

technique is highly demanded. 
A rolling element bearing is not a simple mechanical 

component, but a relatively complex system, which 
consists of an inner ring, an outer ring, a cage, and a 

series of rolling elements. Whenever a fault happens on a 

bearing component, stationary and/or non-stationary 
impacts are generated, which excite the bearing and its 

support structures. In this study, a genetic algorithm (GA) 
based feature optimization technique is proposed to 

extract the representative features for bearing fault 
diagnostics. Based on a designated fitness function, the 

GA can eliminate human intervention and automatically 

formulate the optimal features. Instead of using a 
thorough and complex search space, the fundamental 

search base in this work is based on energy distribution 
ratios from several constituent signals that are processed 

by the use of discrete wavelet packet (DWP) analysis. 

The paper is organized as follows: Section 2 describes the 
experimental setup used in this work and the related 

signal processing techniques to extract the representative 
features. The GA-based feature optimization technique is 

presented in Section 3, whereas its diagnostic reliability is 

validated based on experimental tests. 
 

2. Feature Preparation 
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2.1 Experimental Setup 

The experimental setup used in this work is schematically 

shown in Fig. 1. The rotor system is supported by two 

cylindrical roller bearings (SKF NJ204 ECP) fitted in the 
solid housings. A 3-hp, three-phase induction motor is 

employed to drive a shaft via a time belt and a self-
aligning coupling. The speed controller allowed the 

system to operate in the range from 600 to 1800 rpm. The 
radial load is provided by a static disk installed on the 

shaft and between the bearings. Vertical vibrations are 

measured by two piezoelectric accelerometers (Dytran 
3035AG) that have a bandwidth up to 10 kHz, a 

sensitivity of 100 mV/g, and a full scale range of ± 50g. 
The collected vibration signals are properly amplified by 

charge amplifiers (Dytran 4105C), and then are stored to a 

data recorder through an anti-aliasing filter. The sampling 
frequency in this test is set at 6 KHz. 

 

 

Fig. 1 Experimental setup: 1-test bearing housing; 2-balanced disk; 3-
piezoelectric accelerometer; 4-coupling; 5-power transmission; 6-motor; 7-
speed control. 

Four types of bearing health condition cases are 

considered in this work: healthy bearings (HY), bearings 
with rolling element damages (ED), bearings with inner-

race defects (IR), and bearings with outer-race defects 
(OR). These simulated defects are artificially introduced 

onto the corresponding bearing components. Fig. 2 shows 

three types of bearing faults in tests, whose dimensions 
range from 0.5 mm to 2.0 mm. 

 

 

Fig. 2  Three types of bearing faults. 

Each bearing is well lubricated before tests. Four bearing 

health condition cases have been tested. Under each 
condition, the bearing is driven over five different speeds, 

from 600 rpm to 1800 rpm at a step size of 300 rpm. At 
each speed, 50 segments of vibration signal are collected 

with the time interval of 5 minutes. Consequently, 1000 
segments of raw signals are recorded for analysis. Fig. 3 

shows some samples of vibration signals at shaft speed 

1200 rpm. 
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Fig. 3 Vibration signals: (a) from a healthy bearing; (b) from a rolling-
element damaged bearing; (c) from an inner-race defective bearing; (d) from 
an outer-race defective bearing.  

2.2 Feature Extraction 

For a rolling element bearing, usually a defect occurs on 
the fixed ring race first because the fixed ring material is 

subject to more dynamic load cycles. Consider a general 

bearing with a fixed outer ring, and suppose that a defect 
(e.g., a fatigue pit) has happened on the outer ring race. 

Each time a rolling element rolls over the pit, an impulse 
is generated due to the impact. This impulse excites 

vibration resonance of the bearing and the surrounding 
structures. In theory, the excited transient modes due to 

an outer race defect do not vary because the defect angular 

position remains the same as each impact occurs, as long 
as no slippage occurs among the bearing components. On 

the other hand, for a rolling element fault or an inner race 
defect, the generated impulse transient modes may change 
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in properties because the impact occurs at a different 

angular position as the bearing rotates. As a result, the 
magnitudes of the impulse transients and the excited 

resonance modes vary over time. Different type of defects 
induces transients within different frequency bands, 

which generates different energy distributions over 
distinct bandwidths. In this work, the DWP is employed 

to decompose the raw signal into several constituent 

signatures, each of which drops within a specific 
bandwidth. After the energy ratio of each constituent 

signature with respect to the raw signal is calculated, 
advanced investigation is taken to evaluate the potential 

for the resulting indices to carry valuable features related 

to bearing health conditions. 
The DWP analysis is a generalized wavelet 

transformation. It applies multiple band filters to 
decompose a signal into a series of packets that contain 

the shifted and scaled versions of the mother wavelet, and 

thus it has the possibility to provide more information for 
signal analysis [12]. In this work, a three-level DWP 

decomposition is adopted. Consequently, eight wavelet 
packets are yielded. In each packet, the detail and 

approximation coefficients are utilized to reconstruct the 
original signal by reconstruction filters and up-sampling. 

The reconstructed signatures represent the original signal 

over different frequency bands. For example, using 
daubechies-12 wavelet as mother wavelet and Shannon 

entropy least cost function as the basis criterion, the 

original unbiased signal ( , )S i k , generated by a bearing 

with an inner race defect as partly shown in Fig. 3, can be 

decomposed into eight constituent signatures ( , )jS i k .  
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Fig. 4 Constituent signatures in each packet at the third level when three-
level DWP is applied. 

Fig. 4 illustrates the decomposed signatures over eight 

distinct bandwidths, where i  represents the ith raw signal 

or decomposed signature,  0,  1,  ...,  7j =  denotes the jth 

packet, and k  is the kth sampling data. Each 

reconstructed signature contains some specific vibration 
energy distribution information, which can be 

mathematically quantified by a root mean square (RMS) 

quantity. 
The obtained features reflect the energy distribution 

over different frequency bands, and can be formulated by  
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where R is the number of shaft revolutions to be 

considered, and N  is the number of samples per 

revolution. N  is related to sampling frequency sf  (6000 

samples/sec in this case) and the shaft rotation speed f , 

that is, 
sN f f= . Test results have shown that these 

RMS ratios ( , )i jg  vary as the bearing health condition 

changes; correspondingly, the information involved in 

such a RMS ratio variation may have a potential to be an 
indicator for bearing condition monitoring.  
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Fig. 5 RMS ratios under different bearing operating conditions: HY bearing 
(black curves); ED bearing (red curves); IR bearing (blue curves, OR  
bearing (doted red); 0-24, 600 rpm; 25-48, 900 rpm; 49-72, 1200 rpm; 73-
96, 1500 rpm; 97-120, 1800 rpm. 

In total, 1000 data sets of ( , )i jg  are derived, and Fig. 5 

shows some of these features. Each data set consists of 
eight features corresponding to different bearing operating 
conditions. In order to differentiate these bearing 
conditions for system training and validation, in this work, 
the healthy bearing condition is encoded as 0, whereas 1, 
2 and 3 are for faulty bearings with the rolling element 
defects, inner-race defects, and outer-race defects, 
respectively. The classification thresholds are defined as 
half state between the nearest encoded numbers. These 
1,000 data sets are divided into four groups: 600 pairs for 
system training, 200 for the training process cross-
checking, while the remaining 200 data to validate the 
proposed feature optimization technique. 

3. A GA-based Feature Optimization 
Technique 

The key requirement for an online bearing condition 

monitoring system is its diagnostic reliability and 
efficiency. Thus, when a number of potential features are 

present, an effective feature optimization technique is 

highly demanded. The objective of this work is to develop 
an advanced feature optimization technique for a more 

positive assessment of bearing health conditions. As 
illustrated in Fig. 6, the proposed feature reformulation 

scheme consists of the following units: 1) the DWP 

module is to investigate the energy distributions over 

several frequency bands for the feature formulation. 1x  to 

8x  correspond to the features extracted from packets (3,0) 

to (3,7), respectively. 2) The GA unit is applied to choose 
the optimal feature formulation through genetic evolution 

processes, guided by the proposed fitness function as 
discussed in the following context. 3) The adaptive neural 

fuzzy (NF) system [13] is adopted for bearing condition 

diagnostics. 
 

 

Fig. 6 Architecture of the GA-based feature optimization scheme. 

3.1 GA Implementation 

The GA is an optimization paradigm based on the 

principles of natural selections. Each individual within 
populations is encoded by means of a binary string that 

can be regarded as a set of genes constituting the 

chromosomes. Three GA operators are applied to generate 
the new generation: selection, mutation and crossover. 

These operations drive the evolution of populations 
towards an optimal solution based on a prescribed fitness 

function. A general introduction to the GA can be found 

in [14].  
In this work, each chromosome consists of eight bits, and 

each bit corresponds to one specific feature with a value of 
either “0” or “1”, representing the absence or presence of 

the corresponding feature, respectively. The GA has a 

population size of dN  individuals ( dN =20 in this work). 

The initial genomes are randomly generated. A modified 
fitness roulette method is adopted as a selection strategy 

to choose the related parents. First, the individuals or 

chromosomes are listed from the first to last as di (i = 1, 
2, . . ., Nd) according to their fitness values. The first two 

with the largest fitness values (i.e., d1 and d2) are called 
elitists, and are reserved into the next generation without 
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change, which can keep the excellent performance of the 

population and guarantee the convergence of the 
evolution process. The remaining individuals are then 

processed by the roulette wheel strategy, which is adopted 
to choose the better individuals of a group to improve the 

quality of the population and to overcome the premature 
due to the over-production of some good individuals. The 

selection probability of the ith individual di based on the 

roulette wheel strategy is given by  
 

 ( )
( )

( )
3

,         3
d

i

i N

i
i

f d
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f d
=

= ³

å
,  (2) 

 
where f(di) is the fitness value of individual di . It is seen 

that the probability for each individual to be selected is 

directly proportional to its fitness.  In order to promote the 
population diversity and to prevent the algorithm from 

premature convergence, the number of individuals 
selected from both elitists and the roulette wheel strategy 

is limited to 5 for the generation of a new population. The 

remaining ( 5dN - ) individuals are processed by the 

crossover and mutation operations. In this work, the 
crossover probability is set at 0.8, whereas the mutation 

probability is 0.2. 

The fitness function is tailored to satisfy the following 
three requirements: 1) the high classification accuracy 

must be guaranteed, 2) the dimension of the input vector 
is expected to be trimmed down, and 3) the difference 

between the classification results and the real target 
should be as small as possible. Hence, the fitness function 

is proposed to comprise of three weighted elements,  

 

 ,L ic N rms Ef L P N P E P M= ´ + ´ + ´ ´  (3) 

 

where 
8

1 ii
L b

=
=å  is the number of the features chosen by 

an individual; ib  denotes the ith bit value of a 

chromosome; icN  is the number of  incorrect 

classifications counted from the processing results given 

by the NF system; rmsE  is the root mean squared error 

between the output of the NF system and the real target 

over all the training data sets; M  is the number of the 

training data sets, whereas M is for normalization; LP , 

EP  and EP  are the percentage weights specified by the 

user, which represent the priority levels of three elements 

of L , icN  and rmsE , respectively,  1L N EP P P+ + = . In 

implementation, more emphasis should be placed on the 

reliability of classification; that is, for an individual 

leading to incorrect bearing fault diagnostic, higher 
percentage of penalty should be applied, forcing such a 

candidate to have less chance to be selected into the next 

generation. In this work, EP  is set at 60%, whereas LP  

and EP  are set at 20% and 20%, respectively. 

It is seen that the fitness function takes the performance of 
the diagnostic system with respect to different feature 

combinations; therefore, the GA is needed to cooperate 

with the NF scheme to accomplish the task of population 
evolution. Artificial neural networks and the NF systems 

have been used in machinery condition monitoring for 
decades, and their advantages over classical model based 

schemes have been demonstrated in the previous studies 
[10],[15],[16]. Each feature may carry part information 

related to bearing health conditions. To integrate the 

advantages of several features for a more positive 
assessment of bearing health conditions, a zero order 

Takagi-Sugeno NF scheme is employed in this work. Fig. 

7 shows the structure of this NF scheme. 1x  to Lx  are the 

features chosen by the GA or the user; iq  (i = 1, …, m) 

are constants that will be fine-tuned in the training 
process; and m  represents the number of the fuzzy rules 

involved. These fuzzy rules can be fully or partially 

populated, depending on specific applications. In this 
work, fully populated fuzzy association is applied. Also, 

sigmoid membership functions are utilized considering 
the high-level nonlinearity of the model of interest. A 

hybrid training algorithm based on the least-squares 

estimate and steepest gradient method is applied to train 
the NF classification scheme [17].  
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Fig. 7 Network architecture of the zero-order Takagi-Sugeno NF classifier. 

3.2 Performance Evaluation 

For the purpose of comparison, all eight features are first 

processed by using the NF classifier. The program takes 
18 minutes to run on a Pentium III 1 GHz computer with 

512 Mb RAM. The processing results are plotted in Fig. 8. 

It can be seen that three test cases are mistakenly 
diagnosed (or three false alarms). A healthy condition is 

misclassified as a state with a rolling element defect. A 
rolling element damage condition is misclassified as a 

healthy condition. An inner-race defect condition is 

misclassified as a faulty state with an outer-race bearing 
fault. Furthermore, the high requirement on computing 

time and training resources (e.g., representative training 
data) impose a challenge to this algorithm for its real-

world applications. 
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Fig. 8 Classification results using all eight features (mistakenly diagnosed 
cases are circled). 

 
Considering the size of search space, the GA is allowed to 

run for 5 consecutive generations. Consequently, the 
fitness function is executed 100 times in total, instead of 

the complete space search (i.e., 
8

81
255i

i
C

=
=å  cases). The 

surviving individuals and their corresponding scores are 
listed in Table 1. It can be seen that the optimal 

individual is “1001 1111,” which represents the feature 
formulation from packets (3, 0), (3, 3), (3, 4), (3, 5), (3, 6) 

and (3, 7). The optimal feature formation can reduce the 

fitness function score to a level as low as 0.7923, which 
represents the best fitness condition. 

Table 1: Best individuals and their scores in the final population 

Individual 
0111 
1011 

1001 
1111 

1100 
1111 

1101 
0111 

1011 
1111 

1101 
1010 

1101 
1011 

Score 
1.78
2 

0.79
2 

2.91
2 

1.99
0 

1.83
8 

1.82
2 

1.92
7 

 
To validate the efficiency of the proposed technique for 

feature reformulation, the optimized features are further 
processed by the NF classifier. By a series of tests and 

comparisons, higher classification accuracy has been 

achieved for this bearing fault diagnostic operation. As 
demonstrated in Fig. 9, for a total of 200 validating data 

sets, except one false alarm (i.e., a healthy state is beyond 
the threshold [-0.5, 0.5]), all other bearing conditions are 

correctly classified. This diagnostic reliability is much 

higher than that achieved prior to feature optimization. 
Furthermore, the program computation time is 

dramatically reduced (around 30 seconds) with the same 
computer, Pentium III 1 GHz with 512 Mb RAM. 
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Fig. 9 Classification results using six GA-optimized features. 

4. Conclusion 

A GA-based feature optimization technique is proposed in 
this paper for bearing fault diagnosis. Representative 
features corresponding to different bearing health 
conditions are extracted from the raw vibration signals by 
using the DWP analysis. Two diagnostic methods are 
examined for the bearing fault detection and fault type 
classification. The diagnostic system based on all the 
originally extracted features and an NF classifier is 
sluggish in training, and its reliability is low in bearing 
fault diagnostics. Based on the developed GA-based 
feature optimization technique, potential features are 
effectively optimized. Its training efficiency and excellent 
classification reliability have been demonstrated by 
experimental tests. 
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