
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

69

Manuscript received September 22, 2007

Manuscript revised September 25, 2007

Requirement/Service Cooperation Model of Multi-Agent System
in the Situation Calculus

Liu Yisong †,††, Zhong Shan † and Sun Yamin ††,

†
School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang, 212013, China

††School of Computer Science & Technology, Nanjing University of Science & Technology, Nanjing, 210094, China

Summary
In multi-agent systems, the Requirement/Service is a
cooperation way that is simple, efficient, and wildly applied.
Under the framework of Situation Calculus, the agents’ mental
states (knowledge, task/goal, etc.) are represented by some
special fluents and complex actions, and communication actions
are introduced into the earlier ConGolog referring to FIPA-ACL.
Consequently, we propose a Requirement/Service cooperation
model and semantics for multi-agent System based on the
extended ConGolog. What’s more, in terms of the model and
semantics, we specify a feasible case of the multi-agent system
in the dynamic and incompletely known environment for
achieving the cooperation based on reasoning about action and
change.

Key words:
situation calculus, multi-agent system, cooperation model,
cooperation semantics

1. Introduction

In multi-agent systems, the information and resources of
system is dynamically changeable and incompletely
known to every agent, and each agent’s ability is limited.
In order to achieve the given goal or task, the agents in
system needs to cooperate efficiently [1,2]. There are
various collaboration ways. In particular, the
Requirement/Service is wildly applied in multi-agent
systems [3].

McCarthy put forward the term “Situation Calculus”
firstly in 1963. Ray Reiter formalized it, and brought out
the Basic Theories of Action [4], and implemented an
agent-oriented high level programming language
(Golog[5], ConGolog[6], etc.), which made it practicable
that reason about action and goal-oriented plan in
dynamic environment.

ConGolog is extended from Golog that is appropriate
for single agent, so agent’s actions can be concurrently
performed. However, ConGolog lacks mandatory
communication predicates (actions), in particular, it
cannot explicitly express the internal mental states of
agents. Many theorists have done some significant works
[7,8]. But they didn’t put forward a complete and feasible

multi-agent cooperation model and corresponding
semantics.

In the Situation Calculus, we represent agents’ mental
states (knowledge, task/goal, etc.) by some special fluents
(Intend, Trigger, etc.) and complex actions. In the earlier
ConGolog, we add communication actions (Inform,
Request, Promise, Refuse and Result) and point out how
communication actions influence agent’s mental states.
What’s more, we propose a novel Requirement/Service
Cooperation Model and corresponding Semantics
according to a method called Whole-hearted Satisfaction.

2. The Situation Calculus and ConGolog

As for the Situation Calculus, all changes to the world are
the result of named actions. A possible world history,
which is simply a sequence of actions, is represented by a
first-order term called a situation. The constant S0 is used
to denote the initial situation, namely that situation in
which no actions have yet occurred. There is a binary
function symbol do and the term do(a, s) denotes the
situation resulting from action a being performed in
situation s. Action is denoted by function symbols, e.g.
pickup(agt,Coff). Fluent denotes the value of world state
in a certain situation, whose values vary from situation to
situation, including relational fluents (e.g.,
Holding(agt,Coff,s)) and functional fluents (e.g.,
Location(agt,s)).

There are three domain dependent axioms. Action
Precondition Axioms denotes conditions of action a being
performed in situation s, e.g., Poss(pickup(agt,Coff), s)
≡ ¬Holding(agt,Coff,s) ∧ Location(agt,s)=loc(CM).
Successor State Axioms (including Effect Axioms and
Frame Axioms), which specify how the action affects the
state of the world (i.e., the value of fluent), for example,
Location(agt,do(A,s))=Loc ≡ A = goto(agt,Loc) ∨

(Location(agt,s)=Loc ∧ ¬A=goto(agt,Loc1)). Axioms
Describing the Initial Situation that is a set of first-order
sentences that are uniform in S0. Herein, the above three
domain-dependent axioms, together with some domain

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

70

independent axioms (e.g., Unique Names Axiom)
constitute the Basic Theories of Action.

ConGolog has only two primitive actions: primitive
actions a, test actions φ?. Sequentially, suppose δ,δ1

andδ2 stand for complex actions, complex actions of

ConGolog can be defined recursively as: sequenceδ1;δ2,

nondeterministic choice of two actions δ 1| δ 2,

nondeterministic choice of action argument (πx)δ(x) ,

nondeterministic iteration δ*, synchronized condition if

φ thenδ1 elseδ2 , synchronized loop While φ doδ

EndWhile, concurrencyδ1||δ2, concurrency withδ1 at

a higher priorityδ1 >>δ2 , concurrent iteration δ || ,

interrupt < φ→δ > . What’s more, Procedures are

defined with the syntax: Proc P(v) δ EndProc.

The semantics of the ConGolog is a style of structural
operational semantics. Based on two special predicates:
Final and Trans, the overall semantics of program δ(i.e.
complex actions or Procedures) are defined using the Do
abbreviation,

(, , ') '(*(, , ', ') (', '))Do s s Trans s s Final sd d d d d$ ÙB (1)

Trans* is the reflexive transitive closure of the
transition relation Trans. Do(δ , s, s’) holds if it is

possible to repeatedly single-step δ obtaining δ’ and s’

such that δ’ can legally terminate in s’. In terms of this
semantics, the ConGolog interpreter can automatically
convert δ into a sequence of primitive actions using the
mechanism called “regression”. That is, if the agents’
tasks, goals or intention are specifically described by δ,
they will be implemented when the agent reaches
situation s’ from situation s by executing the
corresponding sequence of primitive actions.

3. Agents’ Mental States and Communication
Actions

Communication is the foundation of the cooperation.
Communication actions does not generally have an effect
on the environment that agent is within, but on agent’s
mental states, while the mental states determine the
agent’s behaviors. We specify some special fluents such as
Intend, Trigger to represent agent’s mental states, and
introduce communication actions to ConGolog referring
to the Agent Communication Language FIPA-ACL. The
main communication actions include Inform, Request,
Promise, Refuse and Result.

Inform(i,j,inf(φ)) denotes agent i inform agent j of a

message φ. The function Inf(φ) denotes φ is a message.

Request(i,j,Task(c,δ)) denotes agent i request agent j

to achieve the task δ for agent c. The function Task(c,δ)

denotes δ is a task, and expressed by complex actions or
Procedures. The influence of action Request on the mental
states of requestee agent j can be thought as whether the
request is transformed to a task/goal of the requestee
agent j. The transformation process may be rather
complicate. Many aspects have to be considered, for
example, whether the requestee agent j understands (has
desire to achieve, and has ability to achieve) the request
δ, and whether the request is in conflict with the current
task of agent j.

A feasible method is to introduce a special fluent
Intend(j,Task(c, δ),s) to denote that agent j intend to

perform the task δ, and suppose that a agent can carry
out only one task at a time. If the requestee agent j is
“free”, action Request will make fluent Intend hold,
whereas is the otherwise case. Besides, action Request can
attach action Inform to send a message, for example,
“Please give me a cup of coffee”.

Promises(i,j,Task(c,δ)) denotes agent i promises to

achieve the task δ from agent j. The precondition action

Promises being performable is that Intend(i,Task(k,δ),s)

is hold. Action Promises will trigger agent i to perform δ.

Introducing a special fluent Trigger(i,Task(c,δ),s) is to

denote whether agent i be triggered to perform the task δ.
Action Promises will make fluent Trigger hold, and the
interrupting action <Trigger(i,Task(c,δ),s)→δ> make

δ to be executed. Action Promises can attach action
Inform, for example, “coffee is coming”.

Refuse(i,j,Task(c,δ)) denotes agent i refuse to perform

the request δ from agent j, the precondition is that

Intend(i,Task(c, δ),s) is not hold. Action Refuse can
attach action Inform, for example, “sorry, I am busy”.

Result(i,j,Task(c,δ)) denotes agent i report the result to

agent j about performing the task δ. When agent i has

finished the task δ , action Result makes the fluent
Trigger be not hold, Result action can also attach action
Inform, for example, “Here is your coffee”.

4. Cooperation Model and Semantics

Based on the communication actions above as mentioned,
we bring forward a Requirement/Service cooperation
model in multi-agent system (Fig.1).

In the model, there are two types of agents: request
agents (RequAgtSet) and service agents (ServAgtSet).
Request agents can request service agents to achieve a
task, and service agents are able to correspondingly
provide request agents with service in a cooperative way
among service agents. That is to say, once a request agent
(RequAgti) sends his request to a service agent, e.g.,
ServAgt1, then ServAgt1 is responsible for coordinating

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

71

among service agents for achieving the request. Firstly,
ServAgt1 estimates whether the request can convert to
own task or not. If not, he sends this request to the second
agent ServAgt2 who replays his promise or refusal; if
ServAgt1 gets the refusal from ServAgt2, then he sends
the request again until a certain agent ServAgti accepts
request, or he will inform RequAgti of not being able to
serve the request. If an agent ServAgti accepts the request,
she will perform corresponding actions to achieve the task.

Fig.1. Requirement/Service cooperation model

Inspired by Singh’s work [9], under the framework of
Situation Calculus, we explain semantics of
communication actions as satisfied conditions of
performing communication actions. It is called Whole-
hearted Satisfaction Semantics.

In order to denote that the communication action Act is
Whole-heartedly Satisfaction, we introduce W operator:
W(Act,s), and 1. (, , 1)s Do Act s s$ means Act is

successfully performed. Requirement/Service Cooperation
model’s semantics is formalized as follows:

(Re (, , (,)),)
1, *. (Re (, , (,)), , 1)

1 * (Pr (, , (,)), *).

W quest i j Task c s
s s Do quest i j Task c s s

s s W omises j i Task c s

d
d

d

º
 $ Ù
 < Ù

 (2)

In formula (2), action Request (from agent i to agent j)
is Whole-heartedly Satisfaction iff agent i performs action
Request to agent j, and action Promises (from agent j to
agent i) is Whole-heartedly Satisfaction.

(Pr (, , (,)),)
[1, *. 1 (, (,), 1) 1 *

(Pr (, , (,)), 1, *)
(Re (, , (,)), *)]

[1, *. 1 (, (,), 1)
(Re) 1

W omises j i Task c s
s s s s Intend j Task c s s s

Do omises j i Task c s s
W sult j i Task c s

s s s s Intend j Task c s
i quAgtSet s

d
d

d
d

d

 º
 $ < Ù Ù < Ù
 Ù
 Ú
 $ < ÙØ Ù
 Î Ù * .

(Re (, , (,)), *)].
s k k ServAgtSet

W quest j k Task c sd
< Ù$ Î Ù

 (3)

Formula (3) means, it holds that action Promises (from
agent j to agent i) is Whole-heartedly Satisfaction iff
either it holds that the request of agent i can convert to the
task of agent j (i.e., Intend(j,Task(c,δ),s1)), and agent j
performs the action Promises to agent i, and action Result
(from agent j to agent i) is Whole-heartedly Satisfaction;
Or the request of agent i can not convert to the task of
agent j (i.e., ¬Intend(j,Task(c,δ),s1)) and requester i
belongs to RequAgtSet, agent j looks for an agent k in the
service agents and transmit the request, and action
Request (from agent j to agent k) is Whole-heartedly
Satisfaction. Notice, since the task can be described using
complex actions (or procedure) in extended ConGolog, we
assume that the agents have always abilities to achieve her
task.

(Re (, , (,)),)
1, 2. (, , 1) 1 2
(Re (, , (,)), 1, 2).

W sult j i Task c s
s s Do s s s s

Do sult i j Task c s s

d
d

d

 º
 $ Ù < Ù

 (4)

In formula (4), action Result (from agent j to agent i) is
Whole-heartedly Satisfaction iff agent j has achieved task
δ, and agent j performs action Result to agent i.

5. Requirement/Service Cooperation Case of
Delivering Coffee

According to our Requirement/Service cooperation model
and semantics, we give a case of delivering coffee. Given
a coffee bar scenario, the agents consist of two sets:
customer agents (CAgtSet) and service agents (SAgtSet),
whose relationship is the same as the model above.

The procedures W_Request, W_Promises and W_Result
are the implementation of the above cooperation
semantics. The symbol δ stands for a ConGolog
Procedure, e.g., deliCoff. The procedure deliCoff (denotes
agent sagt delivers a cup of coffee to agent cagt) is
adapted from [4], including three primitive actions, i.e.,
pickup(sagt, Coff), give(sagt, cagt, Coff), goto(sagt, Loc),
two fluents (Holding, Location) and two special fluents
(Intend, Trigger). The control procedure describe the
coffee bar scenario in which there are three customers (C1,
C2, C3) and two waiters (S1, S2), and customers can
request any a waiter time after time. Main code of the
procedures is as follow.

// Requirement/Service cooperation
Proc W_Request(i, j, Task(c,δ))

Request(i, j, Task(c,δ));

W_Promises(j, i, Task(c,δ));

EndProc
Proc W_Promises(j, i, Task(c,δ))

 if Intend(j, Task(c,δ)) then

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

72

 (Promises(j, i, Task(c,δ));

W_Result(j, i, Task(c,δ));)
 else

(if i∈CAgtSet then

 (AskSAgtSet={j}∪{};

While ((¬∃k. k∈AskSAgtSet ∧ Intend(k,Task(c,

δ)))∧(∃m. m∈SAgtSet ∧ mÏ AskSAgtSet)) do

 AskSAgtSet={m}∪AskSAgtSet;

 W_Request(j, m, Task(c,δ))
EndWhile;
if ¬∃k. k∈SAgtSet ∧ Intend(k,Task(c,δ)) then

Refuse(j, i, Task(c,δ));)
else

Refuse(j, i, Task(c,δ));)

EndProc
Proc W_Result(j, i, Task(c,δ))

δ; Result(j, i, Task(c,δ));

EndProc

//Deliver Coffee
Proc deliCoff(sagt,cagt)

if location(sagt)≠loc(CM) then
 goto(sagt, loc(CM))
else

(pickup(sagt,Coff);
goto(sagt, loc(cagt));

 give(sagt,cagt,Coff))
EndProc

// Control Procedure
((π sagt. W_Request (C1, sagt, Task(C1,deliCoff)))*||
(π sagt. W_Request (C2, sagt, Task(C2,deliCoff)))*||
(π sagt. W_Request (C3, sagt, Task(C3,deliCoff)))*)

>>
(<trigger(S1,Task(cagt,deliCoff))→deliCoff(S1, cagt)>||

<trigger(S2,Task(cagt,deliCoff))→deliCoff(S2, cagt)>)

6. Discussion

As for our Requirement/Service cooperation model, if the
communication way in which a service agent who is
responsible for coordinating sends request is substituted
by the broadcast, correspondingly our model and
semantics can be changed easily to a similar Contract Net
model and semantics.

In fact, the Requirement/Service cooperation can be
distinguished as two types: Terminating and Non-
terminating. As for the former, as long as the request has
been served, the Requirement/Service cooperation relation
will terminates. For instance, “Please give me a cup of

coffee”. Actually, our Model put forward above is
regarded as the Terminating Requirement/Service
cooperation model. As for the later, after the request is
occurred, service will be provided repeatedly as long as
the condition is satisfied. For example, “Please deliver me
my mails whenever they arrive”. In terms of the interrupt
mechanism <ф→δ > in ConGolog, our model and
semantics can be easily modified to the Non-terminating
Requirement/Service cooperation model and semantics.

Acknowledgments

This work was based on the Planning Project supported by
the Natural Science Foundation of the Jiangsu Higher
Education Institutions of China (No. 03kjd520175) and the
Project supported by the Social Development Plan of
Jiangsu province, China (No. BS2001046).

References
[1] A. Haddadi, Communcaition and Cooperation in Agent

Systems, New York: Springer-Verlag, 1996.
[2] M. N. Huhns, L.M. Stephens, Multiagent System and

Societies of Agents. In: Multiagent System —A Modern
Approach to Distributed Artificial Intelligence, MA: MIT
Press, 1999.

[3] Wang Huaimin, Wu Quanyuan, “A Formal Framework of
Multi-agent Systems with Requirement/Service
Cooperative Style”, Journal of Computer Science and
Technology, 2000, 15(2), pp. 106-115.

[4] Raymond Reiter, Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynamical
Systems, MA: MIT Press, 2001.

[5] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R.
Scherl, “GOLOG: A logic programming language for
dynamic domains”, Journal of Logic Programming, 1997,
31, pp. 59-84.

[6] G. D. Giacomo, Y. Lespérance, H. Levesque, “ConGolog,
A Concurrent Programming Language Based on the
Situation Calculus”, Artificial Intelligence, 2000, 121(1-2),
pp. 109-169.

[7] R. Scherl and H. J. Levesque, “Knowledge, Action, and
the Frame Problem”, Artificial Intelligence, 2003, 144(1-
2), pp. 1-39.

[8] S. Shapiro, Y. Lespérance, and H. J. Levesque, The
Cognitive Agents Specification Language and Verification
Environment for Multiagent Systems, Proc. of the First Int.
Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-02), ACM Press, 2002, pp. 19-26.

[9] Munindar P. Singh, Multiagent System: A Theoretical
Framework for Intentions, Know-how, and
Communications, New York: Springer-Verlag, 1994.

Liu Yisong is an Associate Professor in
the School of Computer Science and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

73

Telecommunication Engineering, Jiangsu University, China. He
is working towards his Ph.D degree in the School of Computer
Science and Technology at the Nanjing University of Science &
Technology, China. His research interests include Virtual
Reality, Intelligent Virtual Agent and Reasoning about Action.

