
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

79

Manuscript received September 5, 2007

Manuscript revised September 20, 2007

An Adaptable Architecture for Mobile Streaming Applications

Mabel Vazquez-Briseno 1 and Pierre Vincent 2,
1 GET-INT, RST Department, Evry, France / UABC, Ensenada, Mexico

2 MobKit, Lille, France

Summary

Many emerging mobile applications and services require
playback of streaming media. In this paper we describe an
adaptable system architecture to implement mobile streaming
services. The main components of this architecture are the
streaming server, the multicast proxy and the mobile client. The
main novelty of our approach lies on the client which is
designed to fit most mobile devices. The streaming servers and
client are all compliant with 3GPP standards, and therefore use
the Session Description Protocol (SDP), Real Time Streaming
Protocol (RTSP), and Realtime Transport Protocol (RTP), as
well as the Adaptive Multi-Rate (AMR) audio media standard.

Key words:
Mobile computing,, multimedia, software, streaming.

1. Introduction

The rapid growth of mobile communications systems has
made possible to provide mobile users with new services
and applications. Among these, streaming is one of the
most appealing and interesting services. Streaming refers
to the ability of an application to play synchronized media
streams like audio and video in a continuous way while
those streams are being transmitted to the client over a
data network.

On the other hand mobile applications provide a new set
of design challenges for application designers.
Concerning the implementation of mobile streaming
applications, terminal heterogeneity is a major challenge.
Since mobile terminals have a wide range of different
capabilities it is not probable that all of them will be able
to support all proprietary Internet streaming formats and
protocols. A common standardized format is then
required to guarantee the creation of compatible solutions.
The Third Generation Partnership Project (3GPP) has
standardized streaming services and specifies both
protocols and codecs [1]. As protocols the 3GPP defines
the Real-time Streaming Protocol (RTSP) and Session
Description Protocol (SDP) for session setup and control,
and the Real-time Transfer Protocol (RTP) for
transporting real-time media such as video, speech, and

audio. The standardization process has also selected
individual codecs on the basis of both compression
efficiency and complexity, among these MPEG-4 for
video and AMR (Adaptive Multi-Rate) for audio.

Another important issue related to the development of
mobile applications is that mobile devices have limited
resources, for that reason client applications must be
adequate to the mobile environment. Several enabling
technologies to construct mobile applications have been
introduced in recent years. Among these technologies,
Java 2 Micro Edition (J2ME) [2] is one of the most
popular, due to the fact that the majority of mobile devices
support it, thus guarantees compatibility.

 Taking into account these aspects we have designed a
generic architecture in order to facilitate developers work.
Our architecture implements the server and client side
according to the 3GPP standards. There are several
mobile applications that implement streaming but the
main idea of our approach is to provide a ready-to-use
streaming system adapted to the specific requirements of
each developer and that fits most mobile devices. J2ME is
used to develop the client side and to implement the RTSP
protocol on mobile phones, even if they formerly lack of
support for this protocol. The architecture also considers
the possibility of multicast streaming using one mobile
phone to send a media stream to several ones.

In the following section we explain the architecture
components and their implementation. Section III
demonstrates the utility of our approach by building and
testing a working example. Section IV provides the
conclusions and future work.

2. Architecture Description

The main purpose of our approach is to facilitate the work
of mobile applications developers by providing a set of
reusable software elements. These elements can be easily
adapted to different applications that require the
streaming principle. To achieve this goal we conceived a
generic architecture that can fit diverse mobile streaming

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

80

applications. Fig.1 depicts the main components of this
architecture.
In frame A of Fig. 1 we show the components of a basic
streaming system. In the simplest case a mobile client
communicates only with a RTSP server to get a particular
file. The media that can be streamed consists of AMR
audio files. It is also possible to add a PHP server in order
to store and administrate media files received from the
clients. HTTP connection is then required to send files
from the mobile phone to the server. Furthermore the PHP
server can be used to provide security to the system by
maintaining a list of authorized users, called members,
into a MySQL database. In this case the user will require
authenticating before been able to start a RTSP session.

Fig. 1 Architecture components

Frame B of Fig. 1 shows a system that supports also
multicast streaming. In this case one mobile phone starts
a RTSP session with the server, indicating in the SETUP
event that it is a multicast session. A multicast session is
established using the Multicast Proxy Network Platform
(MPNT), which was developed with Java programming
[3]. The element m, in Fig. 1, may consist of a single
MPNT proxy or a MPNT network, which interconnects
several proxies. All mobiles connected as clients to this
multicast session will receive the streamed data, but it will
be controlled only by the mobile that started the RTSP

session.

Depending on the mobile application requirements the
developer may add or remove system components. Among
them the J2ME client is the most flexible one. The idea is
to have a client that contains only the functionalities
required by the application. For example, if the
application does not comprise multicast streaming or
member’s authentication, then the client will have neither
the J2ME classes required to support multicast nor the
ones required to support HTTP connection. The system

created in this case will consist only of the J2ME client
and the RTSP server.
The components included in the generic architecture are
described in the following sections.

2.1 RTSP Server

RTSP is an application-level protocol created for the
purpose of controlling the delivery of data with real-time
properties [4]. It provides an extensible framework to
enable controlled, on-demand delivery of real-time data,
such as audio and video. The RTSP server in our
architecture is written in Java SDK 1.5. It implements the
basic RTSP mechanisms to control the streamed data, but
once the session is established, media streams are sent
using RTP over UDP as transport mechanism as depicted
in Fig. 2. A RTSP session is started when the client sends
a Describe/Setup event containing all the session
information into the Session Description Protocol (SDP).
The Setup event causes the server to allocate the resources
for the stream and to determine if this is a unicast or
multicast session. In the case of a unicast session the
streamed data is sent directly to the mobile client. On the
other hand, if this is a multicast session, the streamed data
will be sent to a MPNT proxy. Once the data is being
streamed the mobile client can control it using the RTSP
events as Play, Pause and Stop that are implemented in
the server. All RTSP requests and responses between the
server and the clients are carried out using Socket
connections. RTP/UDP delivery is done using a Datagram
connection. The server sends one AMR frame in each
RTP packet. An AMR audio frame consists of 1-byte
header, and several bytes of audio data. The entire frame
is fed into the AMR decoder. Each frame represents 20
ms of speech encoded with an AMR mode (0-8), for AMR
mode 2 the bit rate is 5.9 kbps, and each frame is 16 bytes
long. The J2ME client receives each frame into a buffer
and reconstructs smaller AMR files in order to play them,
as explained in section 2.4.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

81

 Fig. 2 J2ME client and RTSP server communication

2.2 MPNT Platform

The MPNT (Multicast Proxies NeTwork) platform is an
overlay architecture conceived at GET-INT to provide
multicast access to unicast-only users or multicast clients.
It is written in Java, thus it is totally compatible with the
components of our generic streaming architecture. Unlike
multicast IP, MPNT does not intervene at network layer
but at both transport and application layers. MPNT
architectures are composed of a set of relaying nodes
(called mPnt proxies), interconnected as an overlay
network. Each node provides access for a subset of the
protocol stack given by Fig. 3. Providing an access means
launching a listening server with specific transport and
application layer. Examples of accesses can be
[RTP||UDP], [RTP||UDP/IP multicast], or [SIP||TCP].

Fig. 3 MPNT protocol stack

As explained before, a mobile streaming application
establishes a session with the RTSP server to allocate
resources and control data, but actual media is streamed
using RTP/UDP. If the application requires multicast
communication, MPNT has to be incorporated to the
mobile streaming architecture providing the RTP over
UDP or RTP over UDP/IP multicast services.

A mPnt proxy is made up of two entities: a set of
forwarding servers, and a managing tool for launching
and stopping these servers, making interconnections, etc.
MPNT architecture can be used in standalone mode or
jointly with multicast IP sessions. Each mPnt can be
connected to several multicast sessions; each one of them
will be associated to a user group (SIP, RTP, RTCP or
“none”). It is also possible to interconnect several mPnts
using different topologies [5] in order to ensure load
scalability and provide more flexibility for conceiving
architectures. To avoid routing cost a single-path
interconnection model was adopted. In this case each
interconnection consists of creating two channels: one for
management, and another for data. Concerning the tables,
each mPnt has got two: one containing connected mPnts

and their access path, and another one for available
servers on the mPnt network. The control channel is used
also to detect interconnection failures and remedy them.
The mechanism used is a dynamic recovery algorithm
that reconfigures the architecture after a failure [5]. In
local use, meaning multicast applications restricted to a
LAN, MPNT duplicates messages so it is not as efficient
as multicast IP, but in a WAN context it can be more
efficient because it is based in tunnelling but at
application layer, the overhead is then smaller than IP
overhead. Another advantage is flow multiplexing; a
single channel is used to carry all session’s messages.

2.3 PHP/MySQL Server

The PHP Server was implemented using PHP version 5.0,
Apache Server version 2.0 and MySQL version 5.0. It
consists of PHP scripts that accomplish authentication
functions as well as communication with the J2ME clients.
All server/clients communication is done using HTTP. A
mobile streaming application may require this server to
allow the clients to store media files that will be streamed
later. The server can also be used to add security to the
system by maintaining a database with the records of the
authorized users allowed to access the streaming system.
In order to add this server to a mobile application the
J2ME clients must have the HTTP connection module as
explained in the next section.

2.4 J2ME Client

J2ME supports programming on mobile devices. The
architecture of J2ME consists of: configurations and
profiles [6]. The first one defines the minimum set of java
core classes required by the virtual machine to work. The
second one adds additional functionalities for specific
devices. The Mobile Information Device Profile (MIDP) is
the profile corresponding to mobile phones. The
applications developed using the MIDP profile are called
MIDlets. A J2ME-application suite is stored on a JAR file.
The size of this file is important because most mobile
phones have a memory size allocated for MIDP
applications not greater than 64k.

The J2ME client or MIDlet in our architecture is a very
flexible component. The idea is to construct it using an
applications generator framework that we have previously
conceived [7]. This framework consists of a set of Java
classes and PHP scripts; it uses Velocity templates [8] to
merge the information provided from the developer with
predefined modules already included in the framework’s
library. We have now extended this framework to create a
J2ME application that supports streaming. A mobile

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

82

streaming client is then implemented by adding several
reusable elements and determining its attributes in order
to satisfy the particular mobile application task. Each
element consists of a set of J2ME classes that implement a
specific function. They are described in the next sections.

2.4.1 RTSP_Client

This element provides a template to implement the
communication with the RTSP server. It establishes a
socket communication using TCP and sends the Describe,
Setup, Play, Pause and Stop events.

Once the RTSP session is established, another class,
called Datagram_Listener, is in charge of receiving and
playing the streamed media. This class is then the one
that implements the streaming function. It extracts data
from the RTP packets and plays the media. To play media
the J2ME clients use their Mobile Media API (MMAPI)
capabilities. MMAPI is an extension to J2ME. It supports
time-based multimedia on small wireless devices [9].

Unfortunately J2ME and MMAPI do not support playback
of streaming media. The player in MMAPI requires a
whole AMR audio file to be able to play it. To resolve this
aspect it was necessary to reconstruct new smaller files
from the original one. The server streams one AMR frame
from the whole file in each RTP packet, the client then
waits to have a specified amount of AMR frames to
construct a file that is then played. While this small file is
been played the server continues sending RTP packets, for
this reason two buffers and two players where used. When
an AMR file is ready, the first player starts to play it and
the second buffer starts to receive the AMR frames, then
when the second buffer is filled, the second player starts
to play this buffer and the first buffer starts to receive the
AMR frames. This process is done during all the
transmission as depicted in Fig. 4.

Fig. 4 Streaming in the J2ME client

2.4.2 Voice_Record

This template allows the user to record a voice file that
can be sent to the PHP server using HTTP. To generate a
new audio file the phone uses the MMAPI audio capture
feature. Most mobile phones have only the capacity to
capture WAV audio, but recent models can also capture
AMR audio, which is a most compressed and efficient
format. Audio files can be captured using WAV or AMR,
but if these files are stored in the server to be streamed
later, they are converted to AMR format.

2.4.3 Http_Connection

Even thought the HTTP protocol is not compulsorily
required in a streaming application, we have included it
in order to allow the client to communicate with the PHP
server. The Post and Get methods have been predefined
and can be easily adapted adding the information
concerning to the HTTP server URL and the data to be
sent.

2.4.4 MPNT Connection:

This element starts a RTP/UDP connection with a mPnt
proxy through its IP address. It is possible to add a
multicast client or server or both to a mobile application.
A multicast client starts an UDP connection with the
corresponding mPnt proxy and waits until it gets
information. The Datagram_Listener class is reused in
this component to play RTP packets once they are
received. A multicast server is a mobile that is able to
stream a file that is stored in a remote server to several
multicast clients. The mobile acting as multicast server
sends RTSP events to the RTSP server using the multicast
option into the SDP protocol. In this case the RTSP server
sends the RTP datagrams to the mPnt proxy. All multicast
clients will receive data but only the mobile working as
multicast server can control the Pause, Play and Stop
events.

3. Tests and Results

In order to test the system we implemented a mobile
streaming application with all the components shown in

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

83

Fig. 1. The mobile J2ME application created using the
framework consists of two MIDlets: Voice Messages and
Multicast Audio Streaming. Both MIDlets share the basic
streaming classes defined previously and communicate
with the same servers. The J2ME client application
structure is showed in Fig. 5.

The Voice Messages MIDlet’s goal is to exchange voice
messages among mobile members already registered in
the server’s database. Voice messages are captured in the
phone and then are sent to the PHP server. They are
stored in the space of safeguard corresponding to the
addressee member. To get the messages a client connects
to the PHP server and gets a list of hers/his messages. To
listen to a message the mobile client has to connect to the
RTSP server and send the information corresponding to
the desired file. After the session is established the voice
message is streamed.

Fig. 5. Shared classes in a J2ME application

The Multicast Audio Streaming MIDlet implements the
multicast client and server functions. As a client it is able
to connect to a MPNT proxy and be added to a list of
listeners. As a server it is able to start a multicast RTSP
session to stream an audio file already stored in the
mobile or to record a new audio file. In order to stream a
file to a multicast group it must first send the file to the
PHP server.

All servers were installed on the same PC and we use a
Sony-Ericsson W810 mobile phone to capture and send
AMR voice files to the PHP server. The mobile phone was
also used to start a multicast session. The streamed data
was sent to several phones emulators installed on other

PCs. We use the Sprint simulator with emulators for the
Samsung A900, A920, A940 as well as Sanyo MM-7500
and 9000. We also use the Siemens SL65 emulator. The
mobile application works fine on the mobile phone as well
as on the emulators. The change between buffers and
players is not perceptible, there is only a little delay before
starting to play the media that corresponds to the time
required to fill the first buffer.

The J2ME JAR file containing all the streaming classes
included in the framework is 61.4 k. It could be possible
to have a smaller client with fewer functions, for example
only the RTSP client, or multicast client. There are many
possibilities to construct applications with smaller JAR
sizes and not much to have greater ones thus is possible
to affirm that the generated MIDlet suite will always fit
into most mobile phones.

4. Conclusion

Streaming on mobile devices is a huge challenge for
developers. Those devices have different and restricted
capabilities. The newest ones support the RTSP protocol,
but not all of them do. On the other hand most mobile
devices are J2ME-enabled. In this paper we presented a
solution to implement streaming mobile applications
using RTSP even if the mobile phone does not formerly
support it. We propose an architecture that includes all
the required components to implement most mobile
streaming applications. These components can be added
to a streaming system and adapted if it is needed. The
most flexible one is the J2ME client; it can be easily
created by adding some predefined modules that perform
the main functions required to support streaming on a
mobile phone. We demonstrate the utility of our
architecture by creating an application with all the
possible components. Even with all the functionalities the
JAR file of the MIDlet suite generated is a normal size
application that can be installed without problem on
almost any mobile phone.

We consider that the architecture presented can be
adapted easily to fit specific needs of a streaming
application that could be for example: a music sharing
system, an electronic library system, a mobile learning
system, among others.

As future work we plan to add other streamed media like
MPEG-4 video and MP3 audio. For this it will be only
necessary to add the corresponding modules to the RTSP
server and the J2ME client, without any modification on
the other components.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

84

References

[1] 3GPP, TSGS-SA, Transparent end-to-end Packet Switched

Streaming Service(PSS). Protocols and codecs.(Release 7),
TS26.234 v.7.1.0 (2006-12).

[2] Java 2 Platform, Micro Edition- J2ME, Official Site,
http://java.sun.com/javame/index.jsp.

[3] Sbata K., Vincent P., Benaini R. and Naja N. MPNT: An
architecture for multimedia applications. IWCSE Workshop,
part of the 2nd IEEE ISSPIT, December 2002.

[4] H. Schulzrinne, A. Rao, R. Lanphier and M. Westerlund,
“Real Time Streaming Protocol. RFC 2326, March 2003.

[5] Karim Sbata, Redouane Benaini and Pierre Vincent,
Comparative study of MPNT topological models, IEEE
Proceedings of the 2005 Systems Communications (ICW’05).

[6] Muchow, J., Core J2ME Technology & MIDP, The SUN
Microsystems Press, Prentice Hall, London, 1st. Edition,
2002.

[7] Vazquez M., Vincent P., A Modular and Extendable
Framework for Mobile Applications Generation. WSEAS
Transactions on Computers, Oct. 2006, Issue 10, Vol.5,
ISSN: 1109-2750.

[8] Naccarato, G., Template-Based Code Generation with
Apache Velocity. http://www.onjava.com., 2004.

[9] Mobile Media API 1.2. Sun.
http://java.sun.com/products/mmapi/ .

Mabel Vazquez-Briseno
[Mabel.vasquez_briseno@int-edu.eu,

mabelvb@uabc.mx] received the
M.Sc degree in Electronics and
Telecommunications from CICESE
Research Center, Mexico, in 2001.
She has been a lecturer of several

B.Sc and M.Sc computers and networks courses at the
Autonomous University of Baja California (UABC), Mexico,
since 2002. Currently she is a Ph.D student at the Institut
National des Télécommunications (GET-INT) in Evry, France.
Her research interests include computer networks, mobile
computing and protocols.

Pierre Vincent
[Pierre.Vincent@mobkit.com]
Received the Ph.D degree in
Computer Science from the
University of Paris 6 Jussieu in
1988. He was assistant professor at
GET-INT from 1986 to 1999. Then,

he participated to the creation of ENIC, a computer and network
faculty based in Lille where he worked from 1990 to 1999, as
head of the Computer and Network department. At ENIC, he
developed Teleteaching facilities and was also in charge for

international relations. Back at GET-INT, from 1999 to 2005, he
was the head of Software and Network Department, where he
managed the development of communication services. At the
present time, he works for MobKit, a software company that he
has created to develop on-line services for mobile phones and
audio conferencing His research interests include networks,
computer programming and software for Internet.

