
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 85

A Modified Vector Space Model for Protein Retrieval

Mohammed Said Abual-Rub†, Rosni Abdullah†† and Nur'Aini Abdul Rashid†††

School of Computer Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

Summary
 This paper provides an enhancement of an existing method
of information retrieval which is a modification of Vector Space
Model for information retrieval. This enhanced model is
modified to be applied on protein sequence data whereas the
normal vector space model has been applied on text data. The
results show that the enhanced model achieved very good results
in performance but the setup time is somehow high for a large
collection of protein sequences
Key words:
 Information retrieval, Vector Space Model, Protein sequence,
Bioinformatics.

1. Introduction

The Vector Space Model (VSM) is a standard
technique in Information Retrieval in which documents
are represented through the words that they contain. It was
developed by Gerard Salton in the early 1960’s to avoid
some of the information retrieval problems. Vector spaces
models convert texts into matrices and vectors, and then
employ matrix analysis techniques to find the relations and
key features in the document collection. It represents
queries and documents as vectors of terms which can be
words from the document or the query itself. The most
important thing is to represent relevance between
documents in this information space, which is achieved by
finding the distance between the query and the document
[1].

The weight of relevance of a query in the document
can be calculated using some similarity measures such as
cosine or dot product or other measurement.

Glenisson P.and Mathys J [4] have showed how the
bag-of-words representation can be used successfully to
represent genetic annotation and free-text information
coming from different databases. They evaluated the VSM
by testing and quantifying its performance on a fairly
simple biological problem. They found that it can establish
a powerful statistical text representation as a foundation
for knowledge-based gene expression clustering [2].

In this work, we have modified the VSM technique to
work with biological datasets. We used the document

frequency (DF) instead of inverse document frequency
(IDF). The results of the experiments show that the
modified method give good results using precision
evaluation measure.

2. Vector Space Model

The VSM relies on three sets of calculations. This
model can work on selected index of words or on full text.

The calculations needed for the vector space model
are:
1. The weight of each indexed word across the entire

document set needs to be calculated. This answers the
question of how important the word is in the entire
collection.

2. The weight of every index word within a given
document (in the context of that document only) needs
to be calculated for all N documents. This answers the
question of how important the word is within a single
document.

3. For any query, the query vector is compared to
every one of the document vectors. The results can be
ranked. This answers the question of which document
comes closest to the query, and ranks the others as to
the closeness of the fit.

 The weight can be calculated using this equation:

 Eq1:

where:

• tfi = term frequency (term counts) or number of
times a term i occurs in a document. This
accounts for local information.

• dfi = document frequency or number of
documents containing term i

• D = number of documents in a database.
The D/dfi ratio is the probability of selecting a

document containing a queried term from a collection of
documents. This can be viewed as a global probability
over the entire collection. Thus, the log (D/dfi) term is the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

86

inverse document frequency, IDFi and accounts for global
information.

2.1. VSM Example

To understand Eq 1, let’s use a trivial example. To
simplify, let’s assume we deal with a basic term vector
model in which we:
1. Do not take into account WHERE the terms occur in
documents.
2. Use all terms, including very common terms and
stop words.
3. Do not reduce terms to root terms (stemming).

The following example [3] is one of the best
examples on term vector calculations available online.

Suppose we query an IR system for the query “gold silver
truck”
The database collection consists of three documents with
the following content:
D1: “Shipment of gold damaged in a fire”
D2: “Delivery of silver arrived in a silver truck”
D3: “Shipment of gold arrived in a truck”
Q: “gold silver truck”
Retrieval results are summarized in Table 1 and Table 2

 Counts, tfi
Terms Q D1 D2 D3 Dfi D/dfi
A 0 1 1 1 3 3/3=1
Arrived 0 0 1 1 2 3/2=1.5
Damaged 0 1 0 0 1 3/1=3
Delivery 0 0 1 0 1 3/1=3
Fire 0 1 0 0 1 3/1=3
Gold 1 1 0 1 2 3/2=1.5
In 0 1 1 1 3 3/3=1
Of 0 1 1 1 3 3/3=1
Silver 1 0 2 0 1 3/1=3
Shipment 0 1 0 1 2 3/2=1.5
Truck 1 0 1 1 2 3/2=1.5

 Weights, wi = tfi * IDFi

Terms Q D1 D2 D3
A 0 0 0 0
Arrived 0 0 0.1761 0.1761
Damaged 0 0.4771 0 0
Delivery 0 0 0.4771 0
Fire 0 0.4771 0 0
Gold 0.1761 0.1761 0 0.1761
In 0 0 0 0
Of 0 0 0 0
Silver 0.4771 0 0.9542 0
Shipment 0 0.1761 0 0.1761
Truck 0.1761 0 0.1761 0.1761

 Vector space Model constructs the index tables as
shown in Tables 1 and 2 by analyzing the terms of all
documents into words as in Table 1 and find the frequency
of each term in all documents; Table 2 does the same for
the query.

2.2 Similarity Analysis

There are many different methods to measure how
similar two documents are, or how similar a document is
to a query in VSM. These methods include the: cosine, dot
product, Jaccard coefficient and Euclidean distance. In this
paper we will use the cosine measure which is the most
common.

The similarity measure for the previous example in
section 2.1 can be calculated as follows:
1. For each document and query, compute all vector
lengths (zero terms ignored)

2. Compute all dot products (zero products ignored):

3. Calculate the similarity values:

Table2: Retrieved results

Table1: Retrieved results

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9 September 2007

87

>NF01724288 Ribosomal protein L3
[Desulfovibrio vulgaris]
MAEKMGILGRKIGVTRIFASDGSAVAVTVIK
AGPCPVTQVKTVATDGYDAIQIAFDEAKEKH
LNKPEIGHLAKAGKGLFRTLREIRLEAPAAYE
VGSELDVTLFATGDRVKVSGTSIGKGYQGVM
RRWNFAGSKDTHGCEKVHRSGGSIGNNTFPG

Contribution

 We can easily see from the previous example that
the normal VSM will not be suitable for the protein
sequence data. This is because it uses the IDF in
calculating the weights, and as we saw in the example,
IDF gives weight zero if the term appears in all documents
and that is used for the stop or common words such as: a,
an, the, of,… etc Since these words are very common they
exist in all documents, IDF gives these words rank 0;
because usually the words that are in all documents are not
relevant. However, in protein there are no stop words as in
text data. So, the original method is not suitable for protein
data because the existence of a term in all protein
sequences gives a meaning and a weight must be given to
this term.

 In this paper a small modification on VSM is
proposed to fit for protein sequence data; that is to use DF
instead of IDF, where DF is the frequency of the term in
all documents (i.e. in how many documents this term
exists). This will give each document its relevance based
on the frequency even if this term exists in all documents
so it will be suitable for protein data. We will use the
cosine similarity measure, which is the most common and
has been proved by most researchers to give the best
results for similarity [5].

3. Implementation

We have implemented the algorithm described in
section 2 in C programming language.

Experiments were run on a group of proteins that are
known to be related. We tested the system on four protein
families: ribosomal protein L1, ribosomal protein L2,
ribosomal protein L3, ribosomal protein L4, where each
family has 50 proteins.

3.1 Results and Evaluation

The program has been tested on a collection of 200, 1000,
5000 and 10000 documents, where the document is a
protein sequence as in Figure 1. We have a file for protein
sequences that we want to search in, a file to input the
query and an output file that gives us the retrieved results.
The test of the program has been applied as follows:
We chose a sequence of amino acids as a query from the
collection of protein sequence, for example from L1, and
match it with the whole file and see the results. The
relevant documents would be those from L1, because we
get the query from L1.

Figure 1: one protein sequence [6]

3.2 Evaluation
 We used the standard IR evaluation to evaluate the
algorithm. The precision gives the metric percentage of the
number of relevant documents retrieved to the documents
retrieved.

Precision =

This measure gives us how accurate the method is

from the number of relevant documents we retrieved. If
the precision = 1, this implies that the algorithm has
successfully identified all relevant documents.

Applying this method on 200 documents with 50
relevant documents and using 10, 20 and 50 as the query
length, we get the following results:

• For a query of length 10 amino acids:

Cut point Precision

Top 5 0.80
Top 10 0.5
Top 50 0.56

Top 100 0.34

Table 3: Precision for 10 Amino Acids query

0

0.

0.

0.

0.

1

Top Top Top Top

Cutof

Pr
ec

is
io

n

Precisio

Number of relevant documents retrieved

 Number of retrieved documents

Figure 2: Precision value of a query of length 10 Amino Acids

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

88

• For a query of length 20 amino acids:

Cut point Precision

Top 5 1

Top 10 0.80

Top 50 0.60

Top 100 0.38

Table 4: Precision for 20 Amino Acids query

• For a query of length 50 amino acids:

Cut point Precision
Top 5 1

Top 10 1
Top 50 0.66

Top 100 0.39

Table 5: Precision for 50 Amino Acids query

3.3. Setup Time

The setup time is the time for constructing the index
tables showed in Tables 1 and 2 in addition to the
executing time of the program starting from entering the
query asking for the retrieved documents until it gives the
retrieved documents.

To calculate the setup time of the program, a

collection of 200, 1000, 5000 and 10000 documents has
been used, taking into account that this setup time is for
the first run which includes the constructing of the indexes.

Document collection Setup time (seconds)

200 7

1000 42
5000 226
10000 790

Table 6: Setup time in seconds

We can see from Table 6 that the setup time is quite

reasonable for small documents up to 5000, but after that
the setup time increases rapidly.

This can be improved by parallelizing the program
distributing the data on multiple nodes which will decrease
the setup time.

0
0.

0.

0.

0.

1

Top Top Top Top
Cutof

Pr
ec

is
io

n

Precisio

0
0.

0.

0.

0.

1

Top Top Top Top

Cutof

Pr
ec

is
io

n

Precision

Figure 4: Precision value of a query of length 50 Amino Acids

Figure 3: Precision value of a query of length 20 Amino Acids

 We can see from Tables 3- 5 that the precision for
a query of length 10 is 80 % this is because the query
length is not long enough and can be found in many
protein sequences, whereas for a query of length 20-
50, the precision is 100% for a cutoff = 5-10, and
reach 39% for a cutoff = 100, and this is good results
for precision measure.

0

20

40

60

80

100

0 200 400 600 800 1000
Documents Collection

Ti
m

e/
 S

ec
on

ds

Figure 5: Setup Time

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9 September 2007

89

4. Conclusion

 In this paper a modified model of VSM which is
applied on protein sequences data has been introduced.
The modified method achieved good results and good
performance for retrieving the protein data. Using the
precision evaluation measure, it gives a precision of 1 for
a cutoff =10, and 0.39 for a cutoff of 100. The results
show that for a small document collection the setup time is
reasonable, but for large collection it gives very big setup
time. Our next step is to test the program on larger data
and compare the performance of this modified method
with other similar methods. We also intend to explore the
application of parallel techniques to reduce the large setup
time.

.

Acknowledgments

This research has been funded by Universiti Sains
Malaysia short-term Research Grant for “Parallelisation of
Protein Sequence Comparison Algorithms Using
Hybridised Parallel Techniques” [305/pkomp/613114].

References

[1] Van Rijsbergen, Keith,”Information Retrieval”,
 Butterworths London, 1979.
[2] P. Glenisson, P. Antal, J. Mathys, Y. Moreau, B. De
 Moor, “Evaluation of the Vector Space
 Representation in Text-Based Gene Clustering”,
 Pacific Symposium on Biocomputing 8 pp391-
 402, 2003.
[3] E. Garcia, “Description, Advantages and Limitations

of the Classic Vector Space Model”, 2006.
[4] P. Glenisson, P. Antal, J. Mathys, Y. Moreau, B. De
 Moor, “Evaluation of the Vector Space Representation

in Text-Based Gene Clustering”, Pacific Symposium
on

 Biocomputing 8 pp391-402, 2003.
[5] Wahlan, Mohammed Salem Farag, “Comparison and

fusion of retrieval schemes based on different
structures, similarity measures and weighting
schemes”, 2006.

[6]http://www.blaststation.com/help/bs2/en/win/Chap1/01
_Start.html

Mohammed Abual-Rub received
his Bachelors degree in Computer
Science from Yarmouk University,
Irbid, Jordan in 1996 and Masters
Degree in Computer Science from
Universiti Sains Malaysia, Penang,
Malaysia in 2007. He is currently a
research officer at the Parallel and
Distributed Processing Research
Group and a PhD candidate as well
under the supervision of Associate

Professor Dr. Rosni Abdullah at Universiti Sains Malaysia.

Rosni Abdullah received her
Bachelors Degree in Computer
Science and Applied Mathematics
and Masters Degree in Computer
Science from Western Michigan
University, Kalamazoo, Michigan,
U.S.A. in 1984 and 1986
respectively. She joined the School
of Computer Sciences at Universiti
Sains Malaysia in 1987 as a lecturer.
She received an award from USM in
1993 to pursue her PhD at

Loughborough University in United Kingdom in the area Parallel
Algorithms. She was promoted to Associate Professor in 2000.
She has held several administrative positions such as First Year
Coordinator, Programme Chairman and Deputy Dean for
Postgraduate Studies and Research. She is currently the Dean of
the School of Computer Sciences and also Head of the Parallel
and Distributed Processing Research Group which focus on grid
computing and bioinformatics research. Her current research
work is in the area of parallel algorithms for bioinformatics
applications.

Nur'Aini Abdul Rashid received a
Bsc from Mississippi State
University,USA and Msc from
University Sains Malaysia ,
Malaysia and has submitted her
Phd thesis at University Sains
Malaysia, all in computer science.
Her Phd research involved
analysing and managing of proteins
sequence data. Currently she is a
senior lecturer at the School of

Computer Sciences at University Sains Malaysia. Nur'Aini
research interests include parallel algorithms, information
retrieval methods and clustering algorithms.

