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Summary 
         This paper provides an enhancement of an existing method 
of information retrieval which is a modification of Vector Space 
Model for information retrieval. This enhanced model is 
modified to be applied on protein sequence data whereas the 
normal vector space model has been applied on text data. The 
results show that the enhanced model achieved very good results 
in performance but the setup time is somehow high for a large 
collection of protein sequences 
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1. Introduction 

The Vector Space Model (VSM) is a standard 
technique in Information Retrieval in which documents 
are represented through the words that they contain. It was 
developed by Gerard Salton in the early 1960’s to avoid 
some of the information retrieval problems. Vector spaces 
models convert texts into matrices and vectors, and then 
employ matrix analysis techniques to find the relations and 
key features in the document collection.  It represents 
queries and documents as vectors of terms which can be 
words from the document or the query itself. The most 
important thing is to represent relevance between 
documents in this information space, which is achieved by 
finding the distance between the query and the document 
[1]. 

The weight of relevance of a query in the document 
can be calculated using some similarity measures such as 
cosine or dot product or other measurement. 

Glenisson P.and Mathys J [4] have showed how the 
bag-of-words representation can be used successfully to 
represent genetic annotation and free-text information 
coming from different databases. They evaluated the VSM 
by testing and quantifying its performance on a fairly 
simple biological problem. They found that it can establish 
a powerful statistical text representation as a foundation 
for knowledge-based gene expression clustering [2]. 

In this work, we have modified the VSM technique to 
work with biological datasets. We used the document 

frequency (DF) instead of inverse document frequency 
(IDF). The results of the experiments show that the 
modified method give good results using precision 
evaluation measure.  

2. Vector Space Model 

The VSM relies on three sets of calculations. This 
model can work on selected index of words or on full text. 

The calculations needed for the vector space model 
are: 
1. The weight of each indexed word across the entire 

document set needs to be calculated. This answers the 
question of how important the word is in the entire 
collection.  

2. The weight of every index word within a given 
document (in the context of that document only) needs 
to be calculated for all N documents. This answers the 
question of how important the word is within a single 
document.  

3. For any query, the query vector is compared to 
every one of the document vectors. The results can be 
ranked. This answers the question of which document 
comes closest to the query, and ranks the others as to 
the closeness of the fit.  

  The weight can be calculated using this equation: 
 
  Eq1: 
 
where: 

•  tfi = term frequency (term counts) or number of 
times a term i occurs in a document. This 
accounts for local information.  

• dfi = document frequency or number of 
documents containing term i  

• D = number of documents in a database.  
The D/dfi ratio is the probability of selecting a 

document containing a queried term from a collection of 
documents. This can be viewed as a global probability 
over the entire collection. Thus, the log (D/dfi) term is the 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 

 

86 

inverse document frequency, IDFi and accounts for global 
information. 

2.1. VSM Example 

To understand Eq 1, let’s use a trivial example. To 
simplify, let’s assume we deal with a basic term vector 
model in which we: 
1. Do not take into account WHERE the terms occur in 
documents.  
2. Use all terms, including very common terms and      
stop words.  
3. Do not reduce terms to root terms (stemming).  

The following example [3] is one of the best 
examples on term vector calculations available online. 

Suppose we query an IR system for the query “gold silver 
truck”  
The database collection consists of three documents with 
the following content:  
D1: “Shipment of gold damaged in a fire” 
D2: “Delivery of silver arrived in a silver truck” 
D3: “Shipment of gold arrived in a truck” 
Q: “gold silver truck” 
Retrieval results are summarized in Table 1 and Table 2 
 

  Counts, tfi   
Terms Q D1 D2 D3 Dfi D/dfi 
A 0 1 1 1 3 3/3=1 
Arrived 0 0 1 1 2 3/2=1.5 
Damaged 0 1 0 0 1 3/1=3 
Delivery 0 0 1 0 1 3/1=3 
Fire 0 1 0 0 1 3/1=3 
Gold 1 1 0 1 2 3/2=1.5 
In 0 1 1 1 3 3/3=1 
Of 0 1 1 1 3 3/3=1 
Silver 1 0 2 0 1 3/1=3 
Shipment 0 1 0 1 2 3/2=1.5 
Truck 1 0 1 1 2 3/2=1.5 

 
 Weights, wi = tfi * IDFi 

Terms Q D1 D2 D3 
A 0 0 0 0 
Arrived 0 0 0.1761 0.1761
Damaged 0 0.4771 0 0 
Delivery 0 0 0.4771 0 
Fire 0 0.4771 0 0 
Gold 0.1761 0.1761 0 0.1761
In 0 0 0 0 
Of 0 0 0 0 
Silver 0.4771 0 0.9542 0 
Shipment 0 0.1761 0 0.1761
Truck 0.1761 0 0.1761 0.1761

         Vector space Model constructs the index tables as 
shown in Tables 1 and 2 by analyzing the terms of all 
documents into words as in Table 1 and find the frequency 
of each term in all documents; Table 2 does the same for 
the query. 

2.2 Similarity Analysis 

There are many different methods to measure how 
similar two documents are, or how similar a document is 
to a query in VSM. These methods include the: cosine, dot 
product, Jaccard coefficient and Euclidean distance. In this 
paper we will use the cosine measure which is the most 
common. 

The similarity measure for the previous example in 
section 2.1 can be calculated as follows: 
1. For each document and query, compute all vector 
lengths (zero terms ignored) 
 
 

 
2. Compute all dot products (zero products ignored): 

 
 
 
 
 
 
 
 

3. Calculate the similarity values: 
 

 

 

 

Table2: Retrieved results 

Table1: Retrieved results 
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>NF01724288 Ribosomal protein L3 
[Desulfovibrio vulgaris] 
MAEKMGILGRKIGVTRIFASDGSAVAVTVIK
AGPCPVTQVKTVATDGYDAIQIAFDEAKEKH
LNKPEIGHLAKAGKGLFRTLREIRLEAPAAYE
VGSELDVTLFATGDRVKVSGTSIGKGYQGVM
RRWNFAGSKDTHGCEKVHRSGGSIGNNTFPG

Contribution 

          We can easily see from the previous example that 
the normal VSM will not be suitable for the protein 
sequence data. This is because it uses the IDF in 
calculating the weights, and as we saw in the example, 
IDF gives weight zero if the term appears in all documents 
and that is used for the stop or common words such as: a, 
an, the, of,… etc Since these words are very common they 
exist in all documents, IDF gives these words rank 0; 
because usually the words that are in all documents are not 
relevant. However, in protein there are no stop words as in 
text data. So, the original method is not suitable for protein 
data because the existence of a term in all protein 
sequences gives a meaning and a weight must be given to 
this term. 

          In this paper a small modification on VSM is 
proposed to fit for protein sequence data; that is to use DF 
instead of IDF, where DF is the frequency of the term in 
all documents (i.e. in how many documents this term 
exists). This will give each document its relevance based 
on the frequency even if this term exists in all documents 
so it will be suitable for protein data. We will use the 
cosine similarity measure, which is the most common and 
has been proved by most researchers to give the best 
results for similarity [5]. 

3. Implementation  

We have implemented the algorithm described in 
section 2 in C programming language. 

Experiments were run on a group of proteins that are 
known to be related. We tested the system on four protein 
families: ribosomal protein L1, ribosomal protein L2, 
ribosomal protein L3, ribosomal protein L4, where each 
family has 50 proteins. 

 
3.1 Results and Evaluation 
 
The program has been tested on a collection of 200, 1000, 
5000 and 10000 documents, where the document is a 
protein sequence as in Figure 1. We have a file for protein 
sequences that we want to search in, a file to input the 
query and an output file that gives us the retrieved results. 
The test of the program has been applied as follows: 
We chose a sequence of amino acids as a query from the 
collection of protein sequence, for example from L1, and 
match it with the whole file and see the results. The 
relevant documents would be those from L1, because we 
get the query from L1. 

Figure 1: one protein sequence [6] 
 
 
3.2 Evaluation 
          We used the standard IR evaluation to evaluate the 
algorithm. The precision gives the metric percentage of the 
number of relevant documents retrieved to the documents 
retrieved. 
 
Precision =  

 
 
This measure gives us how accurate the method is 

from the number of relevant documents we retrieved. If 
the precision = 1, this implies that the algorithm has 
successfully identified all relevant documents.  

Applying this method on 200 documents with 50 
relevant documents and using 10, 20 and 50 as the query 
length, we get the following results: 

 
• For a query of length 10 amino acids: 

  
Cut point Precision 

Top 5 0.80 
Top 10 0.5 
Top 50 0.56 

Top 100 0.34 

Table 3: Precision for 10 Amino Acids query 
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Figure 2: Precision value of a query of length 10 Amino Acids
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• For a query of length 20 amino acids: 

 
Cut point Precision 

Top 5 1 

Top 10 0.80 

Top 50 0.60 

Top 100 0.38 

Table 4: Precision for 20 Amino Acids query 

 

 
• For a query of length 50 amino acids: 
 

Cut point Precision 
Top 5 1 

Top 10 1 
Top 50 0.66 

Top 100 0.39 

Table 5: Precision for 50 Amino Acids query 

 

 

3.3. Setup Time 

The setup time is the time for constructing the index 
tables showed in Tables 1 and 2 in addition to the 
executing time of the program starting from entering the 
query asking for the retrieved documents until it gives the 
retrieved documents. 

 
To calculate the setup time of the program, a 

collection of 200, 1000, 5000 and 10000 documents has 
been used, taking into account that this setup time is for 
the first run which includes the constructing of the indexes. 

 
Document collection Setup time (seconds)

200 7 

1000 42 
5000 226 
10000 790 

 
Table 6: Setup time in seconds 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
We can see from Table 6 that the setup time is quite 

reasonable for small documents up to 5000, but after that 
the setup time increases rapidly.  

This can be improved by parallelizing the program 
distributing the data on multiple nodes which will decrease 
the setup time. 
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Figure 4: Precision value of a query of length 50 Amino Acids

Figure 3: Precision value of a query of length 20 Amino Acids

          We can see from Tables 3- 5 that the precision for 
a query of length 10 is 80 % this is because the query 
length is not long enough and can be found in many 
protein sequences, whereas for a query of length 20-
50, the precision is 100% for a cutoff = 5-10, and 
reach 39% for a cutoff = 100, and this is good results 
for precision measure. 
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4. Conclusion 

 In this paper a modified model of VSM which is 
applied on protein sequences data has been introduced. 
The modified method achieved good results and good 
performance for retrieving the protein data. Using the 
precision evaluation measure, it gives a precision of 1 for 
a cutoff =10, and 0.39 for a cutoff of 100. The results 
show that for a small document collection the setup time is 
reasonable, but for large collection it gives very big setup 
time. Our next step is to test the program on larger data 
and compare the performance of this modified method 
with other similar methods. We also intend to explore the 
application of parallel techniques to reduce the large setup 
time. 

.   
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