
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

103

Manuscript received September 5, 2007

Manuscript revised September 20, 2007

Rummage Web Server Tuning Evaluation through Benchmark

(Case study: CLICK, and TIME Parameter)

Hiyam S. Ensour

 The Arab Academy for Banking and
 Financial Sciences. Amman, Jordan. 2007.

Dr. Ahmad Kayed

The Applied Sciences University.
Amman, Jordan. 2007.

Abstract- This study examines a web server performance
tuning by using special main parameters in benchmark,
using real data and real applications in more than 13
different cases. Two adaptive parameters (CLCIK and
TIME) are used as measurements for tuning. A web server
stress tools 7 benchmark (WSST) is used as a recognized
application. Some procedures are projected to compare
the final results, the first process is based on finding the
main factor of the parameters affecting on tuning. Second,
a variety of the values of the benchmark parameters are
discussed to have better results of the web server
performance by finding the core relationship among main
parameters in WSST. The parameters criteria show the
effect on web server behavior under certain conditions and
environments. We monitor it at different times and works.
Contributing discuses some results such as, bottleneck,
traffic, and response time which related with criteria's and
measurements.
Keywords: Performance, Web server, Benchmark, and
Tuning.

Overview

 This paper presents the importance web server
performance tuning in introduction section in first section,
and why uses benchmark as main solution? Problem
statement for web server is found in section2. All test webs
sever stress tools benchmark (WSST) criteria, the test
environment, and main parameters will be shown in
section 3. Observations, scenarios of click and time
process will be discussed in section 4. Results and
conclusions, along with future work. Will be addressed in
the last section.

1 Introduction

 The importance of performance web servers is quite
clear; therefore, the main purpose of this study is to gain a
better understanding of web server performance tuning
(WSP tuning). Web servers did take the performance as an
intrinsic design premise; this is acceptable at the early
adoption phase of the Web server. Most web servers are
used to serve a small given load over low-capacity links. In
contrast, nowadays, the main features of web servers are

stabilized and commercial implementations are normal.
Consequently, the importance of web server performance
tuning has increased. Scalability, reliability, and
continuality are crucial elements in studying the
performance tuning [7, 8]. Benchmarks reflect the
performance by monitoring the parameters that might
affect the web server. This research will study a well-
known benchmark named Web Server Stress Tools 7
(WSST). The factors to be used will be defined, and then
their effect will be investigated on a web server
performance under work load for a certain application.
The benchmark will be used to evaluate the performance
of the web server depending on different parameters such
as users, delay, time, clicks, ramp, users, URL and
recursive browsing. Software, hardware and operating
system environments are fixed. We select only natural
factors affecting the web server performance (WSP), which
are CLICK, TIME and how they are related to click time,
click per second, and hits per second. Benchmark depends
on testing a simulation procedure to represent the model
behavior of the web server in the time domain. The
simulator in benchmark reveals an unpredicted behavior of
the examined WSP. This would imply flexible techniques
in benchmark for performance tuning evaluation [11, 12].
Web Server Stress Tool (WSST) was developed by
Paessler GmbH 1 [1]; it is a configurable client-server
benchmark for HTTP servers that use workload parameters.
It uses three tests to measure the server performance;
namely, HTML, CGI, and API. By simulating the HTTP
requests generated by many users; i.e.; benchmark can test
WSP under normal and excessive loads [1, 4, and 5]. The
web server (WS) behavior can improve by tuning several
parameters. Discovering the direct relations among such
parameters is essential to determine the best possible web
server behavior and, consequently, achieve a high

quantitative performance for each parameter in the WS.

1 http://paessler.net

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

104

2 Problem Statement for Web

Server Tuning

There are many ways to tune a web server's
performance. These include modeling, analytical system,
mathematical simulation, and benchmark. Benchmark is
used in this study for a number of reasons. Benchmark
gives us a reliable, repeatable and comparable
(“standardized”) performance assessment
(measurements) of complete hardware/software web
server under (close to) realistic workloads [13]. It has a
responsibility for tune WS to best serve static web pages
or dynamically compiled application pages. Each web
server demands a different hardware, application, and
IIS performance for the tuning options. Another
consideration is the amount of traffic that we realistically
expect our WS to handle, particularly during the peak
load periods. Load and time will affect the WS
performance and the varying business choices. One
should be well acquainted with what these loads will be
and simulate them on our servers before putting them
on-line to know how the web server will perform its
function. These are some reasons why it is important to
recommend how to tune the web server through
benchmark2 [15].

2.1 Web Server Tuning

One of the difficulties in tuning the web server knows
what to tune exactly? For this reason, it is vital to
monitor the web servers' behavior under certain criteria
after adjusting the settings of the hardware, software,
and web applications. Tuning the WS will require us to
carefully monitor how changes to it will affect the
performance of the web server. First, we should know
how the server is functioning, and then we can make

changes to improve performance. Changes should be
made once at a time and under a number of clicks, users
with a rollback tests. Otherwise, it will be difficult to
assess the impact of individual changes. To improve the
web server performance tuning, we will examine every
part of the WSP parameters of benchmark. This, for
example, includes the click time, time for the first byte,
time to connect, time for DNS, and time for the local
socket as main factors through the tuning process.

2 http://microsoft.com

2.2 Proposal Solution

 Feeding information about web server has been
used extensively to solve many kinds of WSP problems.
One of the fundamental proprieties making these WSP
useful is benchmark for tuning. In this work, we use two
different types of web server benchmark parameters. In
previous studies, we examined all factors playing the most
conspicuous effect on the behavior of the web server [15].
Here, however, it is recommended to use (CLICK, TIME)
as main parameters to guide us in studying the web server's
behavior to deal with the tuning concept.

2.3 Web Server Stress Benchmark (WSST)

 Performance tests were used to examine each part of
the web server or the web application to discover how to
optimize them for boosting the web traffic (e.g. under
numbers of clicks). WSST supports types of tests and is
capable of running several (e.g. 20-100) simultaneous
requests on one URL and record the average time to
process those requests.

2.4 Why use WSST in our Experiment?

 Most web sites and web applications run smoothly
and appropriately as long as only one user or a few users
are visiting at the given time. What happens when
thousands of users access the website or web application at
the same time? What happens to the web server in this
case? By using the WSST, we can simulate various load
patterns for our web server, which will help us spot
problems in our web server set-up. With steadily rising
loads (also called “ramp tests”), we can find out how much
load the server can handle before serious problems arise
[1].

 The WSST can be used for various tests [1]:
Performance Tests (PT), Load Tests (LT), Stress Tests
(ST),and Ramp Tests (RT) where PT are used to test each
part of the web server or the web application to discover
how to best optimize them for higher web traffic. LT are
performed by testing the website using the best estimate of
the traffic website needs to support. Consider this is a “real
world test” of the website. ST constituted simulated “brute
force” attacks that apply excessive load to web server. RT
is a set of variations of the stress tests in which the number
of users raise during the test processes from a single user
to hundreds of users. Our tests need only PT, LT, and ST.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

105

3 The Main Parameters of the
Experiment

 We have adopted many tests used in literature [1, 2, 3, 5,
and 12]. They use sometimes all the parameters at the
same time without being specific and separate, we
individual the parameters in our case just to tuning our
WS. The parameters that are to be taken into consideration
in WSST are: users, clicks, time, delay, ramp, URL, and
recursive browsing, this study will focus on CLICK and
TIME only which helps to get a holistic view of
website/web server/application performance . Where
CLICKS represent finish time when each user has initiated
a given number of clicks. TIME represent the tests that run
for a specified number of minutes e.g. keep a server under
full load for 15 hours. [1, 5]

3.1 WSST Parameters Experimental Test

 This Benchmarking tool simulates web clients,
servers, and a large number of client/server to stress web
server. The configuration parameters were fixed in the
tests run are [1]: Hardware configuration, load generators
number and type , number of the repeating, time duration,
the delay of click, run test with number of clicks per user,
run test in number of minutes, and URL name.

 In our work we have some constants in tests
experimental as follows: the number of user are 10, we
adapt 10 users as a normal case, but before we monitoring
the behaviors of WS under workload we check it under
5 ,10 , and 100 users ,so the perfect example here is the
test under 10 user. 100 clicks per every user is the best
example in our test that comes after studying the number
of click per user. We repeat the tests 13 times under
different numbers of clicks and times with changing the
heterogeneous workload that done under 5 seconds as
constant of click delay in random click delay, we adapting
20 MG for each workspace. The constant requirement in
WSST experimental test configuration parameters which
have five variables with its values and special comments in
consecutive: CLICK Runt test from 5 to 120 clicks per user,
this is the amount of click from the beginning to the end of
the WSST test. TIME Run test from 5 to 120 per minute,
this is the amount of time from the beginning to the end of
the web stress tools test. DELAY with 5 seconds, how long
a test WS is to wait before starting the test. WORKSPACE
with 20 MB, The size of data's files used by a test WS,
each of data has its own workspace. NUMBER OF USER:
with 5, 10, 50, and 100.

3.2 Test Environment

 Our tests environment specifications are fixed either
in software or in hardware as follows: (CPU, main
Memory, and RAM), Server Software (HTTP), Server
Operating System (windows 2000, windows XP, apache
for web server), Network Speed either in (Gig, Meg), and
the kind of workload (static, dynamic). More specifically, a
64 MB of RAM in each client, a 100Base-TX network
adapter in each client, a 500 MB disk minimum in each
client, a full-duplex, and switched network, in Server
Configuration need CPU: 500 MHz Pentium III, RAM:
256 MB, and Network: 2 x 100Base-TX. [1, 2, and 7].

3.3 Test WSST Criteria

Any changing in click and time parameters in
WSST will by default make changing in some criteria like
protocol time for all click times, time for first byte, time to
connect, time for DNS, and time for local. Where the click
time represents a simulated user’s mouse click that sends a
request (one of the URLs from the URL list) to the server
and immediately requesting any necessary redirects, frames
and images (if enabled). The click time is calculated as the
time between when the user clicked and when the server
delivered the requested resources with all referenced items
(images etc.). Average Click Times: show the average
values per URL, per user or per website, Time for DNS
talked about the Time to resolve a URL's domain name
using the client system's current DNS server, also the Time
to connect show Time to set up a connection to the server.
And the last criteria represent the time between initiating a
request and receiving the first byte of data from the server
that is a Time to first byte (TFB).

3.4 Observations

 This section determines briefly the WSST test
scenarios of our experimental research, which are based on
observations that are made during the testing process.

3.4.1 Scenarios of Research

 Our processes consist of two distinct phases;
scenarios depending on the CLICK parameter, and
scenarios depending on the TIME parameter.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

106

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: CLICKS (run test until 10 clicks per user)

Click Timeðððððð Time to First Byteðððððð Time to Connectðððððð Time for DNSðððððð Time for local socketðððððð

Time Since Start of Test [s]
20191817161514131211109876543210

T
im

e
 [

m
s]

170

160

150
140

130

120

110
100
90

80
70

60

50
40

30

20
10

0

Figure 1.1 10 clicks per user in CLICK parameter

3.4.2 CLICK Parameter Scenario.

 The workload of the web server is presented in 13
stages ranging from 5 to 120 clicks per second. However,
here we show the results only in graphs that represent
curve actions in our research. We will give a sample
example in the case of 100 clicks per user. The details of
results will be stated in the conclusions. It is necessary to
show graphs and final results of 10, 50, and 100 clicks to
validate the argument.

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Ty pe: CLICKS (run test until 50 clicks per user)

Click Timeðððððð Time to First Byteðððððð Time to Connectðððððð Time for DNSðððððð Time for local socketðððððð

Time Since Start of Test [s]
1101009080706050403020100

T
im

e
[m

s]

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

Figure 1.2 (50 clicks per user in CLICK parameter)

Figure 1 describes the cases (10,50,100) in the click
parameter: 10 clicks: time to first byte, time to connect,
time for DNS, and time for socket are rising slightly
between 0 and 20 ms, but the click times rise sharply and
then plummet between 0 and 120 ms. 50 clicks: click times
reach the peak in 140 ms but the other criteria reach a
plated behavior with time since the start of test(s) between
0 and 150 s. 100 clicks: click times change gently and
relatively and the other criteria remain unchanged but over
250 ms since start of the test. We have a conspicuous
change compared with the 50 clicks in the click parameter.
It was noticed that the increasing number of users with the
huge volume of clicks adds to the workload of the web
server. This draws a strong correlation between the click
and its criteria, which are the click time, time to first byte,
time to connect, time for DNS, and time for socket.

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Type: CLICKS (run test until 100 clicks per user)

Click Timepppppp Time to First Bytepppppp Time to Connectpppppp Time for DNSpppppp Time for local socketpppppp

Time Since Start of Test [s]
220200180160140120100806040200

T
im

e
 [
m

s]

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

Figure 1.3 (100 clicks per user in the CLICK parameter)
Figure 1: Click Parameters (Click time, time for first byte,
time to connect, time for DNS, and time for local socket).

3.4.3 TIME Parameter Scenario

 The workload of WS is presented in 13 stages from 5,
10, 20, to 120 times per second. However, the results here
are shown in graphs representing the 10, 50, and 100
times per second as a sample only. The curve actions
representing the results will be clear in the results and
conclusion section.

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Type: TIME (run test for 10 minutes)

Click Timeðððððð Time to First Byteðððððð Time to Connectðððððð Time for DNSðððððð Time for local socketðððððð

Time Since Start of Test [s]
550500450400350300250200150100500

Ti
m

e
[m

s]

350

300

250

200

150

100

50

0

Figure 2.1 10 ms time parameter

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Type: TIME (run test for 50 minutes)

Click Time000000 Time to First Byte000000 Time to Connect000000 Time for DNS000000 Time for local socket000000

Time Since Start of Test [s]
2,8002,6002,4002,2002,0001,8001,6001,4001,2001,0008006004002000

T
im

e
 [

m
s]

130

120

110

100

90

80

70

60

50

40

30

20

10

0

Figure 2.2 50 ms time parameter

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

107

Protocol Times for all URLs

User Simulation: 10 simultaneous users - 5 seconds between clicks (Random)

Test Type: TIME (run test for 100 minutes)

Click Timeðððððð Time to First Byteðððððð Time to Connectðððððð Time for DNSðððððð Time for local socketðððððð

Time Since Start of Test [s]
5,5005,0004,5004,0003,5003,0002,5002,0001,5001,0005000

T
im

e
[m

s]

100

90

80

70

60

50

40

30

20

10

0

Figure 2.3 100 ms time parameter
Figure 2: Time parameters (Click time, time for first byte,
Time to connect, time for DNS, time for local socket.)

 Figure 2 describes the cases of 10, 50,100 ms in the
time parameter: 10 times: Normal behaviors with criteria
(time to first byte, time to connect, time for DNS, and time
for socket), except for slight changes in the click time. 50
times: The click times increase sharply and relatively with
a conspicuous change in the behavior of other criteria
(time to first byte, time to connect, time for DNS, and time
for socket) compared with the click parameter. 100 times:
in 2,500 s the click times reach the peak with 100 ms in
time and a strong dramatic behavior, and with a slight
steady state and a relative change in other criteria. So, we
can do more actions by extending the time. It is quite clear
that the click times in the time parameter have a reverses
relation with the click time in the click parameter. WSST
shows that we can enhance the WS by depending on the
time parameter while raising the number of clicks. A high
workload resulting from hits and clicks will not cause any
problem to the WS if we have enough time for doing all
that clicks and hits per second. The result per user and the
result per URL will help us to do some special calculations
like counting the number of hits on the WS, and to find
the maximum and minimum number of hits and K-bits per
second. In addition, it will be feasible to compare the final
results per URL and per User for the CLICK and TIME
parameters, which contains some criteria such as click,
time spent [ms], and average click Time [ms], with the
existing average click time in minutes and determine the
number of users in our experimental test for all the cases
parameters (click, and time). Tables 2, 3, and 3 show this
benefit.

 In these two cases (Click, Time), we conclude that
the time parameter rises dramatically in the click time,
which indicates that time plays a major role in changing
the WS behaviors. It is better to increase time while we
have many clicks, decrease the load on WS just given a
submit time for every click, and stop doing a hundred of

clicks or hits in a short period of time, which causes
difficulties in WS and bad responses.

 The first column in table 1and 2 are describes
different numbers of clicks. This tells us that an increase
in the number of users who send a request (URL) to the
web server leads to an increase in the number of hits as a
complete HTTP request. This took place in the click
parameter in WSST, which caused click duplication in
every second and minute, which means an excessive load
on the web server leads us to have a normal response time
with zero error in HTTP request. Consuming the memory,
the request of URL's with different types makes the web
server so busy.

 Time spent [ms] in the time parameters in our tests
with multiple trials for more than 13 times in different
cases shows that the time spent increases in parallel and
concurrency grows larger in time. Depending on equation
1, there are many different values between the time spent
in time parameters and the time spent in click parameters
in order not to waste much time, we recommend doing
many request (clicks) in a short span of time for the WS
will not need open times to answer the requests. Because
the server loses much time and makes the user wait for a
long time, we reiterate our recommendation not to spend
many times without making good use. See the second
column in table 3.

Equation 1: The differences between Time Spent [ms] in
CLICK, TIME parameters.

 (1)

 Ddiff represents the value of different factors. The
mile measures the time spent second, which is one of the
criteria. While TIME and CLICK represent the main

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

108

parameters, they are used in WSST, where the dot in the
equation indicates the parameter type.

 Clicks increase in the click parameter in parallel with
the rising number of clicks. However, this would be a
massive increase in the time parameter compared with the
same number of clicks under the click parameter. The time
spent [ms] increases directly with time in the time
parameter more than it does in the click parameter. The
Avg. click time [ms] drops with time in the time parameter
comparing with the click parameter. In other words, we
have the highest value in the click and time spent [ms]
criteria and the lowest value in the Avg. click time [ms] in
time parameter. For users, the average times in general are
normal values if the average is calculated within a long
span of time. The results, however, will not be satisfactory
if calculated fewer than hundreds of clicks. (See table 3)

4 Discussion and Results

 In this work the purpose of web server evaluations
processes by using WSST, which is for improving the
performance and catching the moment of tuning in it.
Where protocol time for all URLs in all cases (TIME,
CLICK) represent an HTTP request consists of several
stages. First, the WS name has to be resolved into an IP
address using DNS (Time for DNS), and then an IP port is
opened on the server by the client to send the request
header (Time to Connect). The server then answers the
request (Time to First Byte) and sends all data. When all
data is transferred, the request is finished (Click Time).
Also in the above graphs a line is shown for the “time for
local socket” which is the time that WSST needed to
acquire an open socket from the IP stack of the machine it
runs on. For example, in a usual test, this value should
always be in the lower millisecond area (1-30 ms). For
extreme traffic tests, this value can rise above 50-100 ms
which is a sign that the performance limits of the local
machine have been reached, that was indicated and
displayed in our graphs.

 Depending on the observations above, we see that
CLICK and TIME are strongly related and have an impact
on the WS tuning evaluation. Ignoring the role of
benchmark on WS will cause poor WSP. If the number of

clicks is low as shown in our test (10, 50,100 clicks per
user), the server would be responding to requests quickly.
If the number of clicks is high, responding to a request
will be slow, because we would have dedicated too much
memory to the caches. In this case, we suggest tuning the
WSST to leave enough memory for the rest of the WS. We
also need to increase the amount of RAM on the web
server, although lowering the cache sizes can be effective.
The increase number of clicks would cause the workload
on the web server to rise dramatically. This would
suddenly cause a relative change to the response time,
increasing the time given for actions, and allowing for
faster responses with fewer errors in the WSP. High
volume of traffic, which depends on the number of clicks
and hits, makes the memory loaded. After monitoring the
web server, we wonder if the server has enough memory
size or not. We recommend that the minimum amount of
RAM needed for the web server is 128MB, but 256 MB to
1GB will be better for the WSP tuning.

 We know that we may have a problem when WS
traffic is high but the number of requests barely budges.
When that happens, it’s likely that there is a bottleneck in
the WS. Bottlenecks occur with the rise of the number of
clicks and periods of times are longer than they should be.
We see that the time for the first byte, and other criteria
have nearly the same values and behaviors, except for the
criteria of the click time, which has different values and
behaviors in the click parameters (See table 1, 2). However,
they also have different values and behaviors at the time
parameters. This shows that we can have a rise in the time
connect, time for DNS, and local socket when there is a
change in the time parameter, because the bottleneck of
the WS grows smaller.

5 Conclusions

 All criteria for CLICK and TIME parameters are
measured, by that, we have to decide if we reduce the
server load through increasing the time, and decrease the
loads on WS (reverse relation) happens through decreasing
the numbers of clicks and hits, this makes WSP more
tunable in criteria's especially on client’s latency, that lead
us to reduce network bandwidth consumption easily, then
the WSP tuning becomes more reliable by default if a user
has enough time they should not worry about how many
clicks they had and whether the WS is busy or not.
Because users can do whatever they like without problems
or errors, they should just give the server the time which
web server needs. We conclude that if users do not have
time and need to do their work very quickly; they should
push themselves to decrease the number of clicks that

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

109

support the focus of WSP tuning, making the web server
faster, and more efficient.

 We don't need to wait until traffic is choking the WS,
or forcing to implement load-balancing solutions and
throwing more servers at the problem. Distribution and
object architectures help us to implement load balancing
and fault tolerance. Load-balancing products typically are
not required until a WS scales so high that the WS
becomes a bottleneck once that happens users have two
choices: load balance, or increase the bandwidth of their
connections to the Web. Our parameters are affected
directly on it case, so we need to be more careful when
determining how much number of clicks and how long
times are available3.

 Sometimes a system in WS designed for a certain
level of traffic will spiral into unacceptable response times
when traffic increases beyond a certain point. This is
known as a scalability issue. We need a chance to
eventually encounter a bottleneck. To locate the bottleneck
that comes from raising the number of Click with specific
time, we need to use a series of performance monitors.
These monitors allow users to view the server load and
response time under a variety of real-world or test
conditions.

 Response time represents the time (often an average)
that elapses between the initial request for information and
when that data is delivered (or not delivered, when the
server can’t provide it before the timeout limit is reached).
When the WS is processing a large number of requests
(under load), it may take longer time to complete than if
the server were unloaded. For user requests, this can result
in increased response time for clients. If the server is under
an excessive load, depending on WSST analysis we close
toward “self-tuning” 4concept when use benchmark as a
guide and main directed for WS.

6 Future work

 Future work will include monitoring the main
parameters in benchmark for evaluating web server under
workload with another criteria, such as the relation
between Click/hits/users/error/URL at the same time
tuning evaluate the web server performance.

3 http://informationweek.com

4 http://newsandtech.com

7 References

[1] http://paessler.com
[2] John Dilley, "Web Server Workload

Characterization", Hewlett-Packard Laboratories.
[3] J. Dilley, R. Friedrich, T. Jin, J. Rolia. Measurement

Tools and Modeling Techniques for Evaluating Web
Server Performance. HPL-TR-96-161, December
1996. Submitted to Performance Tools ‘97.

[4] Levy, R., et al. Performance Management for Cluster
Based Web Services. In The 8th IFIP/IEEE
International Symposium on Integrated Network
Management (IM2003). 2003. Colorado Springs,
Colorado, USA.

[5] Li, C., et al. Performance Guarantee for Cluster-
Based Internet Services. In The 23rd IEEE
International Conference on Distributed Computing
Systems (ICDCS 2003). 2003. Providence, Rhode
Island.

[6] Wolf, J. and P.S. Yu, On Balancing the Load in a
Clustered Web Farm. ACM Transactions on Internet
Technology, 2001. 1(2): p. 231-261.

[7] Tapus, C., I.-H. Chung and J.K. Hollingsworth.
Active Harmony: Towards Automated Performance
Tuning. In SC'02. 2002. Baltimore, Maryland.

[8] Carlos Maltzahn, Kathy J. Richardson, and Dirk
Grunwald. Performance issues of enterprise level web
proxies. In Proceedings of the ACM Sigmetrics
Conference on Measurement and Modeling of
Computer Systems, Seattle, WA, June 1997. ACM.

[9] Jussara M. Almeida, Virg´ilio Almeida, and David J.
Yates. Measuring the behavior of a World-Wide Web
server. In Seventh Conference on High Performance
Networking (HPN), pages 57–72, White Plains, NY,
April 1997. IFIP.

[10] M. Aron, D. Sanders, P. Druschel, and W.
Zwaenepoel. Scalable Content-aware Request
Distribution in Cluster-based Network Servers. In
Proceedings of the 2000 Annual USENIX technical
Conference, San Diego, CA, June 2000.

[11] V. V. Panteleenko and V. W. Freeh. Instantaneous
Offloading of Transient Web Server Load. In
Proceedings of the Sixth International Workshop on
Web Caching and Content Distribution, Boston, 2001.

[12] P. Joubert, R. B. King, R. Neves, M. Russinovich, J.
M. Tracey. High-Performance Memory-Based Web
Servers: Kernel and User-Space Performance. In
Proceedings of 2001 USENIX Annual Technical
Conference, June 2001.

[13] Standard Performance Evaluation Corporation
(SPEC), http://performance.netlib.org

[14] Riska, A., et al. ADAPTLOAD: Effective Balancing
in Custered Web Servers Under Transient Load

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

110

Conditions. In 22 nd International Conference on
Distributed Computing Systems (ICDCS'02). 2002.

[15] Ribler, R.L., H. Simitci, and D.A. Reed, the
Autopilot Performance-Directed Adaptive Control
System. Future Generation Computer Systems,
special issue (Performance Data Mining), 2001.
18(1): p. 175-187.

About authors:

Hiyam S. Ensour, PHD in CIS
(Computer Information System)
from the Arab Academy for
Banking and Financial Sciences.
Jordan.

Master in IT (Information
System) and Bsc. In Computer
Science from princess sumaya
university for technology/Royal
Scientific Society (RSS), Jordan.

 Work in Irbid private
university as lecturer.

Hayammn@hotmail.com, hayammn@maktoob.com.

Dr. Ahmad Kayed, the Applied Sciences University,
Kayed_a@asu.edu.jo, for more details please visit:
http://www. asu.edu.jo.

