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Summary 
Malicious traffic such as denial of service (DoS) attack has 
potential to introduce distribution error and perturbs the self-
similarity property of network traffic. As a result, loss of self-
similarity (LoSS) is detected which indicates poor quality of 
service (QoS) performance. In order to fulfill the demand for 
high speed and detection accuracy, this paper proposes LoSS 
detection method with second order self-similarity statistical 
(SOSS) model and estimates the self-similarity parameter using 
the optimization method (OM). We investigate the behavior of 
self-similarity property for normal and abnormal traffic traces 
with different sampling levels. We test our approach using 
synthetic and real traffic simulation datasets. The results 
demonstrate that the proposed method has successfully exposed 
the abnormality of Internet traffic behavior. However, the 
experimental results show that fixed sampling level is not 
sufficient to reveal the self-similarity distribution error 
accurately. Accordingly, we introduce a new set of multi-level 
sampling parameters and propose a new LoSS detection method 
with multi-level sampling approach in order to improve the 
detection accuracy. 
Key words: 
Anomaly Detection, Loss of Self-Similarity, Second Order Self-
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1. Introduction  

The concept of self-similarity and long-range dependence 
(LRD) for local area network (LAN) traffic and 
performance analysis was presented in [8] and [9]. Their 
finding in [8] and [9] had described the self-similarity as 
traffic behavior is preserved irrespective of scaling in time 
or space while the LRD indicates that network traffic 
behavior across widely separated times is correlated. This 
finding was in contrast to widely accepted Poisson model 
of the network traffic, which is memoryless and inter-
arrival times are exponentially distributed. The finding 
also challenged the validity of the Poisson assumption and 

shifted the community’s focus from assuming memoryless 
and smooth behavior network traffic to assuming LRD and 
bursty behavior. Several causes of the self-similarity 
phenomenon were pointed out such as the mixed behavior 
of TCP services model [15], the mixture of actions from 
individual users, hardware and software in interconnecting 
networks [3] and the heavy-tailed distribution of large file 
sizes transferred [3].  
 The work done in [4] and [14] have demonstrated that 
the uncontrolled self-similarity structure would congest 
network buffer hence degrades the quality of service 
(QoS) performance by drastically increasing queuing 
delay and packet loss. Therefore, protocol intensity 
distribution plays an important role in the interactions that 
produce self-similarity behavior as discussed in [15].  For 
example, denial of service (DoS) attacks with very high bit 
rate injection packets dominate the traffic protocol and 
produce distribution error. As a result, the property of self-
similar behavior is disturbed [17] and loss of self-
similarity (LoSS) behavior is detected as shown in [1], 
[10], [17], [18]. This can be used as a flag to alert security 
analysts of the possible presence of a malicious action as 
illustrated in [1] and [11], provided that the normal traffic 
background is self-similar (which is a common network 
traffic attribute).  
 The work introduced in [1] has presented a technique 
for detecting the possible presence of new DoS attacks 
without a template of the background traffic. The method 
used LoSS definition with the self-similarity or Hurst 
parameter H beyond normal self-similarity interval (0.5, 1) 
using the periodogram and the Whittle methods. The 
method has high anomaly detection rate with an average 
of 60% to 84%. However, new methods of estimating 
Hurst parameter which is more accurate and faster had 
been developed such as the optimization method (OM) [5], 
[6] which used the second order self-similarity statistical 
(SOSS) model. Therefore, we propose LoSS detection 
method using SOSS model and estimate H using OM. The 
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remainder of this paper is organized as follows: Section 2 
presents mathematical definitions and properties of SOSS 
and how to estimate its parameter. Section 3 on the other 
hand, discusses the concept of LoSS detection and related 
work. Section 4 explains the datasets that were used in the 
simulations while Section 5 presents our experiment 
procedure and the results. Finally our conclusions and 
future work directions are summarized in Section 6. 

2. SOSS Statistical Model 

Let { ( ), 0,1, 2, ...., }X X t t N= =  be a second-order 
stationary process with constant mean μ , finite variance 

2σ , and autocorrelation function ( )kρ  that depends only 
on the integer k. Their definitions are given as follows: 
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Let ( ) ( )m kγ   and ( ) ( )m kρ  denote the variance and 

autocorrelation function of ( )mX  respectively.  X is called 
exactly second-order self-similar (ESOSS) with self-

similarity parameter 1
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0<β<1, if its autocorrelation function 
satisfies ( ) , k ck kβρ −= → ∞ , where c is a positive 
constant.  X is called asymptotical second-order self-

similar (ASOSS) with 1
2

H
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Exact self-similar process implies ( )( ) ( )mk kρ ρ =  for all 
m≥1.  Thus, second order self-similarity captures the 
property of correlation structure preserving under time 
aggregation and is represented by 
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In second-order stationary process for 0<H<1 and H≠0.5, 
the autocorrelation function satisfies  
  2 2( ) (2 1) ,Hk H H kρ − = −  k → ∞ .   
More details on the SOSS statistical model can be found in 
[5], [8], [9] and [12]. 
 There are several methods to estimate H. In this paper 
we will be using the optimization method (OM) which 
was developed in [5], [6] and was shown to be 
comparatively fast and accurate with respect to other 
methods.  The method is based on how close is the sample 
autocorrelation measure fits to ESOSS model. The 
estimation method defines error fitting function EK(β) as 

2
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1
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) = −∑ where ρ(k) denotes the 

autocorrelation function of the model with parameter β 
that OM will fit the data to, ρn(k) is the sample 
autocorrelation function of the data, k is autocorrelation 
lag and K is the largest value of k for which ρn(k) is to be 
computed to reduce edge effects.  The estimation of 
parameter β is based on optimizing EK(β) with threshold 
value ≤ 10-3 is chosen from experiment as introduced in  
[5].  

3. LoSS Detection with SOSS Model 

Normal Internet traffic always exhibits the ESOSS model. 
However in the presence of malicious packets such as DoS 
attacks, the self-similarity property is disturbed hence 
LoSS is detected as shown in [1], [10], [17] and [18].  The 
LoSS detection in [17] used the abrupt change property of 
distribution ratio of higher scale to lower scale. However, 
the work did not suggest an optimum level of scale to be 
used for revealing the abrupt change significantly.  
Meanwhile, the work in [1] defined LoSS as Hurst value 
beyond normal range of LRD which is 0.5<H<1 using 
periodogram or Whittle estimation methods. The results 
show that the LoSS detection method can expose  new 
DoS attack pattern without specific normal template. The 
results also demonstrate that the method has high detection 
rate with an average of 60% to 84% which depends on the 
intensity of the attack packets.  
 A new method of estimating Hurst parameter which is 
more accurate and faster was developed in [5] and [6]. The 
method is known as the optimization method (OM) and 
the estimation is based on the SOSS model. The advantage 
of OM method is that it can provide a technique to identify 
whether the data tend toward the self-similarity model or 
not according to the curve-fitting error.  Accordingly, the 
work in [18] demonstrates the capability of OM to detect 
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anomaly traffic based on the curve-fitting error. However, 
their works only considered fixed sampling which we 
believe is not sufficient to reveal the hidden self-similarity 
distribution error accurately. The reason is that recent 
modern Internet applications became more complex and 
new sampling strategies are required to estimate the self-
similarity parameter accurately [2].  
 The behavior of Internet traffic is considered as 
normal when the traffic is near to the self-similarity model 
while otherwise it is considered as abnormal [18]. An 
example of abnormal traffic behavior is DoS traffic that 
introduces distribution error and shifts the stationary 
property toward non-stationary as shown in [1], [10], [17] 
and [18].  Data insufficient probability and detection loss 
probability are two important attributes that can influence 
the correctness of anomaly detection [18]. The data 
insufficient probability is to identify the minimum 
required window size to obtain reliable self-similarity 
measurement, while detection loss probability is 
probability of detecting non-stationary data. 
 LoSS is detected if it fulfils two conditions where the 
data must be longer than minimum window size and it 
must be non-stationary. Experiments in [8], [9] and [18] 
demonstrate that windows sizes from 15-30 minutes are 
practical and sufficient for modern LANs Ethernet Internet 
traffic to comply with data insufficient probability. The 
self-similarity tests become more sensitive as the window 
size gets smaller and consequently generate false alarms if 
it gets too small. Therefore, in our experiments we use 
traces of 30 minutes in length which is above the 
minimum required window to fulfill data insufficient 
probability [18]. 
 Based on our assumptions, we define normal behavior 
of self-similarity traffic as the estimated Hurst parameter 
$H  using OM is in the LRD range with 

$0.5 ( , ) 1H OM< <  and fitting error KE ≤10-3. Otherwise 

if KE >10-3, LoSS is detected and consequently the 
corresponding Internet traffic is considered as abnormal. 
As ESOSS process has ( )( ) ( )mk kρ ρ =  for all 1m ≥ , it 
follows that ESOSS captures the property of correlation 
structure which is preserved under time aggregation. 
Therefore, it is required to study the effect of different 
aggregation level (or multi-level) especially at shortest 
timescale such as 10ms≤m≤1000ms that represent 
engineering factors [2] in order to reveal any hidden 
changes of self-similarity property efficiently. 

4. Data Preparation 

We use three datasets to investigate the pattern of normal 
and abnormal Internet traffic self-similarity behavior. The 
first dataset used synthetic Fractional Gaussian Noise 
(FGN) generator [7] and the second dataset contains data 
from Internet traffic simulation FSKSMNet [16] on 
September 29, 2006 at Faculty of Computer Science and 
Information (FSKSM) LANs.  The third dataset are 
UNC2002 and UNC2003 described in [12] and [13]. We 
divided our experiments dataset into normal and abnormal 
behavior. For the normal dataset we used FGN that will 
generate synthetic traffic which is ESOSS and UNC2003 
dataset. On the other hand, the abnormal dataset used 
malicious traffic simulation of FSKSMNet that was 
simulated on local Internet LANs FSKSM infrastructure 
and UNC2002 dataset. Each of the packet traces is 
sampled with different sampling level within the range of 
10ms≤m≤1000ms. The details of the experimental datasets 
are shown in Table 1. 

Table 1 Experimental Dataset with FGN [7], FSKSMNet [16], UNC2002 and UNC2003 [12],[13] 

Normal Abnormal 
Trace 

SI Window Hurst Error 
( x 10-3)

Trace 
SI Window Hurst Error

(x10-3)
10 360000 0.81 0.01 10 732243 0.91 0.98 
50 72000 0.82 0.01 50 146448 0.96 0.22 

100 36000 0.82 0.01 100 73224 0.97 0.11 
200 18000 0.82 0.02 200 36612 0.97 0.64 
500 7200 0.82 0.05 500 14644 0.96 1.83 
700 5142 0.82 0.05 700 10460 0.95 1.52 

FGN 
(Synthetic) 

1000 3600 0.81 0.09 

UNC-2002 
(suspicious) 

Apr_09 
_Tue_0300 

1000 7322 0.94 2.11 
10 360050 0.84 0.53 10 173991 0.99 0.02 
50 72010 0.84 0.36 50 34798 0.98 0.65 

100 36005 0.83 0.23 100 17399 0.98 1.32 
200 18002 0.82 0.14 200 8699 0.95 5.94 
500 7201 0.82 0.09 500 3479 0.88 20.19
700 5143 0.81 0.14 700 2485 0.85 18.47

UNC-2003 
(normal) 
Apr_09_ 

Wed_1100 

1000 3600 0.81 0.30 

FsksmNet-2006
(Malicious) 

Sep29_ 
Fri_1146 

1000 1739 0.82 15.28
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5. Empirical Analyses 

5.1 Estimated Hurst and Curve Fitting Error 

Our experiments have two purposes. Firstly, to investigate 
how self-similarity or LRD property is preserved at 
different levels of m and secondly, to investigate the 
efficiency of anomaly detection method based on LoSS by 
considering multi-level sampling m. The experiments used 
threshold of curve fitting error equal to 10-3 and maximum 
autocorrelation lag K=200 for the OM. 
 Table 1 shows the estimated Hurst value and curve 
fitting error for experimental datasets traces. The results 
illustrate that the synthetic FGN trace preserves self-
similarity property at all levels of m from lower to higher 
value, which was shown by curve fitting error <10-3.  
Similarly for trace UNC2003, the self-similarity property 
is also preserved at all levels of m. This is a crucial 
criterion for determining normal Internet behavior which 
stated that no LoSS occurrence is detected through multi-
levels of m from lower m=10ms to higher m=1000ms. For 
the malicious traffic that contains DoS flooding packets 
such as in the FSKSMNet trace, the results demonstrate 
that self-similarity property is not preserved through multi-
levels of m. This is shown by curve fitting error<10-3 for 
lower m<100ms but exceeds threshold value at higher 
level of m≥100ms where LoSS is detected. 

FGN
Normal

Suspicious
Malicious 0 2 4 6

8

0

0.005

0.01

0.015

0.02

 

m-Leveltrace

 

E
rro

r

estimate
threshold

 

Figure 1 Curve fitting error distribution pattern for multi-level sampling  

 Figure 1 illustrates the graphical view of curve fitting 
error distribution for normal, suspicious and malicious 
traces behavior at different sampling level value of m. It is 
clearly shown that for the normal trace, none of LoSS 
occurrence is detected at all value of m. On the other hand, 
the LoSS behavior of malicious traffic is clearly revealed 
at higher value of m as shown by a larger value of curve 

fitting error exceeding the threshold. Similarly for the 
suspicious behavior, the LoSS occurrence is also detected 
at higher value of m. However, curve fitting error 
exceeded the threshold for suspicious trace is relatively 
small if compared to malicious trace. 

5.2 Self-Similarity LRD Behavior Observation 

We use the ESOSS autocorrelation structure (i.e. 
( )kρ structure) to investigate in details how self-similarity 

or LRD structure is preserved at different levels of 
sampling m. 
 
Observation I: Normal Behavior 
  
We define normal behavior as the ( )kρ  structure 
preserved the LRD property at all values of m. This can be 
shown clearly by Figure 2(a) and (b) that illustrate the 

( )kρ  structure of the FGN and UNC2003 traces are 
following the LRD structure. The self-similarity property 
of normal behavior is preserved in two ways. Firstly, the 
traces follow the ESOSS model, i.e. fitting error<10-3 at all 
values of m. Secondly, the deviation of variance for multi-
level sampling for Hurst and curve fitting error are small, 
i.e. Var(m-H)<1.0x10-4 and Var(m-Err)<1.0x10-7 as 
shown in Table 2.  

Table 2 Mean of Curve Fitting Error, Variance of Hurst and Variance of 
Curve Fitting Error for multi-level m 

Trace Mean (m-H) Var (m-H) Var (m-Err)

FGN(N) 0.034 x10-03
2.38 x10-05 9.29 x10-10

UNC2003(N) 0.256 x10-03 1.62 x10-04 2.38 x10-08

UNC2002(S) 1.059 x10-03 4.48 x10-04 6.16 x10-07

FSKSMNet(M) 8.839 x10-03 4.91 x10-03 7.88 x10-05

 
Observation II: Abnormal Behavior 
 
We define abnormal behavior as the ( )kρ  structure is 
inconsistent with the LRD structure at different levels of m. 
For example in FSKSMNet trace, at m<100ms the ( )kρ  
structure is following the LRD structure with curve fitting 
error <10-3 but the structure gradually diminishes from 
hyperbolic decay at m>100ms. This phenomenon is 
known as LoSS where the ( )kρ structure deviates from 
SOSS autocorrelation model with a larger curve fitting 
error exceeded the threshold especially at m≥500ms. The 
disturbance of distribution error to the ( )kρ  structure is 
clearly revealed as shown in Figure 2(d). In contrast, the 
distortion of the LRD structure for the suspicious 
UNC2002 trace is not obvious if compared to the  
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Figure 2 Autocorrelation structure (a) Synthetic FGN  (b) UNC 2003 dataset  (c) UNC2002 dataset  (d) FSKSMNet dataset 

malicious traffic. This can be shown by curve fitting error 
exceeded the threshold for suspicious trace is lower than 
malicious trace as shown in Figure 2(c). In addition from 
Table 2, the variance of multi-level Hurst estimation for 
malicious trace is bigger than suspicious trace. This is 
shown by Var(m-H) >4.0x10-4 for suspicious and 4.0x10-3 
for malicious. Moreover, the variance of multi-level curve 
fitting error also indicates that malicious trace has the 
highest value if compared to others with Var(m-
Err)>1.0x10-5. However, the differences between these 
attributes are relatively small for the suspicious and 
normal hence make it difficult to distinguish. 

5.3 Anomaly Detection with Multi-Level sampling m 

How self-similarity (or LRD property) is preserved over 
multi-level sampling plays an important role in detecting 
the behavior of LoSS occurrences accurately. The 

experimental results have demonstrated that normal traffic 
behavior always follows the ESOSS model. Therefore at 
fixed sampling rate such as 10 or 100ms, it is sufficient to 
estimate Hurst parameter accurately as shown in [5], [8] 
and [9]. However in the presence of suspicious or 
malicious packets traffic, the detection of LoSS is difficult 
if we rely only on fixed sampling level of m. The results in 
Table 1 demonstrate that it is very difficult to choose an 
optimum value of m that is most suitable to reveal the 
distribution of self-similarity error accurately. Accordingly, 
we propose multi-level sampling parameters such as multi-
level average curve fitting error (mean(m-Err)), variance 
of multi-level Hurst (var(m-H)) and variance of multi-
level curve fitting error (var(m-Err)) for an accurate LoSS 
detection method. 
 Figure 3 clearly illustrates that the malicious traffic 
contributes a significant change of mean(m-Err), var(m-H) 
and var(m-Err) when compared to others. Among the 
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three, mean(m-Err) parameter dominates the changes of 
LoSS behavior significantly. Therefore, it easy to 
determine between normal and abnormal behavior by 
using mean(m-Err) that exceeds much higher than 
threshold as shown in Figure 4. However, it is difficult to 
differentiate between suspicious and normal behavior. The 
reason is the suspicious trace has minimal curve fitting 
error exceeded the threshold as illustrates in Figure 4. 
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Malicious mean(m-H)

var(m-H)

var(m-Err)0

0.002
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 Figure 3 Multi-level parameters –mean (m-H), variance (m-H) and 
variance (m-Err) 
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Figure 4 Average multi-level fitting error -mean (m-H) 

To this end, we propose new definition of normal and 
abnormal Internet traffic behavior. Normal behavior refers 
to zero LoSS detection at normal and multi-level sampling 
in the range of LRD, and is defined as follow: 

(H ∈ 0.5<H<1) ∩ (curve fitting error <threshold (at 
normal m)) ∩  (mean (multi-level curve fitting error) 
< threshold (at multi-level m)) 

On the other hand, abnormal behavior refers to at least one 
LoSS occurrence is detected either at normal or mean 
multi-level sampling, and is defined as follow: 

(curve fitting error>threshold (at normal m)) ∪  
(mean (multi-level curve fitting error) >threshold (at 
multi-level m)) 

For the abnormal behavior, if the difference between 
attribute mean(multi-level curve fitting error) and 
threshold is very small then the traffic can be considered 
as suspicious. However, more efforts are needed to 
redefine the accuracy and reliability of the proposed 
definition. In our work, normal sampling level m is 
referred as m=10ms or 100ms as used in [8], [9] and [18], 
while multi-level sampling considers 10ms≤m≤1000ms. 

6. Conclusion and Future Work 

This paper presents the implementation of anomaly 
detection method based on LoSS behavior using SOSS 
model. The results demonstrate that normal Internet traffic 
preserves the exact self-similarity property while abnormal 
traffic perturbs the structure of self-similarity property. 
The results also illustrate that fixed sampling is not 
sufficient to detect distribution of self-similarity error 
accurately. Moreover revealing the self-similarity 
distribution error accurately is a challenging task due to 
the inconsistent behavior of distribution error at different 
levels sampling. We believe this can be a possible reason 
why anomaly detection based on LoSS criterion has high 
false alarm rate detection. Accordingly, we suggest a new 
LoSS detection method by considering multi-level 
sampling parameters. Our future work will concentrate on 
developing a multi-level sampling approach of LoSS 
detection method in order to reduce false alarm rate 
efficiency for Internet traffic monitoring system.  
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