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Summary 
The Binary Decision Diagram (BDD) is used to represent in 
symbolic manner a set of states. It’s largely used in the field of 
formal checking. The variable ordering is a very important step 
in the BDD optimization process. A good order of variables will 
reduce considerably the size of a BDD. Unfortunately, the search 
for the best variables ordering has been showed NP-difficult. In 
this article, we propose a new iterative approach called 
QGABDD based on a Quantum Genetic Algorithm. QGABDD is 
based on a basic core defined by a suitable quantum 
representation and an adapted quantum evolutionary dynamic. 
The obtained results are encouraging and attest the feasibility 
and the effectiveness of our approach. QGABDD is distinguished 
by a reduced population size and a reasonable number of 
iterations to find the best order, thanks to the principles of 
quantum computing 
Key words: 
Combinatorial problem, Quantum computing, Quantum Genetic 
Algorithm, Binary Decision Diagram,  

1. Introduction  

The objective of the checking application and electric 
circuits is to detect the errors which they contain or to 
show that they function well. One of the methods used in 
system checking is the model-checking [1]. One of the 
difficulties encountered in the domain of formal 
verification is the combinatorial explosion problem.  For 
example in the model checking, the number of states in the 
transition graphs can reach prohibitive level, which makes 
their manipulation difficult or impossible. Consequently, 
compression methods are used in order to reduce the size 
of the state graph. The compression is done by using data 
structures in order to represent in a concise manner the set 
of states.  In this case, the operations are done so on set of 
states rather than on explicit states.   
The representation by the Binary Decision Diagrams BDD 
[2] is among the most known symbolic notations. The 
BDD is a data structure used to represent Boolean 
functions. The BDD is largely used in several fields since 
they offer a canonical representation and an easy 
manipulation. However, the BDD size depends on the 
selected variable order. Therefore it is important to find 
variable order which minimizes the number of nodes in a 

BDD. Unfortunately, this task is not easy considering the 
fact that there is an exponential number of possible 
variable ordering. Indeed, the problem of variable ordering 
was shown Np-difficult [3]. For that, several methods 
were proposed to find the best BDD variable order and 
which can be classified in two categories. The first class 
tries to extract the good order by inspecting the logical 
circuits [4], whereas, the second class is based on the 
dynamic optimization of a given order [5]. 
One of the iterative methods that have been developed 
recently to solve this type of problem is Genetic 
Algorithms GA. It is a stochastic iterative algorithm which 
maintains a population of individuals. GA adapts nature 
optimizing principles like mechanics of natural selection 
and natural genetics. Each individual represents a feasible 
solution in the problem search space. Basically, a genetic 
algorithm consists of three essential operations: selection, 
crossover, and mutation. The selection evaluates the 
fitness of each individual and keeps the best ones among 
them. The others are removed from the current population. 
The crossover merges two individuals to provide new ones. 
The operator of mutation allows moving each solution to 
one of its neighbours in order to maintain a good diversity 
during the process of optimization. GA allows guided 
search that samples the search space. Although GAs have 
been showed to be appropriate for solving BDD ordering 
problem [6], their computational cost seems to be a 
dissuasive factor for their use on large instances. To 
overcome this drawback and in order to get better speed 
and quality convergence, their implicit parallelism is 
exploited. 
Quantum computing is a new research field that 
encompasses investigations on quantum mechanical 
computers and quantum algorithms [7]. QC relies on the 
principles of quantum mechanics like qubit representation 
and superposition of states. QC is capable of processing 
huge numbers of quantum states simultaneously in parallel. 
QC brings new philosophy to optimization due to its 
underlying concepts. Recently, a growing theoretical and 
practical interest is devoted to researches on merging 
evolutionary computation and quantum computing [8, 9]. 
The aim is to get benefit from quantum computing 
capabilities to enhance both efficiency and speed of 
classical evolutionary algorithms. This has led to the 
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design of Quantum inspired Genetic Algorithms QGA that 
have been proven to be better than conventional GAs. 
Unlike pure quantum computing, QGA doesn’t require the 
presence of a quantum machine to work. 
In this context, we propose in this article, a new iterative 
approach called QGABDD based on QGA. For that, a 
problem formulation in terms of quantum representation 
and evolutionary dynamic borrowing quantum operators 
were defined. The quantum representation of the solutions 
allows the coding of all the potential orders with a certain 
probability.  The optimization process consists in the 
application of a quantum dynamic constituted of a set of 
quantum operations such as interference, quantum 
mutation and measure. The experiences carried out on 
QGABDD showed the feasibility and the effectiveness of 
our approach. 
Consequently, the remainder of the paper is organized as 
follows: section 2 presents some basis concepts of BDD. 
A brief introduction to quantum computing is presented in 
section 3. The proposed approach is described in section 4. 
Section 5 illustrates some experimental results. Then, we 
finish by giving conclusion and some perspective. 

2. Binary Decision Diagram 

A Binary Decision Diagram or BDD is data structure used 
for representation of Boolean functions in the form of 
rooted directed acyclic graph. It is composed of decision 
nodes and two final nodes called 0-final and 1-final 
(fig.1).  The root and the intermediary nodes are indexed 
and possess two child nodes called high and low.  BDD is 
called "ordered" if the different variables appear in the 
same order on all the ways from the root. It is important to 
note that for a given order of variables, the minimal binary 
decision graph is single.  A BDD can be reduced while 
using the two following rules [2, 10, 11]:   
• Recognize and share identical sub-trees. 

• Erase nodes whose left and right child nodes are 
identical. 

It is very important to take into account the order of 
variables to be used when using the BDD in practice. The 
size of a BDD is largely affected by the choice of the 
variable ordering (fig. 2). Unfortunately, there are an 
exponential number of possible orders (permutation). It is 
completely clear that the problem of variables ordering is 
NP-difficult. The use of heuristics is essential to find 
acceptable solutions within reasonable times. Within this 
perspective, we are interested in applying quantum 
computing principles to solve the variable ordering 
problem. 
 

 

  
 

   
Fig.2. Two BDDs representation of the function: 

)42()31( xxxx ⇒∧∨ , in the left the order of 
variable is: x1, x2, x3, x4; right: order: x1, x3, x2, x4.  
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3. An Overview of Quantum Computing  

Quantum Computing QC is an emergent field calling upon 
several specialties: physics, engineering, chemistry, 
computer science and mathematics. QC uses the 
specificities of quantum mechanics for the processing and 
the transformation of information. The aim of this 
integration of knowledge is the realization of a quantum 
computer in order to carry out certain calculations much 
more quickly than with a traditional computer. This 
acceleration is made possible while benefiting from the 
quantum phenomena such as the superposition of states, 
the entanglement and the interference. A particle 
according to principles of quantum mechanics can be in a 
superposition of states. By taking account of this idea, one 
can define a quantum bit or the qubit which can take value 
0, 1 or a superposition of the two at the same time. Its state 
can be given by [8]: 

Ψ = α |0〉+b|1〉 (1)
Where |0〉 and |1〉 represent the classical bit values 0 and 1 
respectively; α and β are complex numbers such that  

|α|2 + |b|2 = 1 (2)
The probability that the qubit collapses towards 1 (0) is 
|α|2 (|b|2).This idea of superposition makes it possible to 
represent an exponential set of states with a small number 
of qubits. According to the quantum laws like interference, 
the linearity of quantum operations and entanglement 
make the quantum computing more powerful than the 
classical machines. Each quantum operation will deal with 
all the states present within the superposition in parallel. 
For in-depth theoretical insights on quantum information 
theory, one can refer to [7].  
A quantum algorithm consists in applying of a succession 
of quantum operations on quantum systems. Quantum 
operations are performed using quantum gates and 
quantum circuits. Yet, a powerful quantum machine is still 
under construction. By the time when a powerful quantum 
machine would be constructed, researches are conducted 
to get benefit from the quantum computing field. Since the 
late 1990s, merging quantum computation and 
evolutionary computation has been proven to be a 
productive issue when probing complex problems. Like 
any other GA, a Quantum Evolutionary Algorithm QGA 
[8, 9] relies on the representation of the individual, the 
evaluation function and the population dynamics. The 
particularity of QGA stems from the quantum 
representation they adopt which allows representing the 
superposition of all potential solutions for a given problem. 
It also stems from the quantum operators it uses to evolve 
the entire population through generations.  

4. The Proposed Approach  

The development of the suggested approach called 
QGABDD is based basically on a quantum representation 
of the research space associated with the problem and a 
quantum dynamic used to explore this space by operating 
on the quantum representation by using quantum 
operations.  

4.2 Quantum representation of variable order  

The problem of variable ordering can be mathematically 
formulated as follow: 
Given a set of variables V={X1, X2… Xn}, the problem of 
BDD variables ordering can be defined by specifying 
implicitly a pair ( )SC,Ω  where Ω is the set of all possible 
solutions that is potentials variables order and SC is a 
mapping Ω → R called score of the variable ordering. This 
score is the BDD size. Each solution is viewed as 
permutation of the V variables. Consequently, the problem 
consists to define the best permutation of V that gives the 
minimal BDD size. 
In order to easily apply quantum principles on variable 
ordering, we need to map potential solutions into a 
quantum representation that could be easily manipulated 
by quantum operators. The variable order is represented as 
binary matrix satisfying the following criteria: 
• For N variable, the size of the matrix is N*N. The 

columns represent the variables and the rows represent 
their order. 

• The presence of 1 in the position (i,j) indicates that the 
rang of the variable j is  i in the variable ordering. 

• In each column and row there is a single 1. 

The figure 3 shows the binary representation of the order 
{2, 1, 4, 3}, In terms of quantum computing, each order is 
represented as a quantum register as shown in figure 4. 
The register contains superposition of all possible 
permutations. Each column 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i

i

b
a  represents a single qubit 

and corresponds to the binary digit 1 or 0. The probability 
amplitudes ai and bi are real values 
satisfying 122

=+ ii ba . For each qubit, a binary value is 

computed according to its probabilities 2

ia  and 2

ib .  
2

ia  and 2

ib  are interpreted as the probabilities to have 
respectively 0 or 1. Consequently, all feasible variable 
orders can be represented by a quantum matrix QM (fig5) 
that contains the superposition of all possible variable 
permutations. This quantum matrix can be viewed as a 
probabilistic representation of all potential order. When 
embedded within an evolutionary framework, it plays the 
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role of the chromosome. Only one chromosome is needed 
to represent the entire population. 
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Fig. 3 Binary representation of the variable ordering 
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Fig. 5 Quantum representation of variable ordering. 

4.2 Quantum operators 

The quantum operations used in our approach are as 
follows:   
4.2.1. Measurement: This operation transforms by 
projection the quantum matrix into a binary matrix (fig.6). 
Therefore, there will be a solution among all the solutions 
present in the superposition. But contrary to the pure 
quantum theory, this measurement does not destroy the 
superposition. That has the advantage of preserving the 
superposition for the following iterations knowing that we 
operate on traditional machines. The binary values for a 
qubit are computed according to its probabilities 2

ia  
and 2

ib . The binary matrix is then translated into a 
succession of integers.   

4.2.2. The quantum interference: This operation amplifies 
the amplitude of the best solution and decreases the 
amplitudes of the bad ones. It primarily consists in moving 
the state of each qubit in the direction of the 

corresponding bit value in the best solution in progress. 
The operation of interference is useful to intensify 
research around the best solution. This operation can be 
accomplished by using a unit transformation which 
achieves a rotation whose angle is a function of the 
amplitudes ai, bi and of the value of the corresponding bit 
in the solution reference (fig 7). The values of the rotation 
angle δθ is chosen so that to avoid premature convergence. 
It is set experimentally and its direction is determined as a 
function of the values of ai, bi and the corresponding 
element’s value in the binary matrix (table1). 
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Fig. 6 Quantum measurement. 
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Fig. 7.  Quantum interference 

Table 1. Lookup table of the rotation angle 
a b Reference bit value Angle

   > 0      > 0 1 +δθ 
   > 0   > 0 0 -δθ 
   > 0   < 0 1 -δθ 
   > 0   < 0 0 +δθ 
   < 0   > 0 1 -δθ 
   < 0 > 0 0 +δθ 
   < 0 < 0 1 +δθ 
   < 0 < 0 0 -δθ 

 
 
4.2.3 Mutation operator: this operator performs 
permutation between two qubits (fig8). It allows moving 
from the current solution to one of its neighbors. It 
consists first in selecting randomly a register in the 
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quantum matrix. Then, pairs of qubits are chosen 
randomly according to a defined probability. This operator 
allows exploring new solutions and thus enhances the 
diversification capabilities of the search process. 

4.2.4 Crossover operators: Crossovers are important for 
promoting the exchange of high quality blocks within the 
population. They exchange subparts of two quantum 
chromosomes.  For example the figure 9 shows a quantum 
crossover. 

 

Fig8. Mutation operator 

 

Figure 9. Quantum crossover 

4.3 Outline of the proposed framework 

Now, we describe how the representation scheme 
including quantum representation and quantum operators 
has been embedded within an evolutionary algorithm and 
resulted in a hybrid stochastic algorithm performing 
variable order search. 
Given a set S of BDD variables to be ordered, first, a 
quantum matrix QM(0) is  constructed to represent all 
possible orders. Starting from an initial binary matrix 
BM(0) extracted from the quantum matrix using the 
measurement operation, the algorithm progresses through 
a number of generations according to a quantum based 
dynamics. At each iteration, the following main tasks are 
performed: The assessment of the current order, the 
application of the interference operation, the application of 
the crossover and mutation operations, and the application 
of the measurement operation. The assessment of the 

current order intends to compute the fitness score of the 
solution. The evaluation of the solutions is done by using 
the size of the BDD obtained from the order as criterion of 
selection. In more details, the proposed QGABDD can be 
described as follow: 
 
Input: A set of variable ord 
 

(1) Construct the initial Population of Quantum Matrix 
PQM  

(2) Generate an initial variable order ord0, let BM be 
the corresponding binary matrix.  

(3) Set ordbest = ord’ and SCbest = SC ( ord’). 
Repeat 
(4) Apply an interference operation on PQM according 

to the best solution. 
(5) Apply a crossover operation on PQM  
(6) Apply a mutation operation on PQM according to 

the permutation probability pm. 
(7) Apply a measurement operation on each chromo-

some to derive a new binary matrix BMi. 
(8) For veach BMi Evaluate the corresponding order 

ordi 
(9) if SC(ordbest) > SC(ordi) then ordbest = ordi and 

SCbest = SC(ordi). 
Until a termination-criterion is reached  
 

Output: ordbest and SC(ordbest) 

5. Implementation and Evaluation 

QGABDD is implemented in java 1.5 and is tested on a 
microcomputer with a processor of 2 GHZ and 256 MO of 
memory. We have used the package JBDD [12] which 
contains a set of tools for the creation and the 
manipulation of BDD. To assess the efficiency and 
accuracy of our approach several experiments were 
designed. The tests are divided into two classes. The first 
one contains Boolean functions built with the logical 
operations 'AND', 'XOR' and 'NOT’ (table 2). However, 
the tests of the second class are Boolean functions 
containing the logical operations 'AND', 'OR' and 'NOT' 
(table 3).  In all experiments, the size of the population is 
4, the permutation probability is a tunable parameter 
which was set to 0.15, the interference angle is π/20, and 
the iteration numbers vary between 100 iterations for 
small tests and 1000 iterations for large tests. The found 
results are encouraging and prove the feasibility and the 
efficiency of our approach. Wilcoxon matched-pair 
signed-rank test were carried out to test the significance of 
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the difference in the accuracy of our method. Indeed, at 
threshold a=0.05, there is significant difference between 
final solutions and initial solutions. 

Table 2. Results given by QGABDD for the tests containing the logic 
operators: AND, XOR and NOT 

Test Number of 
variables 

Initial 
Solution   

Final  
Solution 

Test1 100 276 151 
Test2 100 299 145 
Test3 120 330 183 
Test4 120 355 190 
Test5 130 331 209 
Test6 135 381 206 
Test7 135 419 211 

 
Table 3. Results given by QGABDD for the tests containing the logic 

operators: AND, OR and NOT 
Test Number of 

variables 
Initial 

Solution   
Final  

Solution 
Test1 90 132 91 
Test2 95 152 98 
Test3 100 166 103 
Test4 110 170 113 
Test5 120 180 124 
Test6 130 205 134 
Test7 135 225 139 

6. Conclusion 

In this work, we discuss the use of Quantum genetic 
algorithms to improve the variable ordering of a given 
BDD. The proposed approach called QGABDD is based 
on a quantum Genetic algorithm. The quantum 
representation of the solutions allows the coding of all the 
potential variable orders with a certain probability. The 
optimization process consists of the application of a 
quantum dynamics constituted of quantum operations such 
as the interference, the quantum mutation and 
measurement. The size of the population is considerably 
reduced thanks to the superposition principle. The 
experimental studies prove the feasibility and the 
effectiveness of our approach. As ongoing work we study 
the effect of crossover operation on the performance of 
our approach. 
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