
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

130

Manuscript received September 5, 2007

Manuscript revised September 20, 2007

Quantum Genetic Algorithm for Binary Decision Diagram Ordering
Problem

Abdesslem Layeb and Djamel-Eddine Saidouni ,

Lire laboratory, Vision&Infography group, University Mentouri of Constantine, Algeria

Summary
The Binary Decision Diagram (BDD) is used to represent in
symbolic manner a set of states. It’s largely used in the field of
formal checking. The variable ordering is a very important step
in the BDD optimization process. A good order of variables will
reduce considerably the size of a BDD. Unfortunately, the search
for the best variables ordering has been showed NP-difficult. In
this article, we propose a new iterative approach called
QGABDD based on a Quantum Genetic Algorithm. QGABDD is
based on a basic core defined by a suitable quantum
representation and an adapted quantum evolutionary dynamic.
The obtained results are encouraging and attest the feasibility
and the effectiveness of our approach. QGABDD is distinguished
by a reduced population size and a reasonable number of
iterations to find the best order, thanks to the principles of
quantum computing
Key words:
Combinatorial problem, Quantum computing, Quantum Genetic
Algorithm, Binary Decision Diagram,

1. Introduction

The objective of the checking application and electric
circuits is to detect the errors which they contain or to
show that they function well. One of the methods used in
system checking is the model-checking [1]. One of the
difficulties encountered in the domain of formal
verification is the combinatorial explosion problem. For
example in the model checking, the number of states in the
transition graphs can reach prohibitive level, which makes
their manipulation difficult or impossible. Consequently,
compression methods are used in order to reduce the size
of the state graph. The compression is done by using data
structures in order to represent in a concise manner the set
of states. In this case, the operations are done so on set of
states rather than on explicit states.
The representation by the Binary Decision Diagrams BDD
[2] is among the most known symbolic notations. The
BDD is a data structure used to represent Boolean
functions. The BDD is largely used in several fields since
they offer a canonical representation and an easy
manipulation. However, the BDD size depends on the
selected variable order. Therefore it is important to find
variable order which minimizes the number of nodes in a

BDD. Unfortunately, this task is not easy considering the
fact that there is an exponential number of possible
variable ordering. Indeed, the problem of variable ordering
was shown Np-difficult [3]. For that, several methods
were proposed to find the best BDD variable order and
which can be classified in two categories. The first class
tries to extract the good order by inspecting the logical
circuits [4], whereas, the second class is based on the
dynamic optimization of a given order [5].
One of the iterative methods that have been developed
recently to solve this type of problem is Genetic
Algorithms GA. It is a stochastic iterative algorithm which
maintains a population of individuals. GA adapts nature
optimizing principles like mechanics of natural selection
and natural genetics. Each individual represents a feasible
solution in the problem search space. Basically, a genetic
algorithm consists of three essential operations: selection,
crossover, and mutation. The selection evaluates the
fitness of each individual and keeps the best ones among
them. The others are removed from the current population.
The crossover merges two individuals to provide new ones.
The operator of mutation allows moving each solution to
one of its neighbours in order to maintain a good diversity
during the process of optimization. GA allows guided
search that samples the search space. Although GAs have
been showed to be appropriate for solving BDD ordering
problem [6], their computational cost seems to be a
dissuasive factor for their use on large instances. To
overcome this drawback and in order to get better speed
and quality convergence, their implicit parallelism is
exploited.
Quantum computing is a new research field that
encompasses investigations on quantum mechanical
computers and quantum algorithms [7]. QC relies on the
principles of quantum mechanics like qubit representation
and superposition of states. QC is capable of processing
huge numbers of quantum states simultaneously in parallel.
QC brings new philosophy to optimization due to its
underlying concepts. Recently, a growing theoretical and
practical interest is devoted to researches on merging
evolutionary computation and quantum computing [8, 9].
The aim is to get benefit from quantum computing
capabilities to enhance both efficiency and speed of
classical evolutionary algorithms. This has led to the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

131

design of Quantum inspired Genetic Algorithms QGA that
have been proven to be better than conventional GAs.
Unlike pure quantum computing, QGA doesn’t require the
presence of a quantum machine to work.
In this context, we propose in this article, a new iterative
approach called QGABDD based on QGA. For that, a
problem formulation in terms of quantum representation
and evolutionary dynamic borrowing quantum operators
were defined. The quantum representation of the solutions
allows the coding of all the potential orders with a certain
probability. The optimization process consists in the
application of a quantum dynamic constituted of a set of
quantum operations such as interference, quantum
mutation and measure. The experiences carried out on
QGABDD showed the feasibility and the effectiveness of
our approach.
Consequently, the remainder of the paper is organized as
follows: section 2 presents some basis concepts of BDD.
A brief introduction to quantum computing is presented in
section 3. The proposed approach is described in section 4.
Section 5 illustrates some experimental results. Then, we
finish by giving conclusion and some perspective.

2. Binary Decision Diagram

A Binary Decision Diagram or BDD is data structure used
for representation of Boolean functions in the form of
rooted directed acyclic graph. It is composed of decision
nodes and two final nodes called 0-final and 1-final
(fig.1). The root and the intermediary nodes are indexed
and possess two child nodes called high and low. BDD is
called "ordered" if the different variables appear in the
same order on all the ways from the root. It is important to
note that for a given order of variables, the minimal binary
decision graph is single. A BDD can be reduced while
using the two following rules [2, 10, 11]:
• Recognize and share identical sub-trees.

• Erase nodes whose left and right child nodes are
identical.

It is very important to take into account the order of
variables to be used when using the BDD in practice. The
size of a BDD is largely affected by the choice of the
variable ordering (fig. 2). Unfortunately, there are an
exponential number of possible orders (permutation). It is
completely clear that the problem of variables ordering is
NP-difficult. The use of heuristics is essential to find
acceptable solutions within reasonable times. Within this
perspective, we are interested in applying quantum
computing principles to solve the variable ordering
problem.

Fig.2. Two BDDs representation of the function:

)42()31(xxxx ⇒∧∨ , in the left the order of
variable is: x1, x2, x3, x4; right: order: x1, x3, x2, x4.

X2

1 0 1 0

X3 X3

0 0 0 1

X2

X3 X3

X1
1 edge

0 edge

Fig1. Binary Decision Diagram for the Boolean function: f = X1 X3 + X2
X3

X1

1 1

X3

X4

X2

X1

0 1

X2 X2

X3

X4

X3

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

132

3. An Overview of Quantum Computing

Quantum Computing QC is an emergent field calling upon
several specialties: physics, engineering, chemistry,
computer science and mathematics. QC uses the
specificities of quantum mechanics for the processing and
the transformation of information. The aim of this
integration of knowledge is the realization of a quantum
computer in order to carry out certain calculations much
more quickly than with a traditional computer. This
acceleration is made possible while benefiting from the
quantum phenomena such as the superposition of states,
the entanglement and the interference. A particle
according to principles of quantum mechanics can be in a
superposition of states. By taking account of this idea, one
can define a quantum bit or the qubit which can take value
0, 1 or a superposition of the two at the same time. Its state
can be given by [8]:

Ψ = α |0〉+b|1〉 (1)
Where |0〉 and |1〉 represent the classical bit values 0 and 1
respectively; α and β are complex numbers such that

|α|2 + |b|2 = 1 (2)
The probability that the qubit collapses towards 1 (0) is
|α|2 (|b|2).This idea of superposition makes it possible to
represent an exponential set of states with a small number
of qubits. According to the quantum laws like interference,
the linearity of quantum operations and entanglement
make the quantum computing more powerful than the
classical machines. Each quantum operation will deal with
all the states present within the superposition in parallel.
For in-depth theoretical insights on quantum information
theory, one can refer to [7].
A quantum algorithm consists in applying of a succession
of quantum operations on quantum systems. Quantum
operations are performed using quantum gates and
quantum circuits. Yet, a powerful quantum machine is still
under construction. By the time when a powerful quantum
machine would be constructed, researches are conducted
to get benefit from the quantum computing field. Since the
late 1990s, merging quantum computation and
evolutionary computation has been proven to be a
productive issue when probing complex problems. Like
any other GA, a Quantum Evolutionary Algorithm QGA
[8, 9] relies on the representation of the individual, the
evaluation function and the population dynamics. The
particularity of QGA stems from the quantum
representation they adopt which allows representing the
superposition of all potential solutions for a given problem.
It also stems from the quantum operators it uses to evolve
the entire population through generations.

4. The Proposed Approach

The development of the suggested approach called
QGABDD is based basically on a quantum representation
of the research space associated with the problem and a
quantum dynamic used to explore this space by operating
on the quantum representation by using quantum
operations.

4.2 Quantum representation of variable order

The problem of variable ordering can be mathematically
formulated as follow:
Given a set of variables V={X1, X2… Xn}, the problem of
BDD variables ordering can be defined by specifying
implicitly a pair ()SC,Ω where Ω is the set of all possible
solutions that is potentials variables order and SC is a
mapping Ω → R called score of the variable ordering. This
score is the BDD size. Each solution is viewed as
permutation of the V variables. Consequently, the problem
consists to define the best permutation of V that gives the
minimal BDD size.
In order to easily apply quantum principles on variable
ordering, we need to map potential solutions into a
quantum representation that could be easily manipulated
by quantum operators. The variable order is represented as
binary matrix satisfying the following criteria:
• For N variable, the size of the matrix is N*N. The

columns represent the variables and the rows represent
their order.

• The presence of 1 in the position (i,j) indicates that the
rang of the variable j is i in the variable ordering.

• In each column and row there is a single 1.

The figure 3 shows the binary representation of the order
{2, 1, 4, 3}, In terms of quantum computing, each order is
represented as a quantum register as shown in figure 4.
The register contains superposition of all possible
permutations. Each column

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i

i

b
a represents a single qubit

and corresponds to the binary digit 1 or 0. The probability
amplitudes ai and bi are real values
satisfying 122

=+ ii ba . For each qubit, a binary value is

computed according to its probabilities 2

ia and 2

ib .
2

ia and 2

ib are interpreted as the probabilities to have
respectively 0 or 1. Consequently, all feasible variable
orders can be represented by a quantum matrix QM (fig5)
that contains the superposition of all possible variable
permutations. This quantum matrix can be viewed as a
probabilistic representation of all potential order. When
embedded within an evolutionary framework, it plays the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

133

role of the chromosome. Only one chromosome is needed
to represent the entire population.

0100
1000
0001
0010

Fig. 3 Binary representation of the variable ordering

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

nm

nm

n2

n2

n1

n1

2m

2m

22

22

21

21

1m

1m

12

12

11

11

b
a

b
a

b
a

b
a

b
a

b
a

b
a

b
a

b
a

K

M

K

K

Fig. 5 Quantum representation of variable ordering.

4.2 Quantum operators

The quantum operations used in our approach are as
follows:
4.2.1. Measurement: This operation transforms by
projection the quantum matrix into a binary matrix (fig.6).
Therefore, there will be a solution among all the solutions
present in the superposition. But contrary to the pure
quantum theory, this measurement does not destroy the
superposition. That has the advantage of preserving the
superposition for the following iterations knowing that we
operate on traditional machines. The binary values for a
qubit are computed according to its probabilities 2

ia
and 2

ib . The binary matrix is then translated into a
succession of integers.

4.2.2. The quantum interference: This operation amplifies
the amplitude of the best solution and decreases the
amplitudes of the bad ones. It primarily consists in moving
the state of each qubit in the direction of the

corresponding bit value in the best solution in progress.
The operation of interference is useful to intensify
research around the best solution. This operation can be
accomplished by using a unit transformation which
achieves a rotation whose angle is a function of the
amplitudes ai, bi and of the value of the corresponding bit
in the solution reference (fig 7). The values of the rotation
angle δθ is chosen so that to avoid premature convergence.
It is set experimentally and its direction is determined as a
function of the values of ai, bi and the corresponding
element’s value in the binary matrix (table1).

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎯⎯⎯⎯ →⎯

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

0100
0001
1000
0010

sureM

0.14
0.99

0.99
0.14

 0.459-
0.8884

 0.459-
0.8884

 0.459-
0.8884

 0.9259-
0.3778

0.99
0.14

0.99
0.14

0.99
0.14

0.14
0.99

 0.9259-
0.3778

0.99
0.14

 0.459-
0.8884

0.99
0.14

 0.9259-
0.3778

0.14
0.99

ea

Fig. 6 Quantum measurement.

δθ±

ia

ib

Fig. 7. Quantum interference

Table 1. Lookup table of the rotation angle
a b Reference bit value Angle

 > 0 > 0 1 +δθ
 > 0 > 0 0 -δθ
 > 0 < 0 1 -δθ
 > 0 < 0 0 +δθ
 < 0 > 0 1 -δθ
 < 0 > 0 0 +δθ
 < 0 < 0 1 +δθ
 < 0 < 0 0 -δθ

4.2.3 Mutation operator: this operator performs
permutation between two qubits (fig8). It allows moving
from the current solution to one of its neighbors. It
consists first in selecting randomly a register in the

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

m

m

2

2

1

1

b
a

...
b
a

b
a

Fig.4 Quantum register

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

134

quantum matrix. Then, pairs of qubits are chosen
randomly according to a defined probability. This operator
allows exploring new solutions and thus enhances the
diversification capabilities of the search process.

4.2.4 Crossover operators: Crossovers are important for
promoting the exchange of high quality blocks within the
population. They exchange subparts of two quantum
chromosomes. For example the figure 9 shows a quantum
crossover.

Fig8. Mutation operator

Figure 9. Quantum crossover

4.3 Outline of the proposed framework

Now, we describe how the representation scheme
including quantum representation and quantum operators
has been embedded within an evolutionary algorithm and
resulted in a hybrid stochastic algorithm performing
variable order search.
Given a set S of BDD variables to be ordered, first, a
quantum matrix QM(0) is constructed to represent all
possible orders. Starting from an initial binary matrix
BM(0) extracted from the quantum matrix using the
measurement operation, the algorithm progresses through
a number of generations according to a quantum based
dynamics. At each iteration, the following main tasks are
performed: The assessment of the current order, the
application of the interference operation, the application of
the crossover and mutation operations, and the application
of the measurement operation. The assessment of the

current order intends to compute the fitness score of the
solution. The evaluation of the solutions is done by using
the size of the BDD obtained from the order as criterion of
selection. In more details, the proposed QGABDD can be
described as follow:

Input: A set of variable ord

(1) Construct the initial Population of Quantum Matrix
PQM

(2) Generate an initial variable order ord0, let BM be
the corresponding binary matrix.

(3) Set ordbest = ord’ and SCbest = SC (ord’).
Repeat
(4) Apply an interference operation on PQM according

to the best solution.
(5) Apply a crossover operation on PQM
(6) Apply a mutation operation on PQM according to

the permutation probability pm.
(7) Apply a measurement operation on each chromo-

some to derive a new binary matrix BMi.
(8) For veach BMi Evaluate the corresponding order

ordi
(9) if SC(ordbest) > SC(ordi) then ordbest = ordi and

SCbest = SC(ordi).
Until a termination-criterion is reached

Output: ordbest and SC(ordbest)

5. Implementation and Evaluation

QGABDD is implemented in java 1.5 and is tested on a
microcomputer with a processor of 2 GHZ and 256 MO of
memory. We have used the package JBDD [12] which
contains a set of tools for the creation and the
manipulation of BDD. To assess the efficiency and
accuracy of our approach several experiments were
designed. The tests are divided into two classes. The first
one contains Boolean functions built with the logical
operations 'AND', 'XOR' and 'NOT’ (table 2). However,
the tests of the second class are Boolean functions
containing the logical operations 'AND', 'OR' and 'NOT'
(table 3). In all experiments, the size of the population is
4, the permutation probability is a tunable parameter
which was set to 0.15, the interference angle is π/20, and
the iteration numbers vary between 100 iterations for
small tests and 1000 iterations for large tests. The found
results are encouraging and prove the feasibility and the
efficiency of our approach. Wilcoxon matched-pair
signed-rank test were carried out to test the significance of

⎟
⎠

⎞
⎜
⎝

⎛
 0.3534- 0.3876 0.5703- 0.4534

 0.9355- 0.9218 0.8214 0.8913- ⎟
⎠

⎞
⎜
⎝

⎛
0.6216 0.8481- 0.9014 0.9587-

 0.7833- 0.5298- 0.4329 0.2844-

⎟
⎠

⎞
⎜
⎝

⎛
0.6216 0.8481- 0.9014 0.4534

 0.7833- 0.5298- 0.4329 0.8913- ⎟
⎠

⎞
⎜
⎝

⎛
0.3534- 0.3876 0.5703- 0.9587-

0.9355- 0.9218 0.8214 0.2844-

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

14.0
99.0

14.0
99.0

14.0
99.0

99.0
14.0

44.0
9.0

99.0
14.0

99.0
14.0

44.0
9.0

14.0
99.0

44.0
9.0

14.0
99.0

99.0
14.0

14.0
99.0

14.0
99.0

44.0
9.0

14.0
99.0

14.0
99.0

14.0
99.0

99.0
14.0

99.0
14.0

44.0
9.0

14.0
99.0

14.0
99.0

99.0
14.0

14.0
99.0

44.0
9.0

14.0
99.0

14.0
99.0

14.0
99.0

14.0
99.0

99.0
14.0

99.0
14.0

14.0
99.0

99.0
14.0

14.0
99.0

14.0
99.0

14.0
99.0

14.0
99.0

14.0
99.0

14.0
99.0

14.0
99.0

99.0
14.0

99.0
14.0

14.0
99.0

Exchange

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

135

the difference in the accuracy of our method. Indeed, at
threshold a=0.05, there is significant difference between
final solutions and initial solutions.

Table 2. Results given by QGABDD for the tests containing the logic
operators: AND, XOR and NOT

Test Number of
variables

Initial
Solution

Final
Solution

Test1 100 276 151
Test2 100 299 145
Test3 120 330 183
Test4 120 355 190
Test5 130 331 209
Test6 135 381 206
Test7 135 419 211

Table 3. Results given by QGABDD for the tests containing the logic

operators: AND, OR and NOT
Test Number of

variables
Initial

Solution
Final

Solution
Test1 90 132 91
Test2 95 152 98
Test3 100 166 103
Test4 110 170 113
Test5 120 180 124
Test6 130 205 134
Test7 135 225 139

6. Conclusion

In this work, we discuss the use of Quantum genetic
algorithms to improve the variable ordering of a given
BDD. The proposed approach called QGABDD is based
on a quantum Genetic algorithm. The quantum
representation of the solutions allows the coding of all the
potential variable orders with a certain probability. The
optimization process consists of the application of a
quantum dynamics constituted of quantum operations such
as the interference, the quantum mutation and
measurement. The size of the population is considerably
reduced thanks to the superposition principle. The
experimental studies prove the feasibility and the
effectiveness of our approach. As ongoing work we study
the effect of crossover operation on the performance of
our approach.

REFERENCE

[1]. E. M. Clarke, O. Grumberg, et D. E. Long. "Model
checking and abstraction". ACM Transactions on
Programming Languages and Systems, 16(5) :1512–
1542, septembre 1994.

[2]. R. Drechsler, et B. Becker. "Binary Decision Diagrams:
Theory and Implementation". Kluwer Academic
Publisher, 1998.

[3]. B. Bollig and I. Wegener. "Improving the variable
ordering of OBDDs is NPcomplete". IEEE Trans. on
Comp., 45(9):993–1002, 1996.

[4]. H. Fujii, G. Ootomo, and C. Hori. Interleaving based
variable ordering methods for ordered binary decision
diagrams. In Int'l Conf. on CAD, pages 38–41, 1993.

[5]. N. Ishiura, H. Sawada, and S. Yajima. Minimization of
binary decision diagrams based on exchange of
variables. In Int'l Conf. on CAD, pages 472–475, 1991.

[6]. W. Lenders and C. Baier .Genetic Algorithms for the
Variable Ordering Problem of Binary Decision
Diagrams, Foundations of Genetic Algorithms, LNCS
V. 3469/2005, pp. 1-20, June 2005

[7]. C.P. Williams and S.H. Clearwater. "Explorations in
quantum computing". Springer Verlag, Berlin, Germany
1998.

[8]. K.H. HAN and J.H. KIM. "Quantum-inspired
Evolutionary Algorithms with a New Termination
Criterion, Hε Gate, and Two Phase Scheme," IEEE
Transactions on Evolutionary Computation, IEEE Press,
vol. 8, no. 2, pp. 156-169, April 2004.

[9]. A. Layeb, S. Meshoul and M. Batouhe.: "Multiple
Sequence Alignment by Quantum Genetic Algorithm".
In the 20th IPDPS 2006, ISBN: 1-4244-0054-6, pp 1 –
8, Greece, April 2006.

[10]. R. Drechsler, et B. Becker. Binary Decision Diagrams:
Theory and Implementation. Kluwer Academic
Publisher, 1998.

[11]. R. E. Bryant, "Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams", ACM Computing
Surveys, Vol. 24, No. 3, pp. 293-318, 1992.

[12]. J. Whaley, "JAVABDD, a Java Binary Decision
Diagram Library", Stanford University
http://javabdd.sourceforge.net/.

Abdesslem Layeb: PHD student. In 2005, he received his M.S.
degree in informatics from the University Mentouri of
Constantine, Algeria. Member of LIRE laboratory in the
University of Constantine, his recent work is dealing with the
combinatorial optimization problems in Formal methods.

Dr. Djamel-Eddine Saidouni: in 1996, he received his
PHD degree in informatics from the university Paul
Sabatier of Toulouse, France. Lecturer and senior
researcher, LIRE laboratory Vision&Infograpghy group,
University Mentouri of Constantine, Algeria.

