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Summary 
In this paper novel hybrid genetic algorithms for Open--Shop 

Scheduling Problem (OSSP) are presented. Two greedy 

heuristics LPT-Task and LPT-Machine are proposed for 

decoding chromosomes represented by permutations with 

repetitions. For comparison the standard permutation represen-

tation of OSSP instances is used. The algorithms apply also 

efficient crossover operator LOX and mutation operators SWAP 

and INVERT with constant and variable mutation probabilities. 

We compare conventional GA to parallel genetic algorithm 

(PGA) in a migration model. The performance of the algorithms 

with various settings is verified by computer experiments on a set 

of large random OSSP instances. 
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Hybrid metaheuristic, parallel genetic algorithm, open-shop 
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1. Introduction 

 Given n jobs, every job composed of m operations to be 

processed by m dedicated machines, and the processing 

times required for all operations, the Open-Shop 

Scheduling Problem (OSSP) is defined as a problem of 

determining order of execution of a given set of non-

splitable job operations on dedicated machines providing 

that each job is processed by at most one machine at any 

given time, operations of the same job do not overlap and 

the makespan of the obtained schedule is minimal. 

 In opposition to many specific scheduling problems 

(Job-Shop, Flow-Shop), where some additional 

assumptions are applied in the OSSP problem no specific 

assumption on operation order for the given job are made. 

 OSSP belongs to the class of NP-hard combinatorial 

optimizations problems. Collections of hard OSSP 

instances were proposed by Taillard [23], Guéret and Prins 

[25], Brücker [26].  

 Summary of best results obtained by researchers 

applying various metaheuristics and hybrid techniques are 

available at [5,17]. Intensive research conducted in this 

area resulted in a large number of exact and approximate 

algorithms, heuristics and metaheuristics [5,6,8,10].  

 Genetic algorithms (GA) are metaheuristics often used 

for solving combinatorial problems [12-15] and scheduling 

[6,16-21]. This approach is based on co-evolution of a 

number of  populations that exchange genetic information  

 

during the evolution process according to a communication 

pattern [2,3,4]. Recently a number of parallel versions of 

GA for OSSP were studied [22]. 

 In this paper we present results of our research 

concerning both sequential and parallel hybrid genetic 

algorithms for the OSSP. Two greedy heuristics for 

chromosome decoding are proposed: LPT-Task and LPT-

Machine, that are developed on the basis of the well known 

Longest Processing Time (LPT) scheduling heuristic [7]. A 

set of randomly generated problem instances is used.  

 The obtained results can be helpful construction of new 

hybrid GAs combining many techniques and providing a 

better performance in solving OSSP. 

 In the next section basic OSSP representations and their 

decoding schemes are presented. Then, in section 3, 

genetic operations are characterized. Hybridization of GA 

by means of the two greedy heuristics used for decoding 

chromosomes is introduced in section 4. In section 5 

parallel models of GA are characterized. The main focus is 

on the migration model of PGA. The experimental results 

are presented and analyzed in section 6. The last section 

contains conclusions resulting from the research.  

2. Basic representations and decoding 

schemes of OSSP instances 

 OSSP schedules can be encoded in chromosomes 

representing permutations or permutations with repetitions.  

 The standard benchmark of the OSSP problem with n 

jobs and m machines is specified by a integer table T[n,m],  

n=m, where each Tij denotes jth operation of the ith job.  

  In permutation representation all operations of all jobs 

of the problem T are assigned ranks. No specific order is 

assumed. A feasible schedule S is built out of elementary 

operations in order of their ranks as they appear in n-

element input permutation vector X (see Fig.1). 

Example 1 

 Let n=m=3. An OSSP instance is given in the table  

T={O1,1 , O1,2 , O1,3 , O2,1 , O2,2 , O2,3 , O3,1 , O3,2 , O3,3} =  

={2, 3, 5, 1, 2, 4, 3, 5, 2}. A chomosome X1 is composed of 

operations X1={O2,1 , O3,2 , O2,3 , O1,1 , O3,3 , O3,1 , O1,2 , O1,3, 

O2,2} and does correspond to the input permutation  

X=<4, 8, 6, 1, 9, 7, 2, 3, 5>. 
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Fig. 1  An OSSP instance in the permutation representation.

  

The resulting schedule S1 is obtained from the sequence of 

operations <X1[1], X1[2], ... , X1[9]>: S1={M1, M2, M3}, 

where: M1=<O2,1 , O1,1 , iddle=4, O3,1>, M2=<O3,2 , O1,1 , O2,2> 

and M3=<iddle=1, O2,3 , O3,3 ,  iddle=1, O1,3>. Thus, 

MS(M1)=10, MS(M2)=10 and MS(M3)=13.  

Finally, MS(S1)=max(MS(M1), MS(M2), MS(M3))=13. 

 

  

Another useful encoding scheme is permutation with 

repetitions. In this case the nm-element vector contains n 

job numbers, each number repeated exactly m times. Two 

feasible schedules are built out of a sequence of all 

elementary job operations, according to the sequence of 

job (machine) numbers as they appear in the related 

permutation vector xi (xj) - see Fig.2.

Fig. 2  An OSSP instance in the permutation with repetitions representation. 
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Example 2 

 Let n=m=3. An OSSP instance is given in the table  

T={{O1,1 , O1,2 , O1,3 },{O2,1 , O2,2 , O2,3 },{O3,1, O3,2, O3,3}} = 

{{2, 3, 5}, {1, 2, 4}, {3, 5, }}.  

Chomosomes X2 and X3 in permutation with repetitions 

representation are derived from a sequence of all job operations,  

i.e. X={O2,1 , O3,2 , O2,3 , O 1,1 , O3,3 , O3,1, O1,2, O1,3 , O2,2} by 

taking into account only one of the indices {i, j} of  Oi,j ,  i.e. 

x2=<2, 3, 2, 1, 3, 3, 1, 1, 2>, where indices of x1 are job 

numbers in X.  

X2=<O2,1 , O3,1 , O2,2 , O1,1 , O3,2 , O3,3 , O1,2 , O1,3 , O2,3>. 

x3=<1, 2, 3, 1, 3, 1, 2, 3, 2>, where indices of x2 are machine 

numbers in X.  

X3=<O1,1 , O1,2 , O1,3 , O2,1 , O2,3 , O3,1 , O2,2 , O3,3 , O3,2}>.  

 The resulting schedules S2 and S3 are obtained from the 

sequence of operations <X2[1], X2[2],  ...  , X2[9]> and  

<X3[1], X3[2],  ...  , X3[9]>, respectively.  

 Hence, S2={M1, M2, M3}, where: M1=<O2,1 , O3,1 , O1,1>;  

M2=<iddle=1, O2,2, iddle=1, O3,2, O1,2 > and   

M3=<iddle=3 , O2,3 , iddle=2, O3,3 , iddle=1, O1,3>.  

Thus, MS(M1)=6, MS(M2)=12 and MS(M3)=17.  

Finally, MS(S2)=max(MS(M1), MS(M2), MS(M3))=17.  

 Similarly, S3={M1, M2, M3}, where: M1=<O1,1 , O2,1 , O3,1>;  

M2=<O2,2 , O1,2 , iddle=1, O3,2> and  

M3=<O_{3,3}, iddle=3, O_{1,3}, O_{2,3}>.  

Thus, MS(M1)=6, MS(M2)=11, MS(M3)=14.  

Finally, MS(S3)=max(MS(M1), MS(M2), MS(M3))=14. 

3. Genetic Operators for OSSP 

 In this section we introduce a collection of genetic 

crossover, mutation and selection operators that are used in 

our GA. 

3.1 LOX Crossover 

 Linear Order Crossover (LOX) can be used for both 

OSSP representations presented is section 2 (see Fig.3). 

 
procedure: LOX (X1, X2, X3) 

begin 

  select at random two points dividing X1 

  and X2 into 3 subsequences; 

  copy the middle subsequence of operations 

  from X1 to X3 and delete these operations 

  from X2;  

  copy the remaining operations of X2 to 

  free positions of X3 starting from the 

  left and preserving their order in X2; 

  output X3; 

end 

Fig.3. The LOX operator for OSSP. 

 

3.2 Mutation operators 

 Two basic mutation operators are used : Swap 

(transposition) and Invertion. In Swap mutation positions 

of the two randomly selected job operations are mutually 

exchanged.  

 

 Inversion mutation is a classical type of mutation that 

reverse order of the operation subsequence between two 

randomly selected job operations in the vector 

representation. The mutation appears in two modes : with 

constant mutation probability and with variable mutation 

probability. The last one is defined by selection of three 

points p1, p2, and p3, where p1 - start probability related 

to the first iteration, p3 - end probability related to the last 

iteration, and p2 - middle probability related to a selected 

iteration between p1 and p2 ([p1,p2] subrange is given as a 

fraction of the range [p1,p3] in %). Within subranges 

[p1,p2] and [p2,p3] the mutation probabilities are changing 

linearly. 

 

3.3 Cost Function and Selection Operator 

 In our GAs the classical 2-element Tournament 

Selection scheme is applied together with eliticist policy. 

The quality of a solution is measured by the cost function 

equal to the makespan of the resulting schedule S. The 

makespan can be determined according to the chosen 

decoding method as described in section 4. 

   

4. Hybridization techniques 

        A hybrid genetic algorithm can be obtained when GA 

metaheuristic is combined with another heuristic method. 

Two novel greedy heuristics are proposed in this paper for 

decoding the input chromosome X[nm] in the permutation 

with repetitions representation.  

 Both heuristics LPT-Task and LPT-Machine are 

developed on the basis of the Longest Processing Time 

(LPT) scheduling heuristic proposed by Graham [7]. LPT 

heuristic was intended for off-line scheduling of tasks in 

multi-processor systems.  

 The LPT procedure can be sketched as follows: at any 

time a processor becomes available for processing 

schedule an available task with the longest processing 

time. The method was then generalized for on-line 

scheduling.  LPT was also used for solving some instances 

of shop scheduling  problems [11]. 
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Fig. 5  LPT--Task decoding scheme for the OSSP chromosome 

 

         The LPT-Task heuristic is applied in an instance of 

OSSP problem to operation times for the given job 

providing that the sequence of job numbers is taken into 

account (see Fig.4). 

 
 
procedure: LPT-Task (T, X, S) 

begin 

  scan the chromosome X from the position 

  ind:=1 to nm; 

  read job index i of the operation Oi,j  

  on the position ind; 

  choose the next unscheduled operation of 

  the job i with maximum processing time 

  Ti,k; 

  scan the schedule S for the machine k and 

  put the operation Oi,k in the first 

  feasible place from the left; 

  mark the operation Oi,k as scheduled; 

end  

Fig. 4  LPT--Task heuristic. 

 

 An application of the LPT-Task heuristic is shown in 

Fig.5.  

 

 

 

 

 

 

 

Example 3 

Let n=m=3. An OSSP instance is given in the table  

T={{O1,1, O1,2, O1,3},{O2,1, O2,2, O2,3}, {O3,1, O3,2, O3,3}}=   

={{2, 3, 5}, {1, 2, 4}, {3, 5, 2}}.  

The chomosome X4 in permutation with repetitions 

representation is derived from a sequence of all job operations, 

i.e.  X=<O2,1 , O3,2 , O2,3 , O1,1 , O3,3 , O3,1 , O1,2 , O1,3 , O2,2> 

by taking into account only one of the indices of Oi,j , i.e. 

xi=<2, 3, 2, 1, 3, 3, 1, 1, 2>, where elements of xi are job 

numbers in X, as well as the LPT order of operations in each job. 

Thus, X4=<O2,3 , O3,2 , O2,2 , O1,3 , O3,1 , O3,3 , O1,2 , O1,1 , O2,1>. 

The resulting schedule S4 is obtained from the sequence of 

operations  <X4[1], X4[2], ...  , X4[9]> :  

S4={M1, M2, M3}, where: M1=<O1,1 , 2, O2,1 , O3,1}>, 

M2=<O3,2 , O2,2 , 2, O1,2> and  M3=<O2,3 , O1,3 , O3,3}>.  

Thus, MS(M1)=8, MS(M2)=12, MS(M3)=11.  

Finally, MS(S)= max (MS(M1), MS(M2), MS(M3))=12.  

 

 

The LPT-Machine heuristic is applied to operation times 

for the given machine providing that the sequence of 

machine numbers is considered (see Fig.6). 
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Fig. 7  LPT-Machine decoding scheme for the OSSP chromosome.

 
 

 
procedure: LPT-Machine (T, X, S) 

begin 

  scan the chromosome X from the position 

  ind:=1 to nm; 

  read machine index j of the operation 

  Oi,j on the position ind;  

  choose the next unscheduled operation of 

  the job k with maximum processing time 

  Tk,j; 

  scan the schedule for the machine j and 

  put the operation Ok,j in the first 

  feasible place from the left; 

  mark the operation Ok,j as scheduled; 

end 

Fig. 6  LPT--Machine heuristic. 

  

An application of the LPT-Machine heuristic is shown in 

Fig.7. 

 

 

Example 4 
Let n=m=3. An OSSP instance is given in the table  

T={{O1,1 , O1,2 , O1,3}}, {O2,1 , O2,2 , O2,3}, {O3,1 , O3,2 , 

O3,3}}= ={{2, 3, 5}, {1, 2, 4}, {3, 5, 2}}. 

The chomosomes X4 in permutation with repetitions 

representation is derived from a sequence of all job operations, 

X=<O2,1 , O3,2 , O2,3 , O1,1 , O3,3 , O3,1 , O1,2 , O1,3 , O2,2> by 

taking into account only one index of Oi,j , i.e.  

xj=<1, 2, 3, 1, 3, 1, 2, 3, 2>, where indices of xj are machine 

numbers in X, as well as the LPT order of ith operations on 

each machine.  

Thus, X5=<O3,1 , O3,2 , O1,3 , O 1,1 , O2,3 , O2,1 , O1,2 , O3,3 , 

O2,2>. 

The resulting schedule S5 is obtained from the sequence of 

operations <X5[1], X5[2], ...  , X5[9]> : S5={M1, M2, M3}, 

where: M1=<O3,1 , O2,1 , 1, O1,1>,  M2=<O2,2 , 1, O3,2 , O1,2> 

and  

M3=<O1,3 , O2,3 , O3,3>. Thus, MS(M1)=7, MS(M2)=11 and 

MS(M3)=11. Finally, MS(S5)= max (MS(M1), MS(M2), 

MS(M3))=11. The obtained makespan is optimal. 

 

5. Models of Parallel Genetic Algorithms 

 There are many models of parallelism in evolutionary 

algorithms: master-slave PGA, migration based PGA, 

diffusion based PGA, PGA with overlapping 

subpopulations, population learning algorithm, hybrid 

models etc. 

 

 The above models are characterized by the following 

criteria: 

 

• number of populations : one, many; 

• population types : disjoint, overlapping; 

• population topologies : various graph models; 

•  interaction model : isolation, migration, diffusion; 

• recombination, evaluation of individuals, selection : 

distributed/local, centralized/global;  

• synchronization on iteration level: 

synchronous/asynchronous algorithm. 
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The most common models of PGA are: 

• master-slave : one global population, global genetic 

operations, fitness functions computed by slave 

processors); 

• massively parallel (cellular): static overlapping 

subpopulations with a local structure, local genetic 

operations and evaluation; 

• migration (with island as a submodel): static disjoint 

subpopulations/islands, local genetic operations and 

migration; 

• hybrid : combination of one model on the upper level 

and other model on the lower level (the speedup 

achieved in hybrid models is equal to product of 

level speedups). 

5.1 Migration Model of Parallel Genetic Algorithm 

 Migration models of PGAs consist of a finite number 

of disjoint subpopulations that evolve in parallel on their 

"islands" and only occasionally exchange genetic 

information under control of a migration operator. 

Migration models of PGAs consist of a finite number of 

subpopulations that evolve in parallel on their "islands" 

and exchange the genetic information under the control 

of a migration operator. Co-evolving subpopulations are 

built of individuals of the same type and are ruled by one 

adaptation function. The selection process is 

decentralized. 

 

 In our model the migration is performed on a 

regular basis. During the migration phase every island 

sends its representatives (emigrants) to all other islands 

and receives the representatives (immigrants) from all co-

-evolving subpopulations. This topology of migration 

reflects so called "pure" island model. The migration 

process is fully characterized by migration size, distance 

between populations and migration scheme. Migration 

size determines the emigrant fraction of each population. 

This parameter is limited by capacity of islands to accept 

immigrants. The distance between migrations determines 

 

procedure:  

genetic algorithm for subpopulation 

begin 

  iteration counter t = 0; 

  initialization of subpopulation Pt; 

  evaluation of Pt; 

  while (not termination condition) do  

    begin 

      parental population Tt = selection 

      from Pt; 

      offspring population Ot = crossover 

      and mutation on Tt; 

      evaluation of {Pt or Ot};  

      Pt+1 = selection from {P t or Ot};  

      if (migration condition) then 

        migration of representatives of 

        Pt+1 to all other subpopulations 

      t = t + 1; 

    end; 

end 

Fig. 8  Genetic algorithm for a subpopulation in the migration model. 

 

how often the migration phase of the algorithm occurs. 

Migration of best individuals is applied. 

 Genetic algorithm performed in parallel for each 

subpopulation is shown in Fig.8.  

 In our algorithm a specific model of migration is 

applied in which islands use two copies of genetic 

information: migrating individuals still remain members 

of their original subpopulation. In other words they 

receive new "membership" without losing the former one. 

Incoming individuals replace the chromosomes of host 

subpopulation at random. Then, a selection process is 

performed. The rationale behind such a model is as 

follows. Even if the best chromosomes of host 

subpopulation are eliminated they shall survive on other 

islands where their copies were sent. On the other hand 

any eliticist scheme or preselection applied to the 

replacement phase leads to premature elimination of 

worse individuals and lowers the overall diversity of 

subpopulation. 
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6. Experimental Verification 

 In our computer program GA_for_OSSP two basic 

models of the genetic algorithm are implemented: 

conventional GA and PGA in migration model. It is 

possible to set up most parameters of evolution, monitor 

evolution process and measure makespan, the number of 

generations and time of computations. The program 

generates detailed reports and basic statistics.  

 Computations were performed with the following 

parameters of GA determined in an initial series of 

experiments:  population_size = 300 ,  crossover = LOX, 

crossover_probability = 0.75, mutation = Swap with  

constant_mutation_probability = 0.3 or Swap/Inverse (in 

equal proportions) with variable mutation_probability 

defined by selection of three points p1=0.4, p2=0.2, 

p3=0.1 and position of p2 at exactly 500 iterations.  

In migration based PGA the following settings were made:  

number_of_islands = 3, with  population_size = 100 on  

every island, migration of best individual with 

migration_rate = 25. All experiments were repeated 10 or  

30 times with the  iteration_number = 500 or 1000. The  

initial experiments confirmed also that combination of 

LOX and SWAP operators is superior with respect to 

makespan [22]. 

  

 For computer experiments we used four large instances 

of OSSP with n=m= 25, 30, 40, 50 and random integer 

operation times selected at random from the integer range 

[1, …, 100] or [1, …, 500] with uniform probability 

(available from [27]).  The instation sizes were determined 

experimentally. They significantly excede the maximum 

size of benchmarks available for OSSP problem. 

Therefore, we do not report comparison of our hybrid 

algorithms to other methods known from the literature 

[5,17]. 

 

 In the first experiment the efficiency of 5 genetic 

algorithm configurations was compared for the problem 

size n=m=20 (25), operation times from the range  

[1, … , 100], population size 200 (300),  1000 iterations 

per experiment, 30-20 runs. The obtained results are 

presented in Table 1. 

 

Table 1: Hybrid GA for random Open-Shop Scheduling Problem, n=m=20,25. 

makespan no. iter. time [s] OSSP 

size 

heuristic mutation 

min max avg stddev avg avg 

none constant 1307 1333 1320.3 6.73 688.3 103.9 

LPT-Task constant 1249 1271 1255.7 5.33 475.0 109.3 

LPT-Task variable S-I 1249 1273 1256.7 5.17 373.8 82.1 

LPT-Machine constant 1248 (3/30) 1261 1253.1 3.42 325.6 75.2 

20 

LPT-Machine variable S-I 1248 (1/30) 1261 1254.0 3.53 456.7 99.4 

none constant 1610 1641 1623.5 9.08 709.7 426.9 

LPT-Task constant 1541 1554 1545.8 3.55 371.2 329.0 

LPT-Task variable S-I 1543 1554 1546.9 2.73 497.7 422.0 

LPT-Machine constant 1540 (6/20) 1551 1542.7 3.15 314.8 268.1 

25 

LPT-Machine variable S-I 1540 (8/20) 1548 1541.5 2.42 297.0 247.1 

Table 2: Hybrid parallel GA for random Open-Shop Scheduling Problem, n=m=20,25. 

makespan no. iter. time [s] OSSP 

size 

heuristic mutation 

min max avg stddev avg avg 

none constant 1295 1333 1320.9 14.71 668.3 105.5 

LPT-Task constant 1249 1267 1256.5 5.09 335.5 77.1 

LPT-Task variable S-I 1250 1267 1257.7 4.80 262.8 58.9 

LPT-Machine constant 1249 1266 1256.0 3.81 368.3 82.1 

20 

LPT-Machine variable S-I 1248 (2/30) 1267 1254.9 4.87 423.5 94.0 

none constant 1625 1659 1642.7 10.10 697.3 267.9 

LPT-Task constant 1543 1554 1548.5 3.14 403.4 232.7 

LPT-Task variable S-I 1541 1556 1546.4 3.79 404.4 338.1 

LPT-Machine constant 1540 (11/20) 1547 1541.5 2.48 412.0 348.9 

25 

LPT-Machine variable S-I 1540 (7/20) 1548 1541.7 2.43 244.3 200.9 
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 In the second experiment the efficiency of 5 parallel 

genetic algorithm configurations was compared for the 

problem size n=m=20 (25), operation times from the 

range [1, … , 100], population size 3×67 (3×100),  1000 

iterations per experiment, 30-20 runs. The obtained 

results are presented in Table 2. 

 In the third experiment the efficiency of algorithm 

configurations was compared for the problem size n = m 

= 30, 40, 50 and operation times from the range            

[1, … , 500], population size = 300 or 3×100, 1000 

iterations per experiment, 10 runs. The obtained results 

are presented in Table 3. 

 All computer experiments were performed on a HP 

Pavilion computer with Pentium 4 processor (3.06 GHz) 

and 1 GB RAM. 

 Analysis of the obtained results justify detailed several 

conclusions.  

 At first PGA is better then GA when no hybridization 

is provided. Two low level hybridization techniques 

LPT-Task and LPT-Machine improve efficiency of the 

results for both GA and PGA.  

 LPT-Machine heuristic outperforms LPT--Task in 

terms of minimal makespan, average makespan and 

standard deviation. In general LPT-Machine heuristic 

works better with conventional GA then with PGA. The 

parallelization of GA does not reveal any advantages in 

our experiments although PGA is very efficient for 

solving other hard problems like Graph Coloring 

Problem (GCP). 

 

 

Table 3: Hybrid GA for random Open-Shop Scheduling Problem, n=m=30,40,50. 

makespan no. iter. time [s] OSSP 

size 

heuristic mutation 

min max avg stddev avg avg 

constant 8802 8918 572.2 36.6 572.2 983.0 LPT-Machine 

variable S-I 8813 8871 691.8 18.8 691.8 1171.4 

constant 8861 8923 752.8 23.1 752.8 1335.8 

30 

LPT-Task 

 variable S-I 8842 8911 633.8 22.6 633.8 1102.9 

constant 12445(10/10) 12445 11.0 0.0 11.0 65.5 LPT-Machine 

variable S-I 12445(10/10) 12445 11.2 0.0 11.2 65.6 

constant 12445 (6/10) 12451 72.4 2.1 72.4 450.0 

40 

LPT-Task 

variable S-I 12445 (6/10) 12455 71.4 4.1 71.4 435.8 

constant 15280(10/10) 15345 22.2 0.0 22.2 427.1 LPT-Machine 

variable S-I 15280(10/10) 15364 20.4 0.0 20.4 325.0 

constant 15328 15370 71.2 13.5 71.2 1188.3 

50 

LPT-Task 

variable S-I 15328 15318 73.2 13.9 73.2 1184.6 

 

Table 4: Hybrid parallel GA for random Open-Shop Scheduling Problem, n=m=30,40,50. 

makespan no. iter. time [s] OSSP 

size 

heuristic mutation 

min max avg stddev avg avg 

constant 8800 (1/10) 8862 8830.7 18.9 676.1 1197.5 LPT-Machine 

variable S-I 8800 (2/10) 8867 8821.1 22.0 432.0 755.0 

constant 8851 8914 8883.8 22.3 674.6 1249.6 

30 

LPT-Task 

 variable S-I 8851 8909 8872.7 19.1 634.3 1145.6 

constant 12445(10/10) 12445 12445 0.0 11.2 66.9 LPT-Machine 

variable S-I 12445(10/10) 12445 12445 0.0 11.3 78.6 

constant 12445 (1/10) 12463 12451.4 5.9 73.8 456.4 

40 

LPT-Task 

variable S-I 12445 (5/10) 12454 12447.6 3.3 89.7 546.4 

constant 15280(10/10) 15280 15280 0.0 20.2 393.2 LPT-Machine 

variable S-I 15280(10/10) 15280 15280 0.0 23.2 369.7 

constant 15312 15345 15329.6 11.6 77.1 1282.9 

50 

LPT-Task 

variable S-I 15314 15364 15341.6 18.0 79.1 1328.3 
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In the last experiment the efficiency of 4 best algorithm 

configurations was compared for the problem size 

n=m=30, operation times from the range [1, …,500], 

population size = 300 or 3×100, 500 iterations per 

experiment, 10 runs. The obtained results are presented 

in Table 4. 

7. Conclusions 

 In the paper we proved by computer simulation that 

hybrid genetic algorithms with LPT-Machine heuristic 

can be efficiently used for the class of large OSSP 

problems. The results presented in this paper encourage 

further research in this area. One interesting possibility 

would be combination of the LPT-Machine heuristic with 

other efficient techniques proposed recently in hybrid 

algorithms for solving smaller but harder OSSP 

benchmarks by by Taillard [24], Guéret and Prins [25], 

Brücker [26] et al. The search for new representations, 

their decoding techniques as well as new hybrid 

metaheuristics for solving large OSSP instances still 

remains an open question.  
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