
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

136

Manuscript received September 5, 2007

Manuscript revised September 20, 2007

Hybrid Genetic Algorithms for the Open-Shop Scheduling Problem

Zbigniew Kokosiński and Łukasz Studzienny,

zk@pk.edu.pl
Department of Automatic Control, Cracow University of Technology,

ul.Warszawska 24, 31-155 Kraków, Poland

Summary
In this paper novel hybrid genetic algorithms for Open--Shop

Scheduling Problem (OSSP) are presented. Two greedy

heuristics LPT-Task and LPT-Machine are proposed for

decoding chromosomes represented by permutations with

repetitions. For comparison the standard permutation represen-

tation of OSSP instances is used. The algorithms apply also

efficient crossover operator LOX and mutation operators SWAP

and INVERT with constant and variable mutation probabilities.

We compare conventional GA to parallel genetic algorithm

(PGA) in a migration model. The performance of the algorithms

with various settings is verified by computer experiments on a set

of large random OSSP instances.

Key words:
Hybrid metaheuristic, parallel genetic algorithm, open-shop

scheduling, LPT heuristic

1. Introduction

 Given n jobs, every job composed of m operations to be

processed by m dedicated machines, and the processing

times required for all operations, the Open-Shop

Scheduling Problem (OSSP) is defined as a problem of

determining order of execution of a given set of non-

splitable job operations on dedicated machines providing

that each job is processed by at most one machine at any

given time, operations of the same job do not overlap and

the makespan of the obtained schedule is minimal.

 In opposition to many specific scheduling problems

(Job-Shop, Flow-Shop), where some additional

assumptions are applied in the OSSP problem no specific

assumption on operation order for the given job are made.

 OSSP belongs to the class of NP-hard combinatorial

optimizations problems. Collections of hard OSSP

instances were proposed by Taillard [23], Guéret and Prins

[25], Brücker [26].

 Summary of best results obtained by researchers

applying various metaheuristics and hybrid techniques are

available at [5,17]. Intensive research conducted in this

area resulted in a large number of exact and approximate

algorithms, heuristics and metaheuristics [5,6,8,10].

 Genetic algorithms (GA) are metaheuristics often used

for solving combinatorial problems [12-15] and scheduling

[6,16-21]. This approach is based on co-evolution of a

number of populations that exchange genetic information

during the evolution process according to a communication

pattern [2,3,4]. Recently a number of parallel versions of

GA for OSSP were studied [22].

 In this paper we present results of our research

concerning both sequential and parallel hybrid genetic

algorithms for the OSSP. Two greedy heuristics for

chromosome decoding are proposed: LPT-Task and LPT-

Machine, that are developed on the basis of the well known

Longest Processing Time (LPT) scheduling heuristic [7]. A

set of randomly generated problem instances is used.

 The obtained results can be helpful construction of new

hybrid GAs combining many techniques and providing a

better performance in solving OSSP.

 In the next section basic OSSP representations and their

decoding schemes are presented. Then, in section 3,

genetic operations are characterized. Hybridization of GA

by means of the two greedy heuristics used for decoding

chromosomes is introduced in section 4. In section 5

parallel models of GA are characterized. The main focus is

on the migration model of PGA. The experimental results

are presented and analyzed in section 6. The last section

contains conclusions resulting from the research.

2. Basic representations and decoding

schemes of OSSP instances

 OSSP schedules can be encoded in chromosomes

representing permutations or permutations with repetitions.

 The standard benchmark of the OSSP problem with n

jobs and m machines is specified by a integer table T[n,m],

n=m, where each Tij denotes jth operation of the ith job.

 In permutation representation all operations of all jobs

of the problem T are assigned ranks. No specific order is

assumed. A feasible schedule S is built out of elementary

operations in order of their ranks as they appear in n-

element input permutation vector X (see Fig.1).

Example 1

 Let n=m=3. An OSSP instance is given in the table

T={O1,1 , O1,2 , O1,3 , O2,1 , O2,2 , O2,3 , O3,1 , O3,2 , O3,3} =

={2, 3, 5, 1, 2, 4, 3, 5, 2}. A chomosome X1 is composed of

operations X1={O2,1 , O3,2 , O2,3 , O1,1 , O3,3 , O3,1 , O1,2 , O1,3,

O2,2} and does correspond to the input permutation

X=<4, 8, 6, 1, 9, 7, 2, 3, 5>.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

137

Fig. 1 An OSSP instance in the permutation representation.

The resulting schedule S1 is obtained from the sequence of

operations <X1[1], X1[2], ... , X1[9]>: S1={M1, M2, M3},

where: M1=<O2,1 , O1,1 , iddle=4, O3,1>, M2=<O3,2 , O1,1 , O2,2>

and M3=<iddle=1, O2,3 , O3,3 , iddle=1, O1,3>. Thus,

MS(M1)=10, MS(M2)=10 and MS(M3)=13.

Finally, MS(S1)=max(MS(M1), MS(M2), MS(M3))=13.

Another useful encoding scheme is permutation with

repetitions. In this case the nm-element vector contains n

job numbers, each number repeated exactly m times. Two

feasible schedules are built out of a sequence of all

elementary job operations, according to the sequence of

job (machine) numbers as they appear in the related

permutation vector xi (xj) - see Fig.2.

Fig. 2 An OSSP instance in the permutation with repetitions representation.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

138

Example 2

 Let n=m=3. An OSSP instance is given in the table

T={{O1,1 , O1,2 , O1,3 },{O2,1 , O2,2 , O2,3 },{O3,1, O3,2, O3,3}} =

{{2, 3, 5}, {1, 2, 4}, {3, 5, }}.

Chomosomes X2 and X3 in permutation with repetitions

representation are derived from a sequence of all job operations,

i.e. X={O2,1 , O3,2 , O2,3 , O 1,1 , O3,3 , O3,1, O1,2, O1,3 , O2,2} by

taking into account only one of the indices {i, j} of Oi,j , i.e.

x2=<2, 3, 2, 1, 3, 3, 1, 1, 2>, where indices of x1 are job

numbers in X.

X2=<O2,1 , O3,1 , O2,2 , O1,1 , O3,2 , O3,3 , O1,2 , O1,3 , O2,3>.

x3=<1, 2, 3, 1, 3, 1, 2, 3, 2>, where indices of x2 are machine

numbers in X.

X3=<O1,1 , O1,2 , O1,3 , O2,1 , O2,3 , O3,1 , O2,2 , O3,3 , O3,2}>.

 The resulting schedules S2 and S3 are obtained from the

sequence of operations <X2[1], X2[2], ... , X2[9]> and

<X3[1], X3[2], ... , X3[9]>, respectively.

 Hence, S2={M1, M2, M3}, where: M1=<O2,1 , O3,1 , O1,1>;

M2=<iddle=1, O2,2, iddle=1, O3,2, O1,2 > and

M3=<iddle=3 , O2,3 , iddle=2, O3,3 , iddle=1, O1,3>.

Thus, MS(M1)=6, MS(M2)=12 and MS(M3)=17.

Finally, MS(S2)=max(MS(M1), MS(M2), MS(M3))=17.

 Similarly, S3={M1, M2, M3}, where: M1=<O1,1 , O2,1 , O3,1>;

M2=<O2,2 , O1,2 , iddle=1, O3,2> and

M3=<O_{3,3}, iddle=3, O_{1,3}, O_{2,3}>.

Thus, MS(M1)=6, MS(M2)=11, MS(M3)=14.

Finally, MS(S3)=max(MS(M1), MS(M2), MS(M3))=14.

3. Genetic Operators for OSSP

 In this section we introduce a collection of genetic

crossover, mutation and selection operators that are used in

our GA.

3.1 LOX Crossover

 Linear Order Crossover (LOX) can be used for both

OSSP representations presented is section 2 (see Fig.3).

procedure: LOX (X1, X2, X3)

begin

 select at random two points dividing X1

 and X2 into 3 subsequences;

 copy the middle subsequence of operations

 from X1 to X3 and delete these operations

 from X2;

 copy the remaining operations of X2 to

 free positions of X3 starting from the

 left and preserving their order in X2;

 output X3;

end

Fig.3. The LOX operator for OSSP.

3.2 Mutation operators

 Two basic mutation operators are used : Swap

(transposition) and Invertion. In Swap mutation positions

of the two randomly selected job operations are mutually

exchanged.

 Inversion mutation is a classical type of mutation that

reverse order of the operation subsequence between two

randomly selected job operations in the vector

representation. The mutation appears in two modes : with

constant mutation probability and with variable mutation

probability. The last one is defined by selection of three

points p1, p2, and p3, where p1 - start probability related

to the first iteration, p3 - end probability related to the last

iteration, and p2 - middle probability related to a selected

iteration between p1 and p2 ([p1,p2] subrange is given as a

fraction of the range [p1,p3] in %). Within subranges

[p1,p2] and [p2,p3] the mutation probabilities are changing

linearly.

3.3 Cost Function and Selection Operator

 In our GAs the classical 2-element Tournament

Selection scheme is applied together with eliticist policy.

The quality of a solution is measured by the cost function

equal to the makespan of the resulting schedule S. The

makespan can be determined according to the chosen

decoding method as described in section 4.

4. Hybridization techniques

 A hybrid genetic algorithm can be obtained when GA

metaheuristic is combined with another heuristic method.

Two novel greedy heuristics are proposed in this paper for

decoding the input chromosome X[nm] in the permutation

with repetitions representation.

 Both heuristics LPT-Task and LPT-Machine are

developed on the basis of the Longest Processing Time

(LPT) scheduling heuristic proposed by Graham [7]. LPT

heuristic was intended for off-line scheduling of tasks in

multi-processor systems.

 The LPT procedure can be sketched as follows: at any

time a processor becomes available for processing

schedule an available task with the longest processing

time. The method was then generalized for on-line

scheduling. LPT was also used for solving some instances

of shop scheduling problems [11].

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

139

Fig. 5 LPT--Task decoding scheme for the OSSP chromosome

 The LPT-Task heuristic is applied in an instance of

OSSP problem to operation times for the given job

providing that the sequence of job numbers is taken into

account (see Fig.4).

procedure: LPT-Task (T, X, S)

begin

 scan the chromosome X from the position

 ind:=1 to nm;

 read job index i of the operation Oi,j

 on the position ind;

 choose the next unscheduled operation of

 the job i with maximum processing time

 Ti,k;

 scan the schedule S for the machine k and

 put the operation Oi,k in the first

 feasible place from the left;

 mark the operation Oi,k as scheduled;

end

Fig. 4 LPT--Task heuristic.

 An application of the LPT-Task heuristic is shown in

Fig.5.

Example 3

Let n=m=3. An OSSP instance is given in the table

T={{O1,1, O1,2, O1,3},{O2,1, O2,2, O2,3}, {O3,1, O3,2, O3,3}}=

={{2, 3, 5}, {1, 2, 4}, {3, 5, 2}}.

The chomosome X4 in permutation with repetitions

representation is derived from a sequence of all job operations,

i.e. X=<O2,1 , O3,2 , O2,3 , O1,1 , O3,3 , O3,1 , O1,2 , O1,3 , O2,2>

by taking into account only one of the indices of Oi,j , i.e.

xi=<2, 3, 2, 1, 3, 3, 1, 1, 2>, where elements of xi are job

numbers in X, as well as the LPT order of operations in each job.

Thus, X4=<O2,3 , O3,2 , O2,2 , O1,3 , O3,1 , O3,3 , O1,2 , O1,1 , O2,1>.

The resulting schedule S4 is obtained from the sequence of

operations <X4[1], X4[2], ... , X4[9]> :

S4={M1, M2, M3}, where: M1=<O1,1 , 2, O2,1 , O3,1}>,

M2=<O3,2 , O2,2 , 2, O1,2> and M3=<O2,3 , O1,3 , O3,3}>.

Thus, MS(M1)=8, MS(M2)=12, MS(M3)=11.

Finally, MS(S)= max (MS(M1), MS(M2), MS(M3))=12.

The LPT-Machine heuristic is applied to operation times

for the given machine providing that the sequence of

machine numbers is considered (see Fig.6).

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

140

Fig. 7 LPT-Machine decoding scheme for the OSSP chromosome.

procedure: LPT-Machine (T, X, S)

begin

 scan the chromosome X from the position

 ind:=1 to nm;

 read machine index j of the operation

 Oi,j on the position ind;

 choose the next unscheduled operation of

 the job k with maximum processing time

 Tk,j;

 scan the schedule for the machine j and

 put the operation Ok,j in the first

 feasible place from the left;

 mark the operation Ok,j as scheduled;

end

Fig. 6 LPT--Machine heuristic.

An application of the LPT-Machine heuristic is shown in

Fig.7.

Example 4
Let n=m=3. An OSSP instance is given in the table

T={{O1,1 , O1,2 , O1,3}}, {O2,1 , O2,2 , O2,3}, {O3,1 , O3,2 ,

O3,3}}= ={{2, 3, 5}, {1, 2, 4}, {3, 5, 2}}.

The chomosomes X4 in permutation with repetitions

representation is derived from a sequence of all job operations,

X=<O2,1 , O3,2 , O2,3 , O1,1 , O3,3 , O3,1 , O1,2 , O1,3 , O2,2> by

taking into account only one index of Oi,j , i.e.

xj=<1, 2, 3, 1, 3, 1, 2, 3, 2>, where indices of xj are machine

numbers in X, as well as the LPT order of ith operations on

each machine.

Thus, X5=<O3,1 , O3,2 , O1,3 , O 1,1 , O2,3 , O2,1 , O1,2 , O3,3 ,

O2,2>.

The resulting schedule S5 is obtained from the sequence of

operations <X5[1], X5[2], ... , X5[9]> : S5={M1, M2, M3},

where: M1=<O3,1 , O2,1 , 1, O1,1>, M2=<O2,2 , 1, O3,2 , O1,2>

and

M3=<O1,3 , O2,3 , O3,3>. Thus, MS(M1)=7, MS(M2)=11 and

MS(M3)=11. Finally, MS(S5)= max (MS(M1), MS(M2),

MS(M3))=11. The obtained makespan is optimal.

5. Models of Parallel Genetic Algorithms

 There are many models of parallelism in evolutionary

algorithms: master-slave PGA, migration based PGA,

diffusion based PGA, PGA with overlapping

subpopulations, population learning algorithm, hybrid

models etc.

 The above models are characterized by the following

criteria:

• number of populations : one, many;

• population types : disjoint, overlapping;

• population topologies : various graph models;

• interaction model : isolation, migration, diffusion;

• recombination, evaluation of individuals, selection :

distributed/local, centralized/global;

• synchronization on iteration level:

synchronous/asynchronous algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

141

The most common models of PGA are:

• master-slave : one global population, global genetic

operations, fitness functions computed by slave

processors);

• massively parallel (cellular): static overlapping

subpopulations with a local structure, local genetic

operations and evaluation;

• migration (with island as a submodel): static disjoint

subpopulations/islands, local genetic operations and

migration;

• hybrid : combination of one model on the upper level

and other model on the lower level (the speedup

achieved in hybrid models is equal to product of

level speedups).

5.1 Migration Model of Parallel Genetic Algorithm

 Migration models of PGAs consist of a finite number

of disjoint subpopulations that evolve in parallel on their

"islands" and only occasionally exchange genetic

information under control of a migration operator.

Migration models of PGAs consist of a finite number of

subpopulations that evolve in parallel on their "islands"

and exchange the genetic information under the control

of a migration operator. Co-evolving subpopulations are

built of individuals of the same type and are ruled by one

adaptation function. The selection process is

decentralized.

 In our model the migration is performed on a

regular basis. During the migration phase every island

sends its representatives (emigrants) to all other islands

and receives the representatives (immigrants) from all co-

-evolving subpopulations. This topology of migration

reflects so called "pure" island model. The migration

process is fully characterized by migration size, distance

between populations and migration scheme. Migration

size determines the emigrant fraction of each population.

This parameter is limited by capacity of islands to accept

immigrants. The distance between migrations determines

procedure:

genetic algorithm for subpopulation

begin

 iteration counter t = 0;

 initialization of subpopulation Pt;

 evaluation of Pt;

 while (not termination condition) do

 begin

 parental population Tt = selection

 from Pt;

 offspring population Ot = crossover

 and mutation on Tt;

 evaluation of {Pt or Ot};

 Pt+1 = selection from {P t or Ot};

 if (migration condition) then

 migration of representatives of

 Pt+1 to all other subpopulations

 t = t + 1;

 end;

end

Fig. 8 Genetic algorithm for a subpopulation in the migration model.

how often the migration phase of the algorithm occurs.

Migration of best individuals is applied.

 Genetic algorithm performed in parallel for each

subpopulation is shown in Fig.8.

 In our algorithm a specific model of migration is

applied in which islands use two copies of genetic

information: migrating individuals still remain members

of their original subpopulation. In other words they

receive new "membership" without losing the former one.

Incoming individuals replace the chromosomes of host

subpopulation at random. Then, a selection process is

performed. The rationale behind such a model is as

follows. Even if the best chromosomes of host

subpopulation are eliminated they shall survive on other

islands where their copies were sent. On the other hand

any eliticist scheme or preselection applied to the

replacement phase leads to premature elimination of

worse individuals and lowers the overall diversity of

subpopulation.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

142

6. Experimental Verification

 In our computer program GA_for_OSSP two basic

models of the genetic algorithm are implemented:

conventional GA and PGA in migration model. It is

possible to set up most parameters of evolution, monitor

evolution process and measure makespan, the number of

generations and time of computations. The program

generates detailed reports and basic statistics.

 Computations were performed with the following

parameters of GA determined in an initial series of

experiments: population_size = 300 , crossover = LOX,

crossover_probability = 0.75, mutation = Swap with

constant_mutation_probability = 0.3 or Swap/Inverse (in

equal proportions) with variable mutation_probability

defined by selection of three points p1=0.4, p2=0.2,

p3=0.1 and position of p2 at exactly 500 iterations.

In migration based PGA the following settings were made:

number_of_islands = 3, with population_size = 100 on

every island, migration of best individual with

migration_rate = 25. All experiments were repeated 10 or

30 times with the iteration_number = 500 or 1000. The

initial experiments confirmed also that combination of

LOX and SWAP operators is superior with respect to

makespan [22].

 For computer experiments we used four large instances

of OSSP with n=m= 25, 30, 40, 50 and random integer

operation times selected at random from the integer range

[1, …, 100] or [1, …, 500] with uniform probability

(available from [27]). The instation sizes were determined

experimentally. They significantly excede the maximum

size of benchmarks available for OSSP problem.

Therefore, we do not report comparison of our hybrid

algorithms to other methods known from the literature

[5,17].

 In the first experiment the efficiency of 5 genetic

algorithm configurations was compared for the problem

size n=m=20 (25), operation times from the range

[1, … , 100], population size 200 (300), 1000 iterations

per experiment, 30-20 runs. The obtained results are

presented in Table 1.

Table 1: Hybrid GA for random Open-Shop Scheduling Problem, n=m=20,25.

makespan no. iter. time [s] OSSP

size

heuristic mutation

min max avg stddev avg avg

none constant 1307 1333 1320.3 6.73 688.3 103.9

LPT-Task constant 1249 1271 1255.7 5.33 475.0 109.3

LPT-Task variable S-I 1249 1273 1256.7 5.17 373.8 82.1

LPT-Machine constant 1248 (3/30) 1261 1253.1 3.42 325.6 75.2

20

LPT-Machine variable S-I 1248 (1/30) 1261 1254.0 3.53 456.7 99.4

none constant 1610 1641 1623.5 9.08 709.7 426.9

LPT-Task constant 1541 1554 1545.8 3.55 371.2 329.0

LPT-Task variable S-I 1543 1554 1546.9 2.73 497.7 422.0

LPT-Machine constant 1540 (6/20) 1551 1542.7 3.15 314.8 268.1

25

LPT-Machine variable S-I 1540 (8/20) 1548 1541.5 2.42 297.0 247.1

Table 2: Hybrid parallel GA for random Open-Shop Scheduling Problem, n=m=20,25.

makespan no. iter. time [s] OSSP

size

heuristic mutation

min max avg stddev avg avg

none constant 1295 1333 1320.9 14.71 668.3 105.5

LPT-Task constant 1249 1267 1256.5 5.09 335.5 77.1

LPT-Task variable S-I 1250 1267 1257.7 4.80 262.8 58.9

LPT-Machine constant 1249 1266 1256.0 3.81 368.3 82.1

20

LPT-Machine variable S-I 1248 (2/30) 1267 1254.9 4.87 423.5 94.0

none constant 1625 1659 1642.7 10.10 697.3 267.9

LPT-Task constant 1543 1554 1548.5 3.14 403.4 232.7

LPT-Task variable S-I 1541 1556 1546.4 3.79 404.4 338.1

LPT-Machine constant 1540 (11/20) 1547 1541.5 2.48 412.0 348.9

25

LPT-Machine variable S-I 1540 (7/20) 1548 1541.7 2.43 244.3 200.9

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

143

 In the second experiment the efficiency of 5 parallel

genetic algorithm configurations was compared for the

problem size n=m=20 (25), operation times from the

range [1, … , 100], population size 3×67 (3×100), 1000

iterations per experiment, 30-20 runs. The obtained

results are presented in Table 2.

 In the third experiment the efficiency of algorithm

configurations was compared for the problem size n = m

= 30, 40, 50 and operation times from the range

[1, … , 500], population size = 300 or 3×100, 1000

iterations per experiment, 10 runs. The obtained results

are presented in Table 3.

 All computer experiments were performed on a HP

Pavilion computer with Pentium 4 processor (3.06 GHz)

and 1 GB RAM.

 Analysis of the obtained results justify detailed several

conclusions.

 At first PGA is better then GA when no hybridization

is provided. Two low level hybridization techniques

LPT-Task and LPT-Machine improve efficiency of the

results for both GA and PGA.

 LPT-Machine heuristic outperforms LPT--Task in

terms of minimal makespan, average makespan and

standard deviation. In general LPT-Machine heuristic

works better with conventional GA then with PGA. The

parallelization of GA does not reveal any advantages in

our experiments although PGA is very efficient for

solving other hard problems like Graph Coloring

Problem (GCP).

Table 3: Hybrid GA for random Open-Shop Scheduling Problem, n=m=30,40,50.

makespan no. iter. time [s] OSSP

size

heuristic mutation

min max avg stddev avg avg

constant 8802 8918 572.2 36.6 572.2 983.0 LPT-Machine

variable S-I 8813 8871 691.8 18.8 691.8 1171.4

constant 8861 8923 752.8 23.1 752.8 1335.8

30

LPT-Task

 variable S-I 8842 8911 633.8 22.6 633.8 1102.9

constant 12445(10/10) 12445 11.0 0.0 11.0 65.5 LPT-Machine

variable S-I 12445(10/10) 12445 11.2 0.0 11.2 65.6

constant 12445 (6/10) 12451 72.4 2.1 72.4 450.0

40

LPT-Task

variable S-I 12445 (6/10) 12455 71.4 4.1 71.4 435.8

constant 15280(10/10) 15345 22.2 0.0 22.2 427.1 LPT-Machine

variable S-I 15280(10/10) 15364 20.4 0.0 20.4 325.0

constant 15328 15370 71.2 13.5 71.2 1188.3

50

LPT-Task

variable S-I 15328 15318 73.2 13.9 73.2 1184.6

Table 4: Hybrid parallel GA for random Open-Shop Scheduling Problem, n=m=30,40,50.

makespan no. iter. time [s] OSSP

size

heuristic mutation

min max avg stddev avg avg

constant 8800 (1/10) 8862 8830.7 18.9 676.1 1197.5 LPT-Machine

variable S-I 8800 (2/10) 8867 8821.1 22.0 432.0 755.0

constant 8851 8914 8883.8 22.3 674.6 1249.6

30

LPT-Task

 variable S-I 8851 8909 8872.7 19.1 634.3 1145.6

constant 12445(10/10) 12445 12445 0.0 11.2 66.9 LPT-Machine

variable S-I 12445(10/10) 12445 12445 0.0 11.3 78.6

constant 12445 (1/10) 12463 12451.4 5.9 73.8 456.4

40

LPT-Task

variable S-I 12445 (5/10) 12454 12447.6 3.3 89.7 546.4

constant 15280(10/10) 15280 15280 0.0 20.2 393.2 LPT-Machine

variable S-I 15280(10/10) 15280 15280 0.0 23.2 369.7

constant 15312 15345 15329.6 11.6 77.1 1282.9

50

LPT-Task

variable S-I 15314 15364 15341.6 18.0 79.1 1328.3

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

144

In the last experiment the efficiency of 4 best algorithm

configurations was compared for the problem size

n=m=30, operation times from the range [1, …,500],

population size = 300 or 3×100, 500 iterations per

experiment, 10 runs. The obtained results are presented

in Table 4.

7. Conclusions

 In the paper we proved by computer simulation that

hybrid genetic algorithms with LPT-Machine heuristic

can be efficiently used for the class of large OSSP

problems. The results presented in this paper encourage

further research in this area. One interesting possibility

would be combination of the LPT-Machine heuristic with

other efficient techniques proposed recently in hybrid

algorithms for solving smaller but harder OSSP

benchmarks by by Taillard [24], Guéret and Prins [25],

Brücker [26] et al. The search for new representations,

their decoding techniques as well as new hybrid

metaheuristics for solving large OSSP instances still

remains an open question.

Acknowledgments

 This work was supported in part by the research

grant No. E-3/112/BW/07 from Cracow University

Technology.

References

[1] Alba E. (Ed.): Parallel Metaheuristics. A new class of

algorithms, John Wiley & Sons, New York (2005)

[2] [Alba E., Tomasini M.: Parallelism and evolutionary

algorithms, IEEE Trans. Evol. Comput. Vol.6 (2002)

No.5, 443-462

[3] Bäck T.: Evolutionary algorithms in theory and practice,

Oxford U. Press (1996)

[4] Cantú-Paz, E.: Efficient and accurate parallel genetic

algorithms, Kluwer (2000)

[5] Colak S., Agarwal A.: Non-gready heuristics and

augmented neural networks for the open shop scheduling

problem, Naval Research Logistics 52(2005) 631-644

[6] Feng H-L., Ross P., Corne D.: A promising genetic

algorithm approach to job-shop scheduling, rescheduling

and open shop scheduling problems, Proc. Fifth Int. Conf.

on Genetic Algorithms, Morgan Kaufmann (1993) 375-

382

[7] Graham R.L.: Bounds on multiprocessing timing

anomalies, SIAM Journal on Applied Mathematics 17

(1969) 416-429

[8] Guéret C., Jussien N.: Combining AI/OR techniques for

solving Open Shop problems, CP--AI--OR'99 (1999) 25-

26

[9] Guéret C., Prins C.: A new lower bound for the Open--

Shop problem, Annals of Operations Research 92 (1999)

165-183

[10] Guéret C., Prins C.: Forbidden intervals for open--shop

problems, 15th IFORS'99 (1999)

[11] Hong T.-P., Huang P.-Y., Horng G.: Using the LPT and

Palmer approaches to solve group flexible flow-shop

problems, Int. J. Computer Science and Network Security

6 (2006) 98-104

[12] Kokosiński Z., Kołodziej M., Kwarciany K.: Parallel

genetic algorithm for graph coloring problem, Proc.

ICCS'2004, LNCS 3036 (2004) 215-222

[13] Kokosiński, Z., Kwarciany, K., Kołodziej, M.: Efficient

graph coloring with parallel genetic algorithms,

Computing and Informatics 24 (2005) 109-121

[14] Kokosiński, Z.: Effects of versatile crossover and mutation

operators on evolutionary search in partition and

permutation problems, Proc. IIS:IIPWM’05, [in:]

Advances in Soft Computing , Springer (2005) 299-308.

[15] Kokosiński Z., Kwarciany K.: On sum coloring of graphs

with parallel genetic algorithms, Proc. ICANNGA'2007,

LNCS 4431 (2007) 211-219

[16] Khuri S., Miryala S.R.: Genetic algorithms for solving

open shop scheduling problem, Proc. EPIA'1999, LNCS

1695 (1999) 357-368

[17] Liaw C-F.: A hybrid genetic algorithm for the open shop

scheduling problem, European Journal of Operational

Research 124 (2000) 28-42

[18] Louis S.J., Xu Z.: Genetic algorithms for open shop

scheduling and re--scheduling, 11th ISCA'96 (1996) 99-

102

[19] van Otterloo S.: Evolutionary algorithms and scheduling

problems, M.S, thesis, University of Utrecht (2002)

[20] Prins C.: Competitive genetic algorithm for the open--

shop scheduling problem, Mathematical Methods of

Operations Research 52 (2000) 389-411

[21] Puente J., Diez H.R., Varela R., Vela C.R., Hidalgo L.P.:

Heuristic rules and genetic algorithms for open shop

scheduling problem, Proc. CAEPIA'2003, LNCS 3040

(2004) 394-403

[22] Studzienny Ł.: Parallel evolutionary algorithm for solving

open-shop scheduling problem, M.S. Thesis, Faculty of

Electrical and Computer Eng., Cracow University of

Technology (2005)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

145

[23] Taillard E.: Benchmarks for basic scheduling problems,

European Journal of Operational Research 64 (1993)

278-285

[24]

http://ina2.eivd.ch/Collaborateurs/etd/default.htm

[25]

http://www.emn.fr/x-uto/gueret/OpenShop/OpenShop.html

[26]

http://mathematic.uni-

osnabueck.de/research/OR/software.shtml

[27]

http://www.pk.edu.pl/~zk/OSSP/ossp-random-instances.zip

Zbigniew Kokosiński received his M.S. degree in 1982

from Cracow University of Technology, Kraków, Poland. In

1992 he received Ph.D. degree with distinction in Computer

Science from the Gdańsk University of Technology, Gdańsk,

Poland. In 1994-1997 he was employed as an Assistant

Professor at the Department of Computer Software, University

of Aizu, Aizu-Wakamatsu, Japan. Currently, dr. Kokosiński is

an Assistant Professor at the Dept. of Automatic Control,

Faculty of Electrical and Computer Engineering, Cracow

University of Technology, Kraków. His research is focused on

combinatorial optimization and parallel metaheuristics,

generation of combinatorial objects in parallel, associative

processors and algorithms, programmable devices and systems.

The publications include over 30 refered papers in international

scientific journals and conference proceedings. In the past years

he was a member of ACM, IEEE Computer Society and

IASTED.

Łukasz Studzienny graduated from Cracow University of

Technology (Politechnika Krakowska), Kraków, Poland in

2005, where he received M.Sc. degree in electrical engineering.

Currently he works as a software engineer in IBM Poland,

Kraków. His professional interests include computer

programming, combinatorial optimization, artifficial

intelligence and automatic control.

