
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

157

Manuscript received September 5, 2007

Manuscript revised September 20, 2007

Research on Embedded Java Virtual Machine and its Porting

Jun QIN, Qiaomin LIN, Xiujin WANG

College of Media Communications Technology,
Nanjing University of Posts and Telecommunications, P.R.China

Summary
Embedded Java Virtual Machine has seen wide
applications with the fast development of embedded field.
More and more embedded platforms choose the KVM
porting to support Java Virtual Machine. This paper
proposes a set of general methods for the KVM porting on
the basis of analyzing the platform demands, source code
organizing structure and main technical issues. According
to the above methods, we have ported KVM onto the
platforms like Windows and Linux successfully.
Key words:
Embedded, JAVA Virtual Machine, KVM, Porting

1. Introduction

The computing environment based on network of smart
devices and computers not only provides a new platform
for software but also brings on challenges on software
development. Java technology which is just designed for
the network computing environment has such virtues as

platform-independence, network mobility and security
[1]

.
It is suitable for software development in the embedded
field. J2ME from SUN Company is an embedded system
and helpful for developing embedded applications.
Therefore the research on the core of java technology—
virtual machine including its structure, operation
mechanism and porting technology takes on the academic
and application values significantly.

KVM (K Virtual Machine) is the J2ME’s core and the
execution engine. It is mainly used for small and
resources-restricted devices like cellular phone, beep
pager, PDA and etc. KVM is the smallest Java Virtual
Machine which size is only dozens of KB during
operation, while it has the full java features and can be
easily ported to the other platforms. KVM porting has few
requirements of the platform. Besides KVM
implementation is characterized by modularization.

This paper proposes a set of general KVM porting
methods after analyzing platform requirement, source
code organizing structure and major technical issues. By
using these methods we have successfully ported KVM
onto the platforms like Windows and Linux.

2. Analysis of SUN KVM Implementation

A feature of java technology is that its external behavior is
definitely regulated by the specification, but how to
implement the defined external behavior is not

illuminated in the specification
[2][3]

. This feature offers
possibility for people to implement it, but there is also
difficulty in the implement process.

There are two approaches to implement the Java Virtual
Machine. One is to start from scratch, design and
implement according to the specification. Another is to
port the implementation onto new target platform. For
any approach, SUN reference implementation is always a
good reference. In fact the most of J2ME porting are
based on SUN reference implementation because of its

being the open-source
[4]

.

2.1 Program Execution Flow within KVM

Within J2ME program flow starts from java source code
(.java files). Platform-independent java bytecode files are
generated with compiling of java source files. The validity
of the bytecode files is verified through an outer tester.
After testing the bytecode will be executed within KVM.
The program execution Flow within KVM is as figure 2-1.

Fig. 2-1 Code Execution Flow

2.2 KVM Modularization

KVM is designed in five major modules such as class
loader module, bytecode execution module, thread
deploying module, memory management and garbage
collecting module and class verifying module. The
connections between these modules are as figure 2-2.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

158

Fig. 2-2 Modules of KVM Implementation

The main usage of Class Loader Module is to load and
link class files. In others words binary class files are
interpreted and loaded into run-time data structure.
Meanwhile all super classes and its interfaces are loaded
and linked. There are four phases for class loading. In
different phases the class is in the different states. These
states can be CLASS_RAW， CLASS_LOADING，

CLASS_LOADED and CLASS_LINKED。

In CLDC1.04 two structures are defined in KVM source
code VmCommon/h/class.h. They are the inner run-time
representation of the class in KVM implementation.
Figure 2-3 shows the relation between instanceClassStruct
and classStruct.

ofClass

classStruct

instanceClassStruct

ofClass

classStruct

instanceClassStruct

...

Fig. 2-3 Relation between instanceClassStruct and classStruct

When a piece of memory is assigned to contain
instanceClassStruct and initiated as 0 by KVM, the class
is in CLASS_RAW state. When the contents of the class
are read by KVM, the class is in CLASS_LOADING state.
After reading the class state is refreshed as CLASS-
_LOADED. At this time the information needed by
execution is not been fully understood such as those
interfaces and their contents. So some necessary
computations should be carried out to fetch other state
informations. After getting these informations the class
state will be refreshed as CLASS_LINGKED by KVM.
The states conversion is showed in figure 2-4.

Fig. 2-4 Class State Switching

The main task of the class verifying module is to verify
that loaded classes are provided with the right inner
structure and harmonize with each other. The exceptions
will occur if some errors are found in the checking phase
by class verifier module. The main target of the
implementation of class verifier module is to guarantee
the programs robustness.

There are two steps for class verifying in KVM. The first
step takes place by class outer verifier before class files
are loaded into memory. Generally the extra attributes
will be added to the classes to represent these classes that
have passed the outer checking. The second step is carried
out by inner verifier during execution. After the classes
being loaded into memory the inner verifier in KVM
implementation will start continued checking according to
run-time informations and messages added by outer
verifier. It’s to make sure that class files are not tampered
after passing through outer verifier checking.

The bytecode execution module is used mostly for java
bytecode execution. The core of this module is an
interpreter, which ceaselessly executes the bytecodes
pointed out by program counter in the memory.

The advantages of this implementation are provided with
the simplicity, reliability and readability as well. After
satisfing the criterion this implementation uses the simple
approach to realize the bytecodes execution.

The memory management and garbage-collecting module
charge the allotting and releasing of memory. Due to
memory limitation of the Java Virtual Machine the
implementation approach of this module has the great
influence on the performance of the whole virtual
machine. One of the important tasks in this module is to
reclaim garbage memory. Especially the whole virtual
machine’s performance can be better by the improvement
of the garbage reclamation algorism. The location of the
memory management system in the architecture of the
virtual machine is showed in figure 2-5.

Fig. 2-5 Inner Architecture of Java Virtual Machine

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

159

The thread deployer module is used for the
implementation of a platform-independent, portable and
snatching thread deploying model. This model is designed
as multi-threaded using java and supports the
asynchronous I/O. The thread deploying module of KVM
is aimed to be platform- independent, portable and
snatching. This thread mechanism is implemented
through a run-time data structure threadQueue, which is
used in KVM, and utilizes the circular chain link to
organize all the different threads in the virtual machine.

The basic thread operations include constructing thread,
startup thread, suspending thread, restoring thread,
destroying thread and switching threads. KVM
Implementations of these basic operations are located in
VmComm/src/Thread.c. Figure2-6 describes the states
switching of the threads.

In figure 2-6 the function BuildThread() is used for
creating a VM-layered thread. The function
DismantleThread() is used to release a thread. The
function startThread() is used for starting a thread. The
function stopThread() is used for stopping a thread and
release the occupied resources. The function
suspendThread() is used for suspending thread. The
function resumeThread() is used for resuming thread. The
function addThreadToQueue() and removeFromQueue()
are used for adding or deleting specified thread to or from
the queue respectively. The SwitchThread() is to switch
the current thread to the next one.

THREAD_JUST_BO RN

THREAD_ACTIVETHREAD_SUSPENDED

THREAD_DEAD

Bui l dThread()

Start Thread()

S
to
pT
hr
ea
d(
)

StopThread()

SuspendThread()

ResumeThread()
SwitchThread()

Fig. 2-6 The State Switching of Java Threads

According to the analysis of the aforementioned modules
KVM implementation has the followed important features.

(1) The platform-independence and portability is the most
important goal of this implementation. All the modules
adopt general resolutions to meet the succinctness. But the
bad performance is the serious drawback.

(2) The implementation is modularized and all the
functions are independent and complete. Then the
framework and module function are easy to understand.
Meanwhile it offers great convenience for the module

optimization. For example, the performance of the whole
virtual machine can be improved by modifying the models
of interpreter or garbage-collector and this modification
will not cause few influence on other modules.

(3) In this implementation all codes are partitioned in the
platform-dependent and platform-independent. But it
causes the other problem that the optimization of the
whole design can not be easy resolved after the porting.

3. Key techniques of KVM Porting

SUN reference implementation has few extra demands on
target platform since it is designed and realizes as
platform-independent. In fact KVM porting should
focuses on C compiler on target platform according to
reference [5]. For KVM porting we must distinguish the
platform-dependence code and the platform-independence
code. The key research should aim to the platform-
dependence code.

3.1 Directory of KVM Implementation

Via the Decompress of the distribution package in SUN
reference implementation, we can get a directory named
j2me_cldc. This directory includes all CLDC related
codes and a subdirectory in SUN reference
implementation. The content of the subdirectory shows as
table 3-1.

The KVM directory includes the source codes of KVM
implementation. The VmCommon subdirectory is
composed of the head files and the implementation files
which are designed as platform-independent code.
Therefore these files within the subdirectory need not
modification in most cases.

Table 3-1 J2ME_CLDC Subdirectory and its Contents
Subdirectory Name Description

api including source code of java library of
the version

bin including all binary executable files and
compiled java class library

build including makefile to compile the
reference implementation

doc including some explanative documents
jam including optional source code of java

application manager（ JAM） supported
by JVM

kvm including source code of KVM
implementation

tools including source code of needed tools
（JCC、Previrifier etc.）

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

160

3.2 Porting Files and Porting Functions

All porting of KVM should offer the file
VmPort/h/machine_md.h. This file function is to override
the compiling definitions and declarations including those
particular declarations needed by target platform. These
particular declarations, function prototypes, typedef
statements, #include statements and #define statements
must be defined directly in this file or other files that can
be included in the target platform. There are the fourteen
functions like void AlertUser (const char *message) that
must be defined on any porting platform. Generally C
codes are placed in the file VmPort/src/runtime_md.c.

In the porting process KVM needs the special C library
functions such as character string manipulation functions,
memory operation functions, print functions, random
digits creatation functions and exception process functions.
If the porting platform does not offer these functions, you
should define them by yourself or map those identical
functions in porting platform to the above functions by
using macro.

3.3 KVM Compiling Switch Option

Many features of KVM implementation are set as switch
by using macro definition during compilation. It is very
convenient to choose to or not to support any feature in
the process of KVM porting by switch on or off these
switches according to characteristics of target platform.
Therefore the meanings of these compiling switches or
options should be understood completely before the
porting. Then we can decide whether to support these
features or not. The reference [6] gives the detailed
explanations on these switches or options.

3.4 General KVM Porting Scheme

The main steps of KVM porting are as follows.

(1) Identify the necessity and capability of target platform
for porting. The necessity means whether the target
platform needs J2ME technology or not. The capability
means whether the platform meet the requirements for
KVM porting or not.

(2) Understand the code structure. It should be made
clearly that which part can be used without any
modification and which part need be implemented for the
target platform.

(3) Begin to port. The porting sequence is generally from
bottom layer to higher layer. So the first part to be ported

is CLDC. The switches and options should be carefully
checked according to target platform during the CLDC
porting, so as to control many platform-related features.

(4) After CLDC is ported successfully, then MIDP and
Optional Packages can be ported continued.

(5) In the end, the strict professional testing (like TCK,
JDTS and etc.) should be carried out to guarantee the
robustness and correctness of the porting.

4. KVM Porting on Windows and Linux

Generally speaking embedded Java Virtual Machine is not
an absolute operating system. It is just an application
program based on target platform. On its bottom-layer
there are the target platform hardware and operating
system. On its top-layer there are all kinds of java
applications. Owing to KVM isolation between the java
applications and the lower part (hardware and operating
system), it is possible to realize platform-independence.
The structure of embedded Java Virtual Machine is
showed as figure 4-1.

Fig. 4-1 Structure of Embedded Java Virtual Machine

Since Windows and Linux are targeted in desktop and
server domain, the research on KVM porting for these
platforms is valuable. In fact these platforms have wide
applications and extensions such as WinCE, embedded
Linux, which makes it a good reference for other system
porting.

According to the general porting methods, it is easy to
port SUN reference implementation to Windows and
Linux. Now that the implementation is for reference,
those platform-dependent and platform-independent codes
have been divided separately in the organization of source
codes. The CLDC and upper MIDP have been divided and
realized in the local codes. The task required in the
porting process is to set environment variables and

 JAVA Application

Embedded Java Virtual Machine

CLDC

MIDP

Optional Package

OEM
extension

Target platform OS and environment

Target platform low-layered hardware

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

161

compile corresponding project step by step. The figure 4-2
and figure 4-3 are the sketch maps of KVM after porting
to Windows and Linux respectively.

We utilized the techniques of the direct threaded
interpreter and the lazy binding to improve the KVM
performance. With the KVM testing tool JBenchmark we
have inspected the general porting methods described in
this paper. The test result shows that the application of
the general porting methods and the optimization strategy
can enhance the KVM performance up to 40% averagely.
The figure 4-4 and figure 4-5 give the comparison in
JBenchmark1 and Jbenchmark2.

Fig. 4-2 KVM Port to Windows

Fig. 4-3 KVM Port to Linux

Fig. 4-4 the scale of JBenchmark1 test

Fig. 4-5 the scale of JBenchmark2 test

5. Conclusion

Through the porting research in theory and engineer, we
analyze the target platform requirement and code
structure. Then this paper proposes a set of general
porting methods. The KVM porting instances testify that
these methods take on the good feasibility and
practicability.

Acknowledgments

This research work is supported by Jiangsu University
Natural Science Foundation under Grant No.
06KJB520079.

References
[1] B. Veners, Inside the Java Virtual Machine, 2nd

edition, NewYork: McGraw-Hill
[2] James Gosling, Bill Joy, Guy Steele, Gilad Brancha,

The Java Language Specification Third Edition,
Addison-Wesley

[3] Tim Lindholm, Frank Yellin, The JavaTM Virtual
Machine Specification, Second Edition

[4] Sun Microsystems, Inc, J2ME CLDC Reference
Implementation, Release Notes, CLDC 1.0.4.
http://java.sun.com/products/cldc/

[5] BillVenners, McGraw-Hill ， Inside Java Virtual
Machine, Second Edition,

[6] Sun Microsystems, Inc, KVM porting Guide,
CLDC, Version1.1.
http://java.sun.com/products/cldc/

Jun QIN is an associate professor of computer science and
Technology at Nanjing University of Posts and
Telecommunications. Her research interests include software
engineering, multimedia technology and so on.

Qiaomin LIN is a lecture of computer science and Technology at
Nanjing University of Posts and Telecommunications. His
research interests include software engineering, multimedia
technology and so on.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

162

Xiujin WANG received the M.S. Degree from Nanjing
University of Posts and Telecommunications in 2007. His
research interests include software engineering, multimedia
technology and so on.

