
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

162

Manuscript received September 5, 2007

Manuscript revised September 20, 2007

W-Period Technique for Parallel String Matching

S.Viswanadha Raju † , A.Vinaya Babu†† , G.V.S.Raju†††,, and K.R. Madhavi †,

†Gokaraju Rangaraju Institute of Engineering and Technology, ††† SCET, †† JNTUniversity, Hyderabad, 500072, India.

Summary
In this paper, we present new approach for parallel string
matching. Some known parallel string matching algorithms are
considered based on duels by witness which focuses on the
strengths and weaknesses of the currently known methods. This
has applications such as string databases, Information Retrieval
and computational biology. The new ‘divide and conquer’
approach has been introduced for parallel string matching,
called the W-period, which is used for parallel preprocessing of
the pattern and has optimal implementations in a various models
of computation. The idea, common for every parallel string
matching algorithm is slightly different from sequential ones as

Knuth-Morris-Pratt or Boyer-Moore algorithm.

Key words:
Divide and conquer, duel, PRAM, string matching, W-period

1. Introduction

 String matching deals with the problem of finding all
occurrences of a single string in a given text. This string
matching is one of the most extensive problems in
computer technologies during past two decades. Pattern
matching is widely implemented in information retrieval,
web search engine, DNA sequencing, artificial
intelligence and several other fields.

String matching problem can be defined as: Given an
alphabet (finite sequence of characters) ĉ, a text string T =
T[1] T[2]T[3]……T[m] of length m and a string pattern
P= P[1]P[2]P[3]…..P[n] of length n where both text and
pattern string are sequences of character from ĉ with
n<=m. Sequential algorithms for this string matching
problem can be found in [2,6,9,10]. The string matching
problem solved in two stages namely preprocessing and
searching by different authors. As the goal of
preprocessing the pattern, one has to compute all periods
of the pattern and all witnesses against nonperiods. In
addition, super fast string matching algorithms need
effective computation of the sequence of deterministic
samples. There are two optimal algorithms known for
computing witnesses and periods in the CRCW PRAM[8].
The first logarithmic one was introduced by Vishkin [7].
The next double logarithmic one was presented by

Breslauer and Galil in [1]. The cost of the preprocessing
in

super fast string matching algorithms was forced by the
computation of the deterministic samples. Both
algorithms (those of Vishkin and Galil) have expensive
(log2m/loglog m) - time preprocessing. But there were no
known optimal algorithms for computing periods and
witnesses in other PRAM models, body centered
hypercube [12] and 2D-mesh[13]. The problem of
computing all periods and witnesses became the
bottleneck in the pattern preprocessing. These problems
can be solved by W-period technique.

The rest of the paper organized as follows: In section 2,
we provide brief description of duel technique with an
example. In section 3, the searching stage, all text
positions are potential occurrences of the pattern .In
section 4 we introduce new approach for our parallel
string matching algorithm and Conclusions are reported
in section 5.

2. Duel Technique

Duel technique is a natural scheme for parallel
computation. It was originally used to compute the
minimum (election of a leader for instance) among n
elements [7].

2.1 Dueling in Group of Pairs

Consider the minimum finding problem for n-size input.
For simplicity of presentation all the numbers may be
assumed to be different. Dueling algorithms for the
CREW and EREW PRAM models have a simple scheme
in common. All computations are divided into logarithmic
number of stages. The output of the previous stage is an
input for the next one. At every stage all candidates
(minimum) are grouped in pairs. Every pair of candidates
performs a duel. A candidate who has smaller value
survives, while the other loses and is not considered as a
candidate for minimum later. After every stage the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

163

number of candidates is decreasing by a half. The
working time of the algorithm corresponds to equation
T(n) = T(n/2) + O(1). There are no read/write conflicts, so
simply we get logarithmic approach for both CREW and
EREW PRAM models, and has been obtained [12].

2.2 Dueling by Squaring

A dueling idea has more efficient application for the
CRCW PRAM model.

Fact 1

It is possible to find the minimum between n numbers, in
constant time, in case when we use O (n2) processors.

Proof: Every input number has n processors to perform in
one step and duels with all other candidates. After this
step every candidate has associated binary vector of length
n (1- won, 0- lost duel). Only one candidate, who won all
duels, has associated binary vector filled by ones. This
could be recognized by computing boolean n-bit AND in
constant time. The candidate with positive AND is the
desired minimum.

The main algorithm for the CRCW PRAM model could
be presented by the simple recursive approach. When the
whole n-size input is divided into n consecutive n -
size sub blocks, in every sub block (independently in
parallel) minimum can be found recursively. After
coming back from recursive calls in every sub block, there
is still only one candidate. The total number of candidates
is n , to compute the minimum among n candidates

in constant time with n processors, according to fact 1.
The total time T{n) of the algorithm satisfies the equation
T(n) = T(n) + O(1), which finally gives double

logarithmic working time O(log log n).

2.3 Optimality

It may be noted that both the algorithms are not optimal.
Both use linear number of processors. Thus the work of
the first one is O (n log n) and the second one is O(n log
log n). To get an optimal (linear in the sense of work)
logarithmic time algorithm use only O(n/log n) processors
must be used. In the first step every processor gets O (log
n) numbers and searches sequentially looking for
minimum. After this step there are only O(n/log n)
candidates. Now nonoptimal logarithmic time algorithm
can be used with linear number of processors. Finally an
optimal O(log n)-time algorithm can be obtained and
implemented on O(n/log n) processors.

Similarly, to get an optimal double logarithmic time
algorithm every processor first finds minimum in its

O(log log n)-block, and then non optimal O(log log n)
time algorithm on reduced input can be used.

3. Searching a text

In parallel string matching, a duel plays an important role
too. In the beginning of the searching stage all text
positions are potential occurrences (candidates) of the
pattern. We can perform duels by witnesses, between
candidates, according to rules given below.

3.1 Duels for a text searching

Assume that all witnesses (existing against all positions r
≤ m/2) of the pattern have been computed. Two
candidates r < s may be considered such that t is a witness
against s - r (i.e., Pt ≠ Pt-s+r). See fig. 3.1.

Figure 3.1: A duel between candidates r and s

· If Tr+t ≠ Pt, r + t is a witness to non-occurrence r,
· IF Tr+t = Pt-s+r, r + t is a witness to non-occurrence

s.

The two tests above are called a duel between r and s [7].
A duel can remove one or both the candidates. Having
witnesses, the string matching searching stage in
logarithmic time for the CREW PRAM model can be
implemented optimally (similar to minimum finding
algorithm). The string matching searching can be
implemented in double logarithmic time for the CREW
PRAM model.

Assume that pattern P, |P| = m, is nonperiodic and during
the preprocessing we have computed all witnesses against
all positions r ≤ m/2, the whole text T, |T| = n, be divided
into consecutive blocks of size m/2.

Fact 2
There is at most one occurrence of nonperiodic pattern P.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

164

|P| = m, in every m/2 -block of the text T.

Proof: If there are two occurrences of the pattern P, r and
s, such that r < s, in some m/2-block of T implies that
pattern P has a period s - r < m/2, which contradicts that
pattern P is nonperiodic.

In every m/2-block, duels may be performed by witnesses
and finally at least one candidate among m/2 ones.
Afterwards there are at the most O (n/m) candidates in
the whole text. Every candidate could be checked naively
if it is a real occurrence with work O (m). So the total
work of checking survivors is O(n/m, m) = O(n). Finally
linear work algorithm is obtained according to Brent's
theorem, could be implemented optimally in O (log m)
time in the CREW PRAM model and in O(log log m)
time in the CRCW PRAM model [5].

4. W-period Technique

As the goal of preprocessing the pattern, one has to
compute all periods of the pattern and all witnesses
against nonperiods. As a contrast to CRCW PRAM model,
there were no known optimal algorithms for computing
periods and witnesses in other PRAM models, body
centered hypercube or 2D-mesh. The new ‘divide and
conquer’ parallel approach for computing the period and
witnesses of the pattern, called a w-period technique has
been introduced.

The W-period has an operational definition. Given a
string z of length r, we compute a W-period q by
computing witnesses against all non-multiples i ≤ r - Y(r)
of q, where function Y(r) is relatively small. This study

holds that Y(r) = O (r) will be used.

Fact 3
If a word z is periodic with the period p (p ≤ |z|/2) the W-
period q must divide the period p of z.

Proof: Since it has computed all witnesses against all
nonmultiples i < |z|/2 of q, the short period must be
divisible by q.

In the case of the period of a word z, it may the noted that
it has already computed W-period q. Witnesses for other
positions also have already been computed. Desired
witnesses can be caused only by symbols with distance iq
apart, for all 1 ≤ i ≤ |z|/q. This gives a natural division of
z into q distinct classes of symbols forming a set of new
smaller words:

 z (0) = z0zqz2q.., z
(1) = z1zq+1z2q+l..,…, z(q-1) = zq-1z2q-1z3q-

1…...

Compute the real periods p(0)p(1),..., p(q-1) and witnesses
recursively, for all words z(0)z(1) .., z(q-1), independently in
parallel using recursive method.

Fact 4

The period p of the whole word z is determined by the µ.q,
where µ = LCM (p (0), p (1), ….. p(q-1)) and LCM stands for
the lowest common multiple.

Proof: Witnesses against all nonmultiples of µ.q are
computed.

4.1 Example

Let us consider a word z =vuuvuuuuvwvuuvuuuuvwvuuvu,
|z| = 25, and assume that somehow W-period q = 5 for z
which have been computed. This means that all witnesses
against positions i < 20 (let Y(25) = 5) have been
computed already.

WITNz[0,..,19]=[0,1,2,7,4,0,6,7,9,9,0,11,12,16,14,0,16,17,
 19,19]
It may be noted that for all multiples i of 5 WITNz[i] = 0.
The period of z is a multiple of 5 in case z is periodic. The
word z is divided into 5 blocks (of length 5) and ith class
z(i) is formed by ith symbols from every block:
z = vuuvu|uuuvw|vuuvu|uuuvw|vuuvu
z(0) = vuvuv, z(1) = uuuuu, z(2); = uuuuu. z(3) = vvvvv, z(4) =
uwuwu with corresponding periods p(0) = 2, p(1) = 1,
p(2) = 1, p(3) = 1, p(4) = 2. The period p of z is µ.q = LCM
(2, 1, 1, 1, 2). 5 = 10.

Finally, to compute witnesses (unknown before) for
nonmultiples of the period 10 in z: WITNz[5] and
WITNz[15]. Both witnesses are reconstructed from
witnesses of z (°)…z (4) where:
WITNz(0)[] =WITNz() = [0,1,0,3, 0] and
WITNz(1) [] =WITNz(2) [] =WITNz(3)[] = [0,0,0,0,0]

In the following way
WITNz[5]=5.WTTNz.(o)[l] + 0 = 5 . 1 = 5 or equivalently
WITNz[5] = 5.WITNz(2)[l]+4 = 5.1+4 = 9 and

WITNz[15] = 5.WITNz(o)[3] + 0 = 5.3 = 5 or equivalently
WITNz [15] = 5.WITNz(4)[3] + 4 = 5.3 + 4 = 19.
Witness is chosen in an arbitrary manner. This means in
practice, we take first one from the left.

4.2 General structure

Finally a new ‘divide and conquer’ parallel approach for
computing the period of a given string has been obtained.
Algorithm FIND-PERIOD(z, |z|);
1. Find a W-period q of z;

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

165

2. Divide the word z into q substrings z(i) = zizi+qzi+2q….
for all i = 1,.....,q;

3. For all substrings z(i) in parallel do
P (i) = FIND-PERIOD(z(i),|z|/q);

4. Collect periods p(i) and witnesses from preprocessed
z(i)s (multiples of q) and compute µ = LCM(p(0),
p(1),...., p(q-1));.

5. Return (µ.q).
Note that algorithm FIND-PERIOD computes also all
witnesses against nonperiods of P. Extending witnesses
from P(i) to P is done according to the following rule:

WITNp[j * q] = q.WITNPp(i)[j] + i

5. Conclusion

We studied some known parallel string matching
algorithms based on duels by witness which focuses on
the strengths and weaknesses. We introduced W-period
technique for computing period and witnesses of pattern.
Finally, a general structure to find a period for pattern
string was designed. Our future research, is to implement
the FIND-PERIOD algorithm for various parallel models
as PRAM's, Body centered hypercube [12] and two
dimensional mesh structure [13].

Acknowledgements

We would like to thank our colleagues in the Department
of Computer Science and Computer applications for their
advice and helpful discussions. We thank Prof P.S.Raju,
Director, and Dr.J.N.Murthy, Principal, Dr.Eliah
Professor in English, GRIET for their moral support
and providing Laboratory. We are grateful to the British

Library, JNTUniversity Library for their services.

References

[1] D. Breslauer and Z. Galil, A lower bound for

parallelstring matching, SIAM Journal of. Computing
21, 1992, pp. 856-862.

[2] M.Crochemore and W.Rytter, Text Algorithms,
Oxford

 University Press, 1994.
 [3] Z.Galil and K.Park, Truly alphabet-independent

two-
 Dimensional pattern matching,Proc 33rd IEEE
 symposium, Foundation of Computer science, 1992,
 247-256.
[4] Z. Galil, A constant-time optimal parallel string-

matching algorithm, Proc. 24th Annual ACM

Symposium on Theory of Computing, 1992.
[5] Z.Galil, Optimal parallel algorithms for string

matching, Information and Control 67 1985, pp. 144-
157.

[6] D.E. Knuth. J.H. Morris, and V.R. Pratt, Fast pattern
matching in strings, SIAM Journal of Computers, 6,
1977, pp. 323-350.

[7] U.Vishkin, Optimal parallel matching in strings,
Information and Control 67 ,1985, . 91-113.

[8] S.Viswanadha Raju and A.Vinayababu, (2004)
“Performance in the design of Parallel
Programming”, Proc ObComAPC-2004, Allied
Publications, pp.380 to 392.

[9] S.Viswanadha Raju,A.Vinayababu and
M.Mrudula ,(2006) “Backend Engine for Parallel
string Matching using Boolean Matrix” , Proc
PARELEC-2006, IEEE Computer Society , 281-
283.

[10] S.Viswanadha Raju,S.R.Mantena,A.Vinayababu and
GVSRaju, (2006) “Efficient Parallel String Matching
Using Partition Method”, Proc PDCAT-2006,IEEE
Computer Society, 281-284.

[11] S.Viswanadha Raju, A.Vinayababu,S.P.Yanaiah and
GVSRaju, (2006) “Parallel Approach for K String
Matching”, Proc NCIMDiL-2006, Indian
Institute Of Technology, Kharagpur , 5-10.

[12] S.Viswanadha Raju and A.Vinaya Babu, (2006) ”
Optimal Parallel String Matching Algorithm on
Body Centered Hypercube”, International Journal of
Mathematics and Computer Science,1 No.4, 473-484.

[13] S.Viswanadha Raju and A.Vinaya Babu, (2006)”
 Optimal Parallel algorithm for String Matching on
 Mesh Network Structure”, International Journal
 applied mathematica Sciences, 3 No.2, 167-175

