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Summary 
In this paper, we present new approach for parallel string 
matching. Some known parallel string matching algorithms are 
considered based on duels by witness which focuses on the 
strengths and weaknesses of the currently known methods. This 
has applications such as string databases, Information Retrieval 
and computational biology. The  new ‘divide and conquer’ 
approach has been introduced for parallel string matching, 
called the W-period, which is used for parallel preprocessing of 
the pattern and has optimal implementations in a various models 
of computation. The idea, common for every parallel string 
matching algorithm is slightly different from sequential ones as 

Knuth-Morris-Pratt or Boyer-Moore algorithm.  
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1. Introduction 

    String matching deals with the problem of finding all 
occurrences of a single string in a given text. This string 
matching is one of the most extensive problems in 
computer technologies during past two decades. Pattern 
matching is widely implemented in information retrieval, 
web search engine, DNA sequencing, artificial 
intelligence and several other fields.  
 
String matching problem can be defined as: Given an 
alphabet (finite sequence of characters) ĉ, a text string T = 
T[1] T[2]T[3]……T[m] of length m and a string pattern 
P= P[1]P[2]P[3]…..P[n] of length n where both text and 
pattern string are sequences of character from ĉ with 
n<=m. Sequential algorithms for this string matching 
problem can be found in [2,6,9,10]. The string matching 
problem solved in two stages namely preprocessing and 
searching by different authors. As the goal of 
preprocessing the pattern, one has to compute all periods 
of the pattern and all witnesses against nonperiods. In 
addition, super fast string matching algorithms need 
effective computation of the sequence of deterministic 
samples. There are two optimal algorithms known for 
computing witnesses and periods in the CRCW PRAM[8]. 
The first logarithmic one was introduced by Vishkin [7]. 
The next double logarithmic one was presented by 

Breslauer and Galil in [1]. The cost of the preprocessing 
in  
 
 
 
super fast string matching algorithms was forced by the 
computation of the deterministic samples. Both 
algorithms (those of Vishkin and Galil) have expensive 
(log2m/loglog m) - time preprocessing.  But there were no 
known optimal algorithms for computing periods and 
witnesses in other PRAM models, body centered 
hypercube [12] and 2D-mesh[13]. The problem of 
computing all periods and witnesses became the 
bottleneck in the pattern preprocessing. These problems 
can be solved by W-period technique. 
 
The rest of the paper organized as follows: In section 2, 
we provide brief description of duel technique with an 
example. In section 3, the searching stage, all text 
positions are potential occurrences of the pattern .In 
section 4 we introduce new approach for our parallel 
string matching algorithm and Conclusions are reported 
in section 5. 

 
2.   Duel Technique 
 

 
Duel technique is a natural scheme for parallel 
computation. It was originally used to compute the 
minimum (election of a leader for instance) among n 
elements [7]. 
 
2.1   Dueling in Group of Pairs  
 
Consider the minimum finding problem for n-size input. 
For simplicity of presentation all the numbers may be 
assumed to be different. Dueling algorithms for the 
CREW and EREW PRAM models have a simple scheme 
in common. All computations are divided into logarithmic 
number of stages. The output of the previous stage is an 
input for the next one. At every stage all candidates 
(minimum) are grouped in pairs. Every pair of candidates 
performs a duel. A candidate who has smaller value 
survives, while the other loses and is not considered as a 
candidate for minimum later. After every stage the 
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number of candidates is decreasing by a half. The 
working time of the algorithm corresponds to equation 
T(n) = T(n/2) + O(1). There are no read/write conflicts, so 
simply we get logarithmic approach for both CREW and 
EREW PRAM models, and has been obtained [12]. 
 

2.2   Dueling by Squaring 
 

A dueling idea has more efficient application for the 
CRCW PRAM model. 

Fact 1 

It is possible to find the minimum between n numbers, in 
constant time, in case when we use O (n2) processors. 
 
Proof: Every input number has n processors to perform in 
one step and duels with all other candidates. After this 
step every candidate has associated binary vector of length 
n (1- won, 0- lost duel). Only one candidate, who won all 
duels, has associated binary vector filled by ones. This 
could be recognized by computing boolean n-bit AND in 
constant time. The candidate with positive AND is the 
desired minimum.  
 

The main algorithm for the CRCW PRAM model could 
be presented by the simple recursive approach. When the 
whole n-size input is divided into n  consecutive n -
size sub blocks, in every sub block (independently in 
parallel) minimum can be found recursively. After 
coming back from recursive calls in every sub block, there 
is still only one candidate. The total number of candidates 
is n , to compute the minimum among n  candidates 

in constant time with n processors, according to fact 1. 
The total time T{n) of the algorithm satisfies the equation 
T(n) = T( n ) + O(1), which finally gives double 

logarithmic working time O(log log n). 
 

2.3   Optimality  
 
It may be noted that both the algorithms are not optimal. 
Both use linear number of processors. Thus the work of 
the first one is O (n log n) and the second one is O(n log 
log n). To get an optimal (linear in the sense of work) 
logarithmic time algorithm use only O(n/log n) processors 
must be used. In the first step every processor gets O (log 
n) numbers and searches sequentially looking for 
minimum. After this step there are only O(n/log n) 
candidates. Now nonoptimal logarithmic time algorithm 
can be used with linear number of processors. Finally an 
optimal O(log n)-time algorithm can be obtained and 
implemented on O(n/log n) processors. 

 
Similarly, to get an optimal double logarithmic time 
algorithm every processor first finds minimum in its 

O(log log n)-block, and then non optimal O(log log n) 
time algorithm on reduced input can be used. 
 
 

3.   Searching a text 
 

In parallel string matching, a duel plays an important role 
too. In the beginning of the searching stage all text 
positions are potential occurrences (candidates) of the 
pattern. We can perform duels by witnesses, between 
candidates, according to rules given below. 
 
3.1 Duels for a text searching 
 

Assume that all witnesses (existing against all positions r 
≤ m/2) of the pattern have been computed. Two 
candidates r < s may be considered such that t is a witness 
against s - r (i.e., Pt ≠ Pt-s+r).  See fig. 3.1. 
 

 
 

Figure 3.1: A duel between candidates r and s 
 
 

· If Tr+t ≠ Pt, r + t is a witness to non-occurrence r, 
· IF Tr+t = Pt-s+r, r + t is a witness to non-occurrence 

s. 
 
The two tests above are called a duel between r and s [7]. 
A duel can remove one or both the candidates. Having 
witnesses, the string matching searching stage in 
logarithmic time for the CREW PRAM  model can be 
implemented optimally (similar to minimum finding 
algorithm). The string matching searching can be 
implemented in double logarithmic time for the CREW 
PRAM model.  
 
Assume that pattern P, |P| = m, is nonperiodic and during 
the preprocessing we have computed all witnesses against 
all positions r ≤ m/2, the whole text T, |T| = n, be divided 
into consecutive blocks of size m/2. 
 

 
Fact 2  
There is at most one occurrence of nonperiodic pattern P. 
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|P| = m, in every m/2 -block of the text T. 
 

Proof: If there are two occurrences of the pattern P, r and 
s, such that r < s, in some m/2-block of T implies that 
pattern P has a period s - r < m/2, which contradicts that 
pattern P is nonperiodic.   

 

In every m/2-block, duels may be performed by witnesses 
and finally at least one candidate among m/2 ones. 
Afterwards there are at the most O (n/m) candidates in 
the whole text. Every candidate could be checked naively 
if it is a real occurrence with work O (m). So the total 
work of checking survivors is O(n/m, m) = O(n). Finally 
linear work algorithm is obtained according to Brent's 
theorem, could be implemented optimally in O (log m) 
time in the CREW PRAM model and in O(log log m) 
time in the CRCW PRAM model [5]. 

 

4.   W-period Technique 
 
 
 

As the goal of preprocessing the pattern, one has to 
compute all periods of the pattern and all witnesses 
against nonperiods. As a contrast to CRCW PRAM model, 
there were no known optimal algorithms for computing 
periods and witnesses in other PRAM models, body 
centered hypercube or 2D-mesh. The new ‘divide and 
conquer’ parallel approach for computing the period and 
witnesses of the pattern, called a w-period technique has 
been introduced. 
 
The W-period has an operational definition. Given a 
string z of length r, we compute a W-period q by 
computing witnesses against all non-multiples i ≤ r - Y(r) 
of q, where function Y(r) is relatively small. This study 

holds that Y(r) = O ( r ) will be used. 
 
Fact 3  
If a word z is periodic with the period p (p ≤ |z|/2) the W-
period q must divide the period p of z. 
 
Proof: Since it has computed all witnesses against all 
nonmultiples i < |z|/2 of q, the short period must be 
divisible by q.   
 

In the case of the period of a word z, it may the noted that 
it has already computed W-period q. Witnesses for other 
positions also have already been computed. Desired 
witnesses can be caused only by symbols with distance iq 
apart, for all 1 ≤ i ≤ |z|/q.  This gives a natural division of 
z into q distinct classes of symbols forming a set of new 
smaller words: 
 

 z (0) = z0zqz2q..,    z
(1) = z1zq+1z2q+l..,…,   z(q-1) = zq-1z2q-1z3q-

1…... 

 

Compute the real periods p(0)p(1),..., p(q-1) and witnesses 
recursively, for all words z(0)z(1) .., z(q-1),  independently in 
parallel using recursive method. 

Fact 4 

The period p of the whole word z is determined by the µ.q, 
where µ = LCM (p (0), p (1), ….. p(q-1)) and LCM stands for 
the lowest common multiple. 
 
Proof: Witnesses against all nonmultiples of µ.q are 
computed. 

 
4.1 Example 
 

Let us consider a word z =vuuvuuuuvwvuuvuuuuvwvuuvu, 
|z| = 25, and assume that somehow W-period q = 5 for z 
which have been computed. This means that all witnesses 
against positions i < 20 (let Y(25) = 5) have been 
computed already. 
 

WITNz[0,..,19]=[0,1,2,7,4,0,6,7,9,9,0,11,12,16,14,0,16,17, 
                               19,19] 
It may be noted that for all multiples i of 5 WITNz[i] = 0. 
The period of z is a multiple of 5 in case z is periodic. The 
word z is divided into 5 blocks (of length 5) and ith class 
z(i) is formed by ith symbols from every block: 
z =  vuuvu|uuuvw|vuuvu|uuuvw|vuuvu 
z(0) = vuvuv, z(1) = uuuuu, z(2); = uuuuu. z(3) = vvvvv, z(4) = 
uwuwu      with corresponding periods p(0) = 2, p(1) = 1, 
p(2) = 1, p(3) = 1, p(4) = 2.  The period p of z is µ.q = LCM 
(2, 1, 1, 1, 2). 5 = 10. 
 
Finally, to compute witnesses (unknown before) for 
nonmultiples of the period 10 in z: WITNz[5] and 
WITNz[15]. Both witnesses are reconstructed from 
witnesses of z (°)…z (4) where: 
WITNz(0)[] =WITNz() = [0,1,0,3, 0] and 
WITNz(1) [] =WITNz(2) [] =WITNz(3)[] = [0,0,0,0,0]         

In the following way 
WITNz[5]=5.WTTNz.(o)[l] + 0 = 5 . 1 = 5 or equivalently 
WITNz[5] = 5.WITNz(2)[l]+4 = 5.1+4 = 9 and 
 
WITNz[15] = 5.WITNz(o)[3] + 0 = 5.3 = 5 or equivalently 
WITNz [15] = 5.WITNz(4)[3] + 4 = 5.3 + 4 = 19. 
Witness is chosen in an arbitrary manner. This means in 
practice, we take first one from the left. 

 
4.2   General structure  
 

Finally a new ‘divide and conquer’ parallel approach for 
computing the period of a given string has been obtained. 
Algorithm FIND-PERIOD(z, |z|); 
1. Find a W-period q of z; 
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2. Divide the word z  into q substrings z(i) = zizi+qzi+2q….   
for all i = 1,.....,q; 

3. For all substrings z(i) in parallel do 
P (i)  = FIND-PERIOD(z(i),|z|/q); 

4. Collect periods p(i) and witnesses from preprocessed 
z(i)s (multiples of q) and compute µ = LCM(p(0), 
p(1),...., p(q-1));. 

5. Return (µ.q). 
Note that algorithm FIND-PERIOD computes also all 
witnesses against nonperiods of P. Extending witnesses 
from P(i) to P is done according to the following rule: 
 

WITNp[j * q] = q.WITNPp(i)[j] + i 
 

 

5.   Conclusion 
 
We studied some known parallel string matching 
algorithms based on duels by witness which focuses on 
the strengths and weaknesses. We introduced W-period 
technique for computing period and witnesses of pattern. 
Finally, a general structure to find a period for pattern 
string was designed. Our future research, is to implement 
the FIND-PERIOD algorithm for various parallel models 
as PRAM's, Body centered hypercube [12] and two 
dimensional mesh structure [13].  
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