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Summary 
There are various cryptographic protocols in which 160-bit 
message digest is required. SHA-1is the most well-known 160-
bit hash function which is still used in protocols despite of its 
vulnerabilities against collision attacks. Lack of 160-bit hash 
function structures and disadvantages of truncating outputs of 
other secure hash functions (security problems and inefficiency) 
motivated us to introduce a new 160-bit hash function. In this 
paper, we describe our new software-efficient hash function 
FORK-160. Hence the name, this function uses basic design 
principles from the recently proposed hash function FORK-256. 
However, FORK-160 aims at improving FORK-256 both on 
security and efficiency. Most notably, FORK-160 uses more 
secure step function, reasonable message ordering and additive 
constants which make it resistant against existing cryptanalysis 
especially local collision attacks. 
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1. Introduction 

Hash functions are a group of cryptographic 
functions which are used in digital signatures, data 
integrity, e-cash and many other cryptographic schemes 
and applications. A one-way hash function maps bit 
strings of arbitrary finite length into strings of fixed 
length. 

For a cryptographic hash function, the following 
security requirements according to complexity 
considerations are needed: 
1. Pre-image resistance: It is infeasible to find any input 
message which hashes to any pre-specified image. 
2. Second pre-image resistance: It is infeasible to find any 
second input which has the same output as pre-specified 
input message. 
3. Collision resistance: It is infeasible to find two different 
messages which hash to one message digest. 

Assume that the output space of a hash function 
consists of n-bit strings i.e. {0,1}n. For a well-designed 
hash function, finding pre-image or second pre-image 
requires about 2n and finding collision requires about 
2n/2 hashing operations. 

Since hash functions are desired to be fast in 
performance, recent designing methods of hash functions 
are based on sequentially iterating a simple and fast step 
function. The most popular hash functions, which are 

               
called MD-like, have been designed according to this 
method in an evolutional process. The first of this type 
was MD4, proposed by Rivest in 1990 [6]. MD4 was a 
novel design, oriented towards software implementation 
on 32 bit architectures. Several hashing algorithms were 
derived from MD4 hash function called MDx-class hash 
functions. MD5, SHA0/1, HAVAL and RIPEMD are 
some prominent instances [1, 2]. These hash functions are 
the most popular hash functions because of their 
performance and trust gained from cryptanalysis 
techniques [1, 2]. All of the mentioned hash functions are 
based on a serial method but RIPEMD. The RIPEMD 
family of hash functions was designed by combining 
sequential method and parallel structure. This method of 
designing is still reliable due to no effective attacks so far, 
except elementary versions of RIPEMD [1, 7]. The most 
recently proposed hash functions based on this method, 
FORK-256, motivates us to design a 160-bit output hash 
function based on its structure. There are several 
applications of 160-bit hash functions especially in 
cryptographic protocols. Nonetheless, the most well-
known and widely used 160-bit hash function, SHA-1, has 
been broken by Wang et al [8]. Thus it seems better to use 
a secure hash function with longer output and truncate the 
output to a 160-bit string; however, this method is not 
recommendable due to lack of performance and 
reasonable security. Consequently, designing a secure 
dedicated 160-bit hash function could be a major task in 
hash function area. In this paper, we introduce a 160-bit 
output hash function based upon a parallel structure like 
FORK-256. Hence, we named this hash function FORK-
160. FORK-160 while being adapted to 160-bit has 
improved the security of FORK-256 against existing 
attacks. 

The paper is organized as follows: In section 2 we 
introduce the structure of FORK-160 along with the 
related functions and parameters. Section 3 explains our 
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design principles for designing each part of the introduced 
algorithm. This explanation is followed by security 
analysis and performance evaluation in section 4 and 
section 5, respectively. Section 6 includes the final results 
and concluding remarks. It is worth mentioning that the 
source code of FORK-160 written by C++ programming 
language with a test vector is given in the appendices. 

2. Description of FORK-160 

One compression function of FORK-160 consists of four 
parallel branches; each compresses a twenty-word 
expanded message to a five-word output. Fig. 1 shows 
the scheme of the compression function in FORK-160. 
First, the input message is padded in order to be 
devisable to 512-bit (16-word) message blocks, 
corresponding to compression functions. Padding is like 
SHA-1, i.e. appending a single bit 1 next to the least 
significant bit of the message followed by zeros until the 
length of the message is 448 modulo 512, and then 
appending the original message length modulo 264. The 
compression function of FORK-160 hashes a 512-bit 
string to a 160-bit string. Next, each message block is 
compressed through the compression function, using the 
previous compression output as the chaining variable. 
According to Fig. 1 the four parallel branch functions 
are called BRANCH 1 to BRANCH 4. The chaining 
variable for ith block (ith compression function) is 
CVi=(A,B,C,D,E) and is initialized to IV0, represented 
below: 

A= 0x6a09e667, B= 0xbb67ae85, C= 0x3c6ef372,  
D= 0xa54ff53a, E= 0x510e527f 

Each message block M is divided to sixteen 32-bit words 
M0,…,M15 and is compressed according to Fig. 1, where 

4,3,2,1),,...,()( )15()0( ==å jMMM
jjj ss

      is the 

permutation for message words, selected according 
Table 2 (section 2.2). CVi is updated through the 
following relation. 
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2.1 Branch Functions of FORK-160 

Each branch contains five step functions and each step 
function deals with four message blocks; thus each branch 
uses a set of 20 message words representing a simple 
expansion and permutation on the input message block.    
    For the BRANCH j   (1 ≤ j ≤ 4) the message block is 
compressed as follows: 
1. The chaining variable CVi is assigned to initial 

variables Vj,0. 
2. At (k+1)th step function (0 ≤ k ≤ 3) , the output Vj,k+1 is 

computed as follows: 
 

),,,,

,,,,(

12,2,12,2,)32(

)22()12()2(,,1,

+++

+++ =

kjkjkjkjk

kkkkjkjkj

j

jjj

M

MMMVSTEPV

bbaas

sss  (2) 

where aj,2k, aj,2k+1, bj,2k, bj,2k+1 are constants. In the fifth 
step, message words are calculated from the following  
relations applied to the original sixteen message words: 
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functions f and g are defined in the Table 1, relation 4 and 
relation 5, respectively. 

Table 1. The contents of qj (t), (0 ≤ t ≤ 3), (1 ≤ j ≤ 4). 

t 0 1 2 3 

q1(t) 16 17 18 19 

q2(t) 17 18 19 16 

q3(t) 18 19 16 17 

q4(t) 19 16 17 18 
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Fig. 1. FORK-160 compression function 
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Constant values dj are defined in section 2.3. 
Consequently, Vj,5 is the five-word output of BRANCH j.  

Vj,5=STEPj,4(Vj,4,M16, M17, M18, M19,  

aj,8, aj,9,bj,8, bj,9) 

(6) 

 

Table 2. Message words permutation for all branches. 

t 0 1 2 3 4 5 6 7 

s1(t) 0 1 2 3 4 5 6 7 

s2(t) 13 12 14 15 1 2 3 0 

s3(t) 10 11 8 9 14 15 12 13 

s4(t) 7 4 5 6 11 8 9 10 

t 8 9 10 11 12 13 14 15 

s1(t) 8 9 10 11 12 13 14 15 

s2(t) 5 6 7 4 9 10 11 8 

s3(t) 2 3 0 1 6 7 4 5 

s4(t) 15 12 13 14 3 0 1 2 

 
 

 
 

Fig. 2. Step function of FORK-160 

2.2 Permutation of Message Words 

The permutation of message words in FORK-160 is 
designed based on Latin square matrices. Table 2 
represents the order of message words M0,…,M15 applied 
to each of four branches. 
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2.3 Additive Constants 

The compression function of FORK-160 uses thirty six 
additive constants (Table3). 

Table 3. Additive constants in FORK-160. 

d0=0x428a2f98 d1=0x71374491 

 d4= 0x3956c25b  d5= 0x59f111f1 

d8= 0xd807aa98  d9= 0x12835b01 

d12= 0x72be5d74  d13= 0x80deb1fe 

d16= 0xe49b69c1  d17= 0xefbe4786 

d20=0x2de92c6f  d21= 0x4a7484aa 

d24= 0x983e5152    d25= 0xa831c66d 

d28= 0xc6e00bf3  d29= 0xd5a79147 

d32= 0x27b70a85  d33= 0x2e1b2138 

  

d2= 0xb5c0fbcf  d3= 0xe9b5dba5 

d6= 0x923f82a4  d7= 0xab1c5ed5 

d10= 0x243185be  d11= 0x550c7dc3 

d14= 0x9bdc06a7  d15= 0xc19bf174 

d18= 0x0fc19dc6  d19= 0x240ca1cc 

d22= 0x5cb0a9dc  d23= 0x76f988da 

d26= 0xb00327c8 d27= 0xbf597fc7 

d30= 0x06ca6351  d31= 0x14292967 

d34= 0x4d2c6dfc d35= 0x53380d13 

The first 20 constant values of Table 3 are utilized in each 
branch as additive constants for the compression functions, 
according to the table 4. 

 
 

Table 4. Permutation table for using additive constants. 

Ste
p 

No. 

(α1,0,…, 
α1,9) 

(α2,0,…, 
α2,9) 

(α3,0,…, 
α3,9) 

(α4,0,…, 
α4,9) 

d0 d19 d1 d18 1 
d2 d17 d3 d16 

d4 d15 d5 d14 2 
d6 d13 d7 d12 

d8 d11 d9 d10 3 
d10 d9 d11 d8 

d12 d7 d13 d6 4 
d14 d5 d15 d4 

d16 d3 d17 d2 5 
d18 d1 d19 d0 

Ste
p  

No. 

(β1,0,…, 
β1,9) 

(β2,0,…, 
β2,9) 

(β3,0,…, 
β3,9) 

(β4,0,…, 
β4,9) 

d1 d18 d0 d19 1 
d3 d16 d2 d17 

d5 d14 d4 d15 2 
d7 d12 d6 d13 

d9 d10 d8 d11 3 
d11 d8 d10 d9 

d13 d6 d12 d7 4 
d15 d4 d14 d5 

d17 d2 d16 d3 5 
d19 d0 d18 d1 

 
The remaining 16 constant values of Table 3 are used in 
the process of message expansion in four branches of 
FORK-160 (relation (3)). 

 

3. Design Principles 

In this section, we describe the security criteria for 
designing FORK-160 and the design process based upon 
these criteria. The design criteria include basic structure, 
additive constants, message expansion, nonlinear 
functions and rotation values. 

3.1 Basic Structure 

FORK-160 consists of four branches with parallel 
structure. This kind of structure refers to RIPEMD 
family hash function [7]. In this family, the functions 
with the same message ordering in each chaining 
variable words are resistant against collision attacks. So 
using message words with different permutation causes 
algorithm to be more secure [7, 8]. The second hash 
function which uses parallel structure is FORK-256. In 
FORK-256, each branch uses message words with 
different ordering. Pieprzyk et al. could find some 
weaknesses in FORK-256 compression function and 
attacked on two branches of the algorithm [9]. In 
addition, they showed that the security of algorithm 
against collision attack is of order 2126.6 FORK-256 
operator [9]. 

In FORK-160 an improved message permutation with 
using expanded message words are combined with each 
other to consolidate the algorithm against two branch 
attack. Moreover, interaction between two left and right 
parts of each step causes algorithm to be more resistant 
against attacks which are based on partitioning two 
parts of each step.   

3.2 Additive Constants 

According to the description of FORK-160 in section 2, 
each step function uses four additive constants; hence, 
BRANCH 1, which consists of five steps, uses 20 
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additive constants. Since each new branch uses a new 
permutation of 20 additive constants of the previous 
branch, the whole compression function uses 20 additive 
constants within its structure. It is notable that the last 
step of each branch uses 4 unique extra constants in its 
message expansion process; thus there are 16 constants 
used in message expansion for last steps of four 
branches. As a consequence, there are totally 36 
different additive constants, used in the compression 
process of FORK-160. Then totally 36 different constant 
values are applied in the FORK-160 compress function 
(Table 3). The contents of these 32-bit constants are 
selected in order to have the best possible diffusion 
which makes the algorithm more resistant against 
micro-collision finding attacks. The main criteria of 
selecting these constants are their independency; 
therefore, these constants represent the first 32 bits of 
the fractional parts of the cubic roots of the first 36 
prime numbers, which have no interrelationship. 

3.3 Message Expansion 

FORK-160 uses an expansion process for the fifth step 
of each branch. In this process, four message words are 
calculated from the original message block words, by 
the relation (3). This simple process uses the two word-
oriented functions, f and g, along with the dual XOR 
and modular sum operations and 16 additive constants. 
Therefore, the expansion process, while being efficient 
in performance, causes each branch to tolerate local 
collision attacks, due to the bit diffusion property. The 
notable criteria of the introduced expansion process are 
written as follows: 

1. Existence of modular addition causes nonlinear 
behavior against XOR difference. 

2. Using two functions f and g with one linear and one 
nonlinear operator causes high differential diffusion in 
output message words. 

3. One way structure of the expansion relation makes it 
infeasible to inverse the operations. 

The introduced message expansion in FORK-160 causes 
the algorithm to be more resistant than FORK-256 against 
attacks on single branch which will be considered in the 
following sections. 

3.4 Permutation of Message Words 

Since FORK-160 has parallel structure, it should 
necessarily tolerate simultaneous collision finding attacks 
in parallel branches. A simple method for this purpose is 
to use message re-ordering for different branches. In this 

case, if an attacker constructs an intended differential 
characteristic for one branch function, the ordering of 
message words will cause unintended differential patterns 
in the other branch functions; thus, finding specific 
differences for patterns would not be straightforward.  

There are some important criteria for designing this 
message permutation such as: balance of upper and lower 
part, balance of left and right part and balance of sums of 
in input indices [7]. We have designed the message 
permutation by inspiration of Latin square matrices, so 
that all of the former criteria are preserved and even 
improved in comparison with those of FORK-256. 
Moreover, by this selection of indices, passing the same 
differential pattern through two different branches has 
gotten hard. Further details are explained in the section 4. 

3.5 Functions and Shift Rotations 

Almost all dedicated hash functions use Boolean functions 
with three or more variables and therefore the weaknesses 
of these bit oriented functions could be exploited by 
attackers [7]. Some of the most well-known examples of 
these hash functions are MD4, MD5, HAVAL, RIMEMD 
and SHA0/1 [1,2]. Instead, FORK-160 uses two nonlinear 
word-oriented functions, f and g, which work on a single 
32-bit variable. These functions are the same as those in 
FORK-256. On the other hand, these functions affect all 
of the five chaining variable words during each step and, 
unlike FORK-256, we cannot divide each step to isolated 
left and right parts; this point causes resistance to the 
existing attacks on two branches [9]. 

   In FORK-160 each output of the functions f and g 
except the first one is rotated by specific number and then 
used to update chaining variable words. Using rotation, 
while having low complexity in software and hardware, 
causes differential diffusion within steps. This is an 
essential security principle for any existing dedicated hash 
function. These rotation constants, are calculated, using a 
heuristic search method among odd numbers (not devisors 
of 32), based upon SAC criteria. 

4. Security Analysis of FORK-160 

In this section, we explain security considerations in 
designing FORK-160. As stated in section 3, FORK-256 
hash function with parallel structure was designed in 
order to improve weaknesses appeared in the previous 
well- known hash functions. In spite of having apparent 
strong structure, FORK-256 contains weak points, 
especially in message permutation and interaction within 
chaining variable. Attacks on two branches of FORK-256 
and finding near collisions and approximations for full 
round [9] of the algorithm are evidences of these 
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weaknesses. Due to similarities between FORK-256 and 
FORK-160, we investigate the following considerations in 
comparison with the attacks implemented on FORK-256. 

1. Security analysis for a single branch of FORK-160 

2. Security analysis for two branches of FORK-160 
against collision attack        

4.1 Security Analysis for a Single Branch of FORK-
160 

In this section, we consider two possible types of attack on 
a single branch of FORK-160. The first attack is an 
ordinary collision finding attack and the second one is a 
chosen IV collision finding attack. Ignoring the advantage 
of using expansion for the fifth step of each branch, one 
can easily find a one branch collision by assigning 
compatible values for message words within the steps 1 to 
4 of the branch. For example, in this case the following 
algorithm leads to collision for the first branch with four 
steps: 

1. Select two message words M0 and M’0 with nonzero 
XOR difference ∆M0, which satisfy in the equation 
f(M0+δ0) = f(M’0+ δ0). 

2. Preserve zero differences output in 1st to 4th chaining 
variable words at the output of the second step by 
assigning zero values to all message words except for M9 
and M’9. 

3. Set: M9 = E1,4 and M’9 = E’1,4 in order to compensate 
the first differential and obtain the local collision. 

It is obvious that attack on a single branch of FORK-160 
would have no more complexity than that on FORK-256, 
without considering message expansion. However, the 
expansion in the fifth step, adds four new 32-bit check 
equations in the collision finding scenario which hold 
with the probability of 24*32=2128; consequently, this 
expansion increases the complexity of such a one branch 
collision finding attack up to 2128 trials which is even 
more than the complexity of birthday attack (280). Hence, 
even one branch of FORK-160 is resistant against such 
collision attacks. 

Another attack which is worth considering on a single 
branch of FORK-160 is chosen IV collision finding 
attack. This attack can be applied on any single branch 
of FORK-160. For example, considering the first branch 
of FORK-160, one can find a chosen IV collision by 
implementing the following algorithm: 

1. Select two messages M and M’ with two message 
words M0 and M’0 and two initial chaining variables IV 

and IV’ with two different first words IV[0] and IV’[0], 
provided that M0 = IV[0] and M’0 = IV’[0], 

2. Preserve zero values for outputs of all chaining 
variable words, by assigning zero to all message words 
except M0 and M’0. 

3. If ∆A1,10=0, ∆B1,10=0, ∆C1,10=0, ∆D1,10=0, ∆E1,10=0, 
then one collision is found; return the collision. 

4. Else, return to 1. 

The complexity of above algorithm for finding chosen 
IV collision would be also of O (2128) due to the 
limitations of four equations in the fifth step of the 
branch. However, we tried about 237 message and IV 
differentials and investigated whether there are any 
collisions in one branch output, through simulation. As 
a consequence, we could only find one word collision 
(i.e. an output word with zero differentials) for the 
branch. This simulation result also reveals that even one 
branch of FORK-160 is resistant against collision 
attacks, based upon our knowledge. 

4.2 Security Analysis for Two Branches of FORK-
160 against Collision Attack 

In this section, we investigate the security of two 
branches of FORK-160 against differential based 
cryptanalysis to find collisions. In our cryptanalysis by 
each round, we mean half of a step in which two 
messages, two additive constants, one function f and one 
function g is used and finally a word permutation in 
chaining variable is occurred. In other words, (Aj,k+1, 
Bj,k+1, Cj,k+1, Dj,k+1, Ej,k+1) is the result of one round 
implementation in BRANCH j on (Aj,k, Bj,k, Cj,k, Dj,k, 
Ej,k), according to Fig. 2. 

Since the number of ways for choosing 2 branches from 
the four branches of FORK-160 is 6, our objective is to 
investigate how it is hard to find any simultaneous 
collisions in each of these 6 pairs of branches. To 
achieve the goal, we consider each branch without the 
fifth step function. Then, we extend the attack five-step 
branch pairs. The attack design scenario on four-step 
branch pairs is written as follows: 

For each pair of branches, we activate one differential 
message in the first branch and trace the effects of the 
selected differential message over the other branch. In this 
way, we can omit the influence of activated chaining 
variables by choosing the other message. Finally, we 
calculate the alternation of differential chaining variables 
in each chaining variable (totally 10 chaining variables 
for 2 branches) while we trace the outputs of forth rounds. 
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Also we must observe the alternation of differential 
chaining variables in 10 chaining variables after the last 
step function. We compare the differences of 2 branches 
in chaining variables outputs, it is clear that in the case of 
equality, collisions are gained. 

Table 1 shows that differential chaining variables sets that 
can be calculated for simultaneous equations provided 
that message pairs (Mi,Mj) are altered. 

Table 5. Set of pairs of messages (Mi,Mj) which are used in 
simultaneous equations 

(1,4) (1,3) (1,2) 
pairs of 
branch 

 
(M1,M11) 
(M3,M4) 

(M3, M14) 
(M4, M14) 

(M0,M10) 
(M1,M11) 
(M4,M14) 
(M5, M15) 

(M4,M14) 
pairs of 
message

s 

(3,4) (2,4) (2,3) 
pairs of 
branch 

 

(M1, M6) 
(M1, M11) 
(M4, M14) 
(M6, M11) 

(M1, M11) 
(M2, M8) 
(M4, M14) 
(M7, M13) 

(M10, 
M15) 

(M1, M11) 
(M4, M9) 
(M4, M14) 
(M9, M14) 

pairs of 
message

s 

 
The equations of selected messages in Table 5, which 
must be satisfied, can be seen in Table 6. In this table (f 
i,g j) of columns (N,M) means that it is required to build 
simultaneous collision equation for ith round (considering 
each two-round steps) of branch number N and  
simultaneous collision equation for jth round of branch 
number M. e.g. (f  6,f  2f 3g 7) in the cell (3,4) represents one 
equation of function f at round 6 in the third branch and 
three equations of f,f and g at round 2,3 and 7 respectively 
in the forth round.  
 
 

Table 6. Formation of simultaneous collision equations 
 for each 2 branches before expansion. 

(1,4) (1,3) (1,2) 

pairs of 
branch 

 
 

pairs of 
messages 

- (f1g6,f 1g6) - (M0, M10) 

- - - (M1, M6) 

(g1g2,f 3g7) (g1g2,g1g2) - (M1, M11) 

- - - (M2, M8) 

(f 2,g1g2f 6) - - (M3, M4) 

(f 2f 3g7,f 6) - - (M3, M14) 

- - - (M4, M9) 

(f 3g7,g1g2) (f 3g7,f 3g7) (f3g7,g2) (M4, M14) 

- (g3g4,g3g4) - (M5, M15) 

- - - (M6, M11) 

- - - (M7, M13) 

- - - (M9, M14) 

- - - (M10, M15) 

 (3,4) (2,4) (2,3) 

pairs of 
branch 

 
 

pairs of 
messages 

- - - (M0, M10) 

(f 6,f 2f 3g7) - - (M1, M6) 

(g1g2,f 3g7) (f 3g7,f 3g7) (f 3g7,g1g2) (M1, M11) 

- (g3g4,g3g4) - (M2, M8) 

- - - (M3, M4) 

- - - (M3, M14) 

- - (f6,f 2f 3g7) (M4, M9) 

(f3g7,g1g2) (g2,g1) (g2,f 3g7) (M4, M14) 

- - - (M5, M15) 

(g1g2,f 2) - - (M6, M11) 

- (f1g5,f 1g5) - (M7, M13) 

- - (g2f 6,f 2) (M9, M14) 

- (f2f3,f 4) - (M10, M15) 

According to Table 5 and Table 6, it can be concluded 
that at least 2 simultaneous equations (in only one 
position) are required, moreover it is obvious that the last 
step function added to simultaneous equations causes the 
propagation of differential messages in 10 output chaining 
variables of 2 branches to be too high. 

 

5. Performance Analysis of FORK-160 
 

The performance of FORK-160 in software is compared 
with other hash functions such as MD5, SHA-1, 
RIPEMD-160 and FORK-256 in Table 7. The 
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performance comparison is accomplished using Pentium 
IV, 2.8 GHz, 512MB RAM/ Microsoft Windows XP 
Professional v. 2002/ Microsoft Visual C++ Ver. 6.0.  

Table 7. Comparison of FORK-160 performance with the other 
hash functions, implemented on P4/WinXP/VC (all numbers are 
in Mbps). 

Alg. MD5 
FORK-
160 

SHA-1 
RIPEMD-
160 

FORK-
256 

Perf. 1656.49 728.77 616.83 593.10 478.70 

The software implementation of FORK-160 in this 
evaluation is not well-optimized, thus we expect some 
improvement in performance of any prospective 
optimized version of this algorithm. However, the 
simulation results in Table 7 imply that FORK-160 is 
about 18% faster than SHA-1 and 23% faster than 
RIPEMD-160 on a Pentium PC. 

6. Conclusions 

This paper deals with designing a new dedicated hash 
function with 160-bit output length, which we have called 
FORK-160. Our designing scheme has been based on 
parallel structure used in FORK-256. The introduced 
design criteria yielded more resistance against existing 
collision attacks in comparison to FORK-256. We 
analyzed resistance of FORK-160 against single branch 
and dual branches collision attacks, with regard to attacks 
which have been implemented on FORK-256 [9]. We 
have also evaluated performance of FORK-160 and 
compared it by well-known hashing algorithms, namely 
MD5, SHA-1, RIPEMD-160 and FORK-256.  

The dual security analysis and performance simulation 
results indicate that our introduced hash function is not 
only more secure but also more efficient in software 
performance in comparison to the standard hash 
algorithm, SHA-1 and other functions such as RIPEMD-
160 and FORK-256. As a result, we believe that FORK-
160 could replace previous 160-bit hash functions, like 
SHA-1 in various applications. In fact, from the security 
point of view, there are various suggestions to improve 
FORK-160; nonetheless, in these cases the performance 
might be sacrificed. 
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Appendix A: Source Code 

 
typedef unsigned int UINT; 
//DELTA VALUES 
UINT Delta[36]={ 
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 
0x3956c25b, 0x59f111f1, 0x923f82a4,0xab1c5ed5, 
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,  
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13}; 
 
//ALPHA VALUES 
UINT Alpha[4][10]={ 
Delta[0],Delta[2],Delta[4],Delta[6],Delta[8],Delta[10],Delt
a[12],Delta[14], Delta[16], Delta[18], 
Delta[19],Delta[17],Delta[15],Delta[13],Delta[11],Delta[9
], Delta[7], 
Delta[5],Delta[3],Delta[1],Delta[1],Delta[3],Delta[5],Delta
[7], Delta[9], Delta[11], 
Delta[13],Delta[15],Delta[17],Delta[19],Delta[18],Delta[1
6],Delta[14], Delta[12], 
Delta[10],Delta[8] ,Delta[6],Delta[4],Delta[2],Delta[0] }; 
 
 
 
//BETA VALUES 
UINT Beta[4][10]={ 
Delta[1],Delta[3],Delta[5],Delta[7],Delta[9],Delta[11],Delt
a[13],Delta[15], Delta[17], Delta[19], 
Delta[18],Delta[16],Delta[14],Delta[12],Delta[10],Delta[8
], Delta[6], 
Delta[4],Delta[2],Delta[0],Delta[0],Delta[2],Delta[4],Delta
[6],Delta[8], Delta[10], 
Delta[12],Delta[14],Delta[16],Delta[18], 
Delta[19],Delta[17], Delta[15], Delta[13], 
Delta[11],Delta[9], Delta[7],Delta[5],Delta[3],Delta[1] }; 
  
//NECESSARY FUNCTION 
#define ROL(x,n) (x << n) | (x >> (32-n))     // n-bit left  
rotation 
#define F(x)     (x + (ROL(x,7)^ROL(x,22))) 
#define G(x)     (x ^ (ROL(x,13)+ROL(x,27))) 
 
//STEP FUNCTION 
#define 
step(A,B,C,D,E,M1,M2,M3,M4,Alpha1,Alpha2,Beta1, 
Beta2) 
A=(A^M1)+Alpha1;\ 

temp3=(E^M2)+Beta1;\ 
temp2 = F(A);\ 
temp4 = G(temp3);\                        
temp1 = (temp3^M3)+Alpha2;\ 
D = (D+ROL(temp2,23))^ temp4;\ 
C =(C+ROL(temp2,13))^ROL(temp4,5);\ 
B = (B+temp2)^ROL(temp4,11);\ 
E=(D^M4)+Beta2;\ 
temp2 = G(temp1);\ 
temp3 = F(E);\ 
D = (C+ROL(temp2,23))^ temp3;\ 
C = B+ROL(temp2,13))^ROL(temp3,5);\ 
B = (A+temp2)^ROL(temp3,11);\ 
A = temp1^ROL(temp3,17); 
           
static void FORK160_Compression_Function(unsigned int 
*CV, unsigned int *M) {  
unsigned long R1[5],R2[5],R3[5],R4[5]; 
unsigned long temp1, temp2, temp3,temp4; 
R1[0] = R2[0] = R3[0] = R4[0] = CV[0]; 
R1[1] = R2[1] = R3[1] = R4[1] = CV[1]; 
R1[2] = R2[2] = R3[2] = R4[2] = CV[2]; 
R1[3] = R2[3] = R3[3] = R4[3] = CV[3]; 
R1[4] = R2[4] = R3[4] = R4[4] = CV[4]; 
 
// BRANCH1(CV,M) 
step(R1[0],R1[1],R1[2],R1[3],R1[4],M[0],M[1],M[2],M[
3],Alpha[0][0], Alpha[0][1],Beta[0][0], Beta[0][1]); 
step(R1[4],R1[0],R1[1],R1[2],R1[3],M[4],M[5],M[6],M[
7],Alpha[0][2], Alpha[0][3],Beta[0][2], Beta[0][3]); 
step(R1[3],R1[4],R1[0],R1[1],R1[2],M[8],M[9],M[10],M
[11],Alpha[0][4], Alpha[0][5],Beta[0][4],Beta[0][5]); 
step(R1[2],R1[3],R1[4],R1[0],R1[1],M[12],M[13],M[14]
,M[15],Alpha[0][6], Alpha[0][7], Beta[0][6],Beta[0][7]); 
step(R1[1],R1[2],R1[3],R1[4],R1[0],G(M[16]+Delta[20])
,F(M[17]+Delta[21]), F(M[18]+ 
Delta[22]),G(M[19]+Delta[23]),Alpha[0][8],Alpha[0][9],
Beta[0][8], Beta[0][9]); 
 
// BRANCH2(CV,M) 
step(R2[0],R2[1],R2[2],R2[3],R2[4],M[12],M[13],M[14]
,M[15],Alpha[1][0], Alpha[1][1], Beta[1][0],Beta[1][1]); 
step(R2[4],R2[0],R2[1],R2[2],R2[3],M[1],M[2],M[3],M[
0],Alpha[1][2], Alpha[1][3],Beta[1][2], Beta[1][3]); 
step(R2[3],R2[4],R2[0],R2[1],R2[2],M[5],M[6],M[7],M[
4],Alpha[1][4], Alpha[1][5],Beta[1][4], Beta[1][5]); 
step(R2[2],R2[3],R2[4],R2[0],R2[1],M[9],M[10],M[11],
M[8],Alpha[1][6], Alpha[1][7],Beta[1][6],Beta[1][7]); 
step(R2[1],R2[2],R2[3],R2[4],R2[0],G(M[17]+Delta[24])
,F(M[18]+Delta[25]), 
F(M[19]+Delta[26]),G(M[16]+Delta[27]),Alpha[1][8],Al
pha[1][9],Beta[1][8], Beta[1][9]); 
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// BRANCH3(CV,M) 
step(R3[0],R3[1],R3[2],R3[3],R3[4],M[10],M[11],M[8],
M[9],Alpha[2][0], Alpha[2][1],Beta[2][0],Beta[2][1]); 
step(R3[4],R3[0],R3[1],R3[2],R3[3],M[14],M[15],M[12]
,M[13],Alpha[2][2], Alpha[2][3], Beta[2][2],Beta[2][3]); 
step(R3[3],R3[4],R3[0],R3[1],R3[2],M[2],M[3],M[0],M[
1],Alpha[2][4], Alpha[2][5],Beta[2][4], Beta[2][5]); 
step(R3[2],R3[3],R3[4],R3[0],R3[1],M[6],M[7],M[4],M[
5],Alpha[2][6], Alpha[2][7],Beta[2][6, Beta[2][7]); 
step(R3[1],R3[2],R3[3],R3[4],R3[0],G(M[18]+Delta[28])
,F(M[19]+Delta[29]), 
F(M[16]+Delta[30]),G(M[17]+Delta[31]),Alpha[2][8],Al
pha[2][9],Beta[2][8], Beta[2][9]); 
 
// BRANCH4(CV,M) 
step(R4[0],R4[1],R4[2],R4[3],R4[4],M[7],M[4],M[5],M[
6],Alpha[3][0], Alpha[3][1],Beta[3][0], Beta[3][1]); 
step(R4[4],R4[0],R4[1],R4[2],R4[3],M[11],M[8],M[9],M
[10],Alpha[3][2], Alpha[3][3],Beta[3][2],Beta[3][3]); 
step(R4[3],R4[4],R4[0],R4[1],R4[2],M[15],M[12],M[13]
,M[14],Alpha[3][4], Alpha[3][5], Beta[3][4],Beta[3][5]); 
step(R4[2],R4[3],R4[4],R4[0],R4[1],M[3],M[0],M[1],M[
2],Alpha[3][6], Alpha[3][7],Beta[3][6], Beta[3][7]); 
step(R4[1],R4[2],R4[3],R4[4],R4[0],G(M[19]+Delta[32])
,F(M[16]+Delta[33]), 
F(M[17]+Delta[34]),G(M[18]+Delta[35]),Alpha[3][8],Al
pha[3][9],Beta[3][8], Beta[3][9]); 
// OUTPUTS 
CV[0] + =((R1[0] + R2[0]) ^ (R3[0] + R4[0])); 
CV[1] + = ((R1[1] + R2[1]) ^ (R3[1] + R4[1])); 
CV[2] + = ((R1[2] + R2[2]) ^ (R3[2] + R4[2])); 
CV[3] + =((R1[3] + R2[3]) ^ (R3[3] + R4[3])); 
CV[4] + = ((R1[4] + R2[4]) ^ (R3[4] + R4[4])); 
} 

Appendix B: Test vector 

//IN ITIALIZATION 
CV[0]=0x6a09e667;CV[1]=0xbb67ae85;CV[2]=0x3c6ef
372; 
CV[3]=0xa54ff53a;CV[4] = 0x510e527f; 
 
//MESSAGE 1 
M[0]=0x4105ba8c; M[1]=0xd8423ce8; 
M[2]=0xac484680;   M[3]=0x07ee1d40; 
M[4]=0xbc18d07a; M[5]=0x89fc027c;  
M[6]=0x5ee37091;   M[7]=0xcd1824f0; 
M[8]=0x878de230; M[9]=0xdbbaf0fc;   
M[10]=0xda7e4408; M[11]=0xc6c05bc0; 
M[12]=0x33065020; M[13]=0x7367cfc5; 
M[14]=0xf4aa5c78;M[15]=0xe1cbc780; 

 
 //AFTER EXPANSION (MESSAGES FOR THE LAST 
STEPS) 
//Branch 1: 
M[16]=0x64bf34a5;  M[17]= 0xb9252343;  
M[18]= 0x84a95a9d;  M[19]= 0x73d6269;     
//Branch2.   
M[16]= 0xf5f70369;  M[17]= 0xd27c3754;  
M[18]= 0x1443c1d9; M[19]= 0xb0eff316; 
//Branch3.  
M[16]= 0xeb1433a;  M[17]= 0xec2d94f8;   
M[18]= 0xe19df64a;  M[19]= 0xbaa53246; 
//Branch4.  
M[16]= 0x5ea6c2c6; M[17]= 0xa2ed73df;  
M[18]= 0xfd5b09a;    M[19]= 0x827d0202;  
//OUTPUT 1 
CV[0] = 0x6ebd05c2; CV[1] = 0x955a2b42; CV[2] = 
0xb86ceabd;  
CV[3] = 0xa8af1084; CV[4] = 0xb4ce0111; 
 
//MESSAGE 2 
memset(M,0,15*sizeof(UINT)); //M[0~15]=0 
//AFTER EXPANSION (MESSAGES FOR THE LAST 
STEPS) 
//Branch1.   
M[16]= 0x5006c190; M[17]= 0x854761cf;   
M[18]= 0xdc08980a; M[19]= 0x85464605;  
//Branch2.   
M[16]= 0x46d5a2dd; M[17]= 0x441d0562; 
M[18]= 0xa3c30ca1; M[19]= 0x80a38038;  
//Branch3.   
M[16]= 0x599f732c;  M[17]= 0xa9a57d35; 
M[18]= 0xfc3c1dec;  M[19]= 0x2984c2a8; 
//Branch4. 
M[16]= 0xcecab673; M[17]= 0x7db6c017; 
 M[18]= 0x4c646d3b; M[19]= 0xc883e77c; 
 
//OUTPUT 2 
CV[0]=0x5f87ccad;  CV[1]=0xd4b5fdac;  
CV[2]=0x6293277f;  
CV[3]=0xd25d3bb2; CV[4]=0x7d5ff391; 


