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Summary 
In this paper, the bidirectional associative memory (BAM) 
neural network with both delays and reaction diffusion 
terms is considered. By employing analytic techniques, a 
simple criterion is presented for checking the existence 
and uniqueness of the equilibrium and its global 
exponential stability for the neural network. The criterion 
improves and extends some recent results. 
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1. Introduction 

The bidirectional associative memory (BAM) neural 
network model was first introduced by Kosko [1]. The 
classes of neural networks have been successfully applied 
to pattern recognition, signal and image process, artificial 
intelligence due to its generalization of the single-layer 
auto-associative Hebbian correlation to a two-layer 
pattern-matched heteroassociative circuits. Some of these 
applications require that the designed network has a 
unique stable equilibrium point. 

 In hardware implementation, time delays occur due to 
finite switching speed of the amplifiers and 
communication time [2]. Time delays will affect the 
stability of designed neural networks and may lead to 
some complex dynamic behaviors such as periodic 
oscillation, bifurcation, or chaos [3]. Therefore, study of 
neural dynamics with consideration of the delayed 
problem becomes extremely important to manufacture 
high quality neural networks. Some results concerning the 
dynamical behavior of BAM neural networks with delays 
have been reported, for example, see [2-19] and references 
therein. The circuits diagram and connection pattern 
implementing for the delayed BAM neural networks can 
be found in [8]. 

It is well-known that diffusion effect cannot be avoided 
in the neural networks when electrons are moving in 
asymmetric electromagnetic fields [20], so we must 

consider the activations vary in space as well as in time. 
There has been some works devoted to the investigation of 
the stability of neural networks with reaction-diffusion 
terms, which are expressed by partial differential 
equations, for example, see [20-26] and references therein. 
To the best of our knowledge, few authors have studied 
the stability of impulsive BAM neural network model 
with both time-varying delays and reaction-diffusion 
terms.  

In this paper, we consider the delayed BAM neural 
network with reaction diffusion terms and present a 
modified stability criterion. 

2. Model description and preliminaries 

In this paper, we consider the following model:  

1

( ) ( , )
m

i i
ik i i

k k k

u u
a u t x

t x x
a

=

¶ ¶¶
= -

¶ ¶ ¶
å   

1

( ( ), ) , ,
p

ji j j ji i
j

p f v t x I xt
=

+ - + ÎWå          (1) 

1

( ) ( , )
m

j j

jk j j
k k k

v v
b v t x

t x x
b

=

¶ ¶¶
= -

¶ ¶ ¶
å  

1

( ( ), ) , .
n

ij i i ij j
i

q g u t x J xs
=

+ - + ÎWå       (2) 

The boundary conditions are the following: 
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where 1,2, , ,i n= L 1,2, , ,j p= L  0t ³ ; 0,ia >  0jb >  are 

all constants; W is a compact set with smooth boundary 

¶W , and 0mesW>  in space 
mÂ ; n , p are the number 
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of neurons; ( , )iu t x , ( , )jv t x are the states of the ith 

neurons and the jth neurons; jit ijs are the transmission 

delays; ( ( , ))j j jif v t xt- , ( ( , ))i i ijg u t xs- are the input-output 

function of the jth neurons and the ith neurons ; ,i jI J are 

the external inputs; ,j i i jp q are the connection 

weights; 0ika ³ , 0jkb ³ are the transmission diffusion 

operator. 

The initial conditions associated with (1-4) are 
assumed to be of the forms. 

( , ) ( , ), 0, ( , ) ( , ), 0,i i j iu s x s x s v s x s x sj t y s= - £ £ = - £ £  

where 
1 ;1 1 ;1

max , maxji ij
i n j p i n j p

t t s s
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= = , we assume that 

the input-output functions ,i jg f  possess the following 

properties. 

(H) There are constants 0ia > and 0jb > such that 

| ( , ) ( , )| | |,i i ig u x g v x u va- £ -  | ( , ) ( , )| | |j j jf u x f v x u vb- £ -  

for any ,u vÎÂ, xÎW, 1,2, , ; 1,2, ,i n j p= =L L . 
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Definition 1 The equilibrium 
* *( , )Tu v of model (1)-(4) 

is said to be globally exponentially stable, if there exist 

constants 0e >  and 1K >  such that 
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Definition 2 [27]. A map H: 
nÂ ® nÂ is a 

homeomorphism of 
nÂ  onto itself, if H

0CÎ , H is one-

to-one, H is onto and the inverse map 

1 0H C- Î . 

Lemma 1 [27]. Let : n nH Â®Â  be continuous. If H 
satisfies the following conditions:  

(i) ( )H x  is injective on 
nÂ . 

(ii) || ( ) ||H x ®¥ as || ||x ®¥. 

Then H is a homeomorphism. 

3. Main result 

Theorem 1. Under assumption (H), model (1)-(4) has a 
unique equilibrium point, which is globally exponentially 

stable, if there exist constants 0,r>  0s >  ( 1 1 1r s- -+ = ), 

),,2,1(0 pnqd q +=> L such that 
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for  1,2, , ;i n= L 1,2, ,j p= L . 

Proof. We shall prove this theorem in two steps. 
Step1: We will prove the existence and uniqueness of 

the equilibrium point.  

Consider the following functions associated with model 
(1)-(2) 
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From (8), by ( 1H ) and Young's inequality, we have 
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In view of (5) and (6), we have 
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1 2
1 1

0 ( | | | | )
pn

r r
i i j j

i j

u u v vJ J
= =

£ - - + -å å . 

Hence, i iu u= and j jv v= ( 1,2, , ;i n= L 1,2, ,j p= L ), which 

is a contradiction. So, the map H is an injective on 
n p+Â . 

Second, we shall prove that || ( )||H u ®¥ as || ||u ®¥ . 
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According to the classical results in functional analysis, 

for any two different vector norms 1|| ||×  and 2|| ||× defined 

on nÂ, they are equivalent in sense that there exist two 

positive constants 1c  and 2c  such that 
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So, From Lemma 1, we know that )(zH  is a 

homeomorphism on 
n p+Â , thus model (1)-(2) has a 

unique equilibrium point. 
 

Step2: We prove that the unique equilibrium point of 
model (1)-(2) is globally exponentially stable.  

Suppose that 
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Now consider the Lyapunov functional as the following 
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This implies that the equilibrium of system (1)-(2) is 
globally exponentially stable. The proof is completed. 

Remark 1 Taking r=s=2 in Theorem 1 of this paper, 
we can directly obtain the Theorem 1 in [23]. If the 

smooth operators 0ik jka b= = , 1,2, ,i n= L , 

1,2, ,j p= L , 1, ,k m= L , and gf = , then model 

(1)-(2) turns to the following BAM neural networks in [8] 
and [9]. It is easy to see that the presented stability criteria 
in [8] and [9] are also the special cases of Theorem 1 of 
this paper. 

Remark 2 In [3], [4], [7], [8], [9], [10], [12], [14], [15], 
[23] and [25], the boundedness of the activation functions 
was required. However, the boundedness of the activation 
functions was removed. 

Remark 3 From the process of the proof of Theorem 1, 
we know that the method of this paper can be applied to 
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study the stability of the BAM neural networks with both 
distributed delays and reaction diffusion terms. 

4. Conclusions 

In this paper, we have presented a modified stability 
criterion by employing analytic techniques. The given 
criterion improves and extends some recent results. It 
should be pointed out that the boundedness of the 
activation functions has been removed in our result. 
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