
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

212

Manuscript received September 5, 2007

Manuscript revised September 20, 2007

Storage and Rekeying Cost for Cumulative Member Removal

in Secure Group Communication

A S Poornima1, R. Aparna 1, Dr. B.B. Amberker 2

1Dept. of Computer Science & Engineering Siddaganga Institute of Technology

 Tumkur 572 103, Karnataka, India
2Dept. of Computer Science & EngineeringNIT, Warangal, A.P. India

Summary
Many applications like pay-per-view, distribution of digital
media etc., require secure group communication services in
order to deliver packets from one or more authorized senders to
a large number of authorized receivers. The main issue in secure
group communication is group dynamics and key management.
A scalable secure group communication model ensures that
whenever there is a membership change, new group key is
computed and distributed to the group members with minimal
computation and communication cost. Handling member
removal(leave) is more complex than member join event in any
secure group communication model. In this paper m-ary tree
structure is used, with number of keys at each level being m.
Here, we address cumulative member removal(leave) and
present protocols that minimize the number of messages
required to distribute new group key to remaining members in
the group. The issues related to two members removal(leave)
and cumulative arbitrary members removal are handled

separately.

Key words:
Cumulative member removal, encryption keys, secure group
communication

1. Introduction

Applications such as pay-per-view, distribution of
digital media, pay-per-use multi-party games, and
restricted conferences fall in the category where the
receiver set needs to be restricted to legitimate subscribers.
To setup such a secure group, each secure multicast group
is associated with one or more trusted servers responsible
for managing membership to the group called as key
server. When a client wants to join the group, the client
and key server mutually authenticate using an
authentication protocol. If the client is permitted to join
the group, the key server provides it with the required
keys. The keys sent to the client include the group key
which is shared by all members of the group and auxiliary
keys, depending upon the key distribution algorithm.

The key server is also responsible for handling client
removal and leaving event. Leaving is initiated by a client
and is important in applications such as pay-per-view
where a client leaving a group would like to ensure that it
is no longer charged for usage. Removal of group member
is usually initiated by a key server and is important in
cases where the particular group member loses the access
control privileges.

To prevent a new user (join operation) from reading

past communications (backward access control) and a
departed user (leave operation or removal) from reading
future communications (forward access control), the key
server has to change the group key (rekey operation)
whenever group membership changes. For large groups,
join and leave requests can happen frequently. Therefore a
group key management service should be scalable with
respect to frequent key changes.

The topic of key management for multiparty

communications are studied in [1,4,5,6,7,8]. The
scalability problem associated with frequent key changes
in a large group is addressed in [10,2]. In [10] Iolus
addresses the scalability problem by dividing a large
group into multiple subgroups and employing a hierarchy
of group security agents. The scheme proposed in [2] uses
a hierarchy of keys to solve the scalability problem. A key
update in this scheme requires O(log2 N) messages where
N is the size of the group. In this scheme each client has
to store log2 N keys (i.e., keys along the path from leaf to
the root) and the key server has to maintain a tree of O(N)
keys. The scheme proposed in [3] focuses on the problem
of cumulative member removal and finds out the
minimum number of messages required to distribute new
keys to the remaining group members. The entire
operation in this paper focuses on binary tree and uses
Boolean Function Minimization techniques.

Our approach proposed in this paper also focuses on

cumulative member removal with minimum rekey

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

213

messages to update the keys whenever there is a
membership change. The scheme discussed in [3] is
extended in this paper to m-ary tree instead of binary tree.
Our scheme distributes new group key to the remaining
group members with minimum number of messages as
compared to the scheme in [2]. In our scheme, in order to
avoid the leaving members using auxiliary keys to learn
the new group key, auxiliary keys are also updated.

The paper is organized as follows: In Section 2 we

discuss about motivation. In Section 3, we brief about the
model and notations used in the paper, sections 4, 5 and 6
discuss about single member removal, two members
removal and cumulative arbitrary members removal
respectively along with protocols and comparison with
Wong et al scheme [2].

2. Motivation

In [3] binary tree structure is used. When the group is
large, the number of levels in the binary tree will be more
which increases number of keys at user. Extending the
scheme to m-ary tree will reduce the height of the tree
reducing number of keys at each user. At the same time
we should consider server side storage i.e., number of
keys at every level of the key tree. In [3] two keys are
maintained at every level of the key tree, extending the
scheme to m-ary tree will result in maintaining m keys.

For a group size n, if d is the height of the binary tree,
it results in storing 2*d keys at the server. For the same
value of n, if d' is the height of the m-ary tree, then m*d'
keys are to be stored at the server. We can have the
relation
 n = 2d = md'
→ d'= d/log2 m

Number of keys at server in m-ary tree in terms of d can
be represented as m*(d/log2 m), which illustrates that as
m increases, number of keys at server will increase, which
violates our motto. Hence in order to maintain minimum
number of keys both at user and server, following relation
has to be satisfied :
(m*d/log2 m) ≤ 2*d which is true only if m ≤ 4.

3. Model and Notations

m-ary tree: is a tree with the following properties:
 (i) each interior node has at most m children
 (ii) each path from the root to a leaf has the same length

N: Total number of users associated with the group and
all users must be at the leaf level. Each user is
assigned with Unique Identification Number (UID)
which is a binary string of length n (where n= log2
N).

Subgroups: Each interior node containing at the
maximum m children nodes forms one subgroup.
Subgroups at level i are assigned with keys Ki0 to K

i(m-1) called Auxiliary keys at level i.
Keys: Individual user keys of any subgroup are numbered

from K0 to Km-1 so that all users at position 0 of all
subgroups are assigned with key K0 and all users at
position 1 of all subgroups are assigned with key K1
and so on up to Km-1.

{GK} K0 denotes GK is encrypted with the key
K0.

 || denotes concatenation operation

From fig. 1 the values of N, m, n, keys, auxiliary keys and
group key are as follows:
N=16 m=4 n=4

Keys:

Users u0, u4, u8, u12 are assigned with key K0

Users u1, u5, u9, u13 are assigned with key K1

Users u2, u6, u10, u14 are assigned with key K2

Users u3, u7, u11, u15 are assigned with key K3

K10, K11, K12, K13 are auxiliary keys at level 1.

GK is the group key shared by u0, u1, u2, u3, u4, u5, u6, u7,
u8, u9 ,u10, u11, u12, u13, u14 , u15.

4. Single member Removal (Leave)

If a single member wants to leave the multicast group
voluntarily or is removed (expelled) from the group, a
new group key must be computed and distributed to the
remaining members in the group, so that leaving member
will not be able to decrypt the future messages. The
rekeying method used when a single member leaves the
group is similar to the one used in [2]. In fig.1 if user u2

leaves, the rekey message to distribute new group key,
GK' is
[{ GK'} K0 || { GK'} K1 || { GK'} K3 || { GK'} K11 ||
{ GK'} K12 || { GK'} K13]

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

214

 After distributing new group key to remaining
members in the multicast group securely, auxiliary keys
are updated using the function F as follows:
F(auxiliary key, new group key) ← (Auxiliary key) XOR
(New Group key)
Same method holds good for all the following cases to
compute new auxiliary keys.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

215

5. Two members removal (leave) at a time

When two members leave the multicast group

voluntarily or being removed from the group, we need to
address three different cases: (i) both the leaving members
are from the same subgroup, (ii) leaving members
belonging to different subgroups but at the same position
with common individual key (for eg., in fig.1 u1 and u5
are the members belonging to different subgroups sharing
the key K1), (iii) leaving members belonging to different
subgroups and also at different positions with different
individual keys (for e.g., in fig.1 users u4 and u9 belong to
subgroup 1 and 2 respectively with individual keys being
K0 and K1 respectively).

 Protocol 1 depicts the computation of encryption keys
for two members removal (leave) case.

Notations used in Protocol 1:
Let L1 and L2 be the UIDs of leaving members.

KEK : is the set, initially empty, and at the end contains
the keys used to encrypt the new group key.
P: Lower order log2 m bits of L1

Q: Lower order log2 m bits of L2

h1 : Higher order log2 m bits of L1

h2 : Higher order log2 m bits of L2
U : denotes set union operation

At the end of protocol 1, KEK contains the keys which
are individually used to encrypt GK' .

Protocol 1 can be summarized for all the three cases using
fig.1 as follows:

Case (i): let L1 = u5 and L2 = u6
/* leaving members from the same subgroup */

 KEK = { K10, K12 , K13, K0, K3}

Following users can decrypt the new group key GK'

encrypted using the keys of set KEK:
 u0, u1, u2, u3 (using key K10)
 u8, u9 ,u10, u11 (using key K12)
 u12, u13, u14 , u15 (using key K13)

 u4 (using key K0)

 u7 (using key K3)

For the same members removal, Wong et al. scheme of
[2] requires 6 encryptions, whereas our scheme requires 5
encryptions.

GK

K13 K12 K11 K10

K3 K2 K1 K0

U0

K3
K2 K1 K0 K3 K2 K1 K0 K3

K2
K1 K0

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110

U1 U3 U2 U4 U5 U6 U7 U8 U9 U14 U13 U12 U11 U10 U15

1111

Fig.1. Key tree structure showing UIDs and keys of users in the group, auxiliary keys and group key

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

216

Step 1: Repeat thru Step 3
 for i ← 0 to m-1 do

 if (h1 ≠ i and h2 ≠ i) /* leaving members not belonging to subgroup i*/

 KEK← KEK U { key at the parent of subgroup i }
 Else
 Goto Step 2.

Step 2: if (P = =Q) /* if leaving members are from the same position of different subgroups */
 Begin
 Repeat for j ← 0 to m-1 do

 if (j ≠ P)

 KEK← KEK U { key at member j of subgroup i }
 Continue with Step 1
 End
 Else
 Goto Step 3

Step 3: /* if leaving members are from different positions of two different subgroups */
 Repeat for k ← 0 to m-1 do
 Begin
 if ((k ≠ P) and (k ≠ Q))

 KEK← KEK U { key at member k of subgroup i }
 else
 if(k= =P) /* compute new encryption key EK*/
 EK = (key at parent of member L2) XOR
 (key at member k of subgroup i)
 KEK← KEK U {EK}

 else /* k ≠ P but k = Q , compute new encryption key EK*/
 EK = (key at parent of member L1) XOR
 (key at member k of subgroup i)
 KEK← KEK U {EK}
 End

Step 4: return (KEK)

Protocol 1 : Computation of encryption keys for two members removal (leave)

Case (ii): let L1 = u1 and L2 = u9
 /* leaving members are from the same position of
different subgroups */

KEK = { K0, K2 , K3, K11, K13}

 Following users can decrypt the new group key GK'

encrypted using the keys of set KEK:
 u4, u5, u6, u7 (using key K11)
 u12, u13 ,u14, u15 (using key K13)
 u0, u8, u4 , u12 (using key K0)
 u2, u6, u10, u14 (using key K2)

 u3, u7 ,u11, u15 (using key K3)

For the same members removal, Wong et al. scheme of [2]
requires 10 encryptions, where as our scheme requires 5
encryptions.

Case (iii): let L1 = u2 and L2 = u13
 /* leaving members are from different positions of two
different subgroups */
 KEK = { K0, K3, K11 , K12, K13 XOR K2 , K10 XOR
K1}

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

217

Following users can decrypt the new group key GK'

encrypted using the keys of set KEK:

u0, u4, u8, u12 (using key K0)
u3, u7 ,u11, u15 (using key K3)
 u4, u5, u6 , u7 (using key K11)
 u8, u9, u10, u11 (using key K12)
 u14 (using key K13 XOR K2)
 u1 (using key K10 XOR K1)

For the same members removal, Wong et al. scheme of [2]
requires 10 encryptions, where as our scheme requires 6
encryptions.

6. Cumulative removal of Arbitrary members

Any number of members can leave (be removed from)
the multicast group from any position in the m-ary tree.
Protocol 2 handles the computation of encryption keys for
cumulative removal of arbitrary members.

 Let the number of leaving members be L. H is an array
with L elements containing higher order log2m bits of
leaving members. P is an array with L elements
containing lower order log2m bits of leaving members.

KEK : is the set, initially empty, and at the end contains
the keys used to encrypt the new group key.

S : User set, initially contains all the members in the
multicast group excluding leaving members.

U: denotes set union operation.

Let leaving members be u1, u2, u9, u15

KEK = { K0, K11 , K1XOR K13, K3 XOR K12,
 K3 XOR K10 , K2 XOR K12 ,
 K2 XOR K13 }

Following users can decrypt the new group key GK'

encrypted using the keys of set KEK:
 u4, u5, u6, u7 (using key K11)
 u0, u8 ,u12 (using key K0)
 u13 (using key K1XOR K13)
 u11 (using key K3 XOR K12)

u3 (using key K3 XOR K10)
 u10 (using key K2 XOR K12)
 u14 (using key K2 XOR K13)

 For the same members removal, Wong et al. scheme of
[2] requires 13 encryptions, where as our scheme requires
7 encryptions.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

218

Step 1: /* for the subgroup in which no member is leaving */
 For i ← 0 to m-1 do
 Begin
 f ← 0

 For j ← 0 to L-1
 Begin
 if (i= = H[j])
 f ← 1
 End
 if (f= =0)
 Begin
 KEK ← KEK U { key at parent of subgroup i }
 Exclude members of subgroup i from the user set S
 End
 End
Step 2: /* if no member is leaving from a particular position */
 For i ← 0 to m-1 do
 Begin
 f ← 0

 For j ← 0 to L-1 do
 Begin
 if (i= = P[j])
 f ← 1
 End
 if (f= =0)
 Begin
 KEK ← KEK U { key at member i }
 Exclude ith member from all the subgroups from the user set S
 End
 End
Step 3: /* for the users at the same position in different subgroups */
 f ← 0

 For k ← 0 to L-2 do
 Begin
 if (P[k] ≠ P[k+1])
 Begin
 f ← 1
 Goto Step 4
 End
 End
 For j ← 0 to m-1 do
 Begin
 if (j ≠ P[1])
 Begin
 KEK ← KEK U { key at member j }
 Exclude jth member from all the subgroups from the user set S
 End
 End
Step 4: While user set S not empty do
 Begin

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

219

 /* For each user i in user set S compute new encryption key EK */
 EK ← (key at member i) XOR (key at parent of member of i)

 KEK ← KEK U {EK}
 Exclude member i from the user set S
 End

Protocol 2 : Computation of encryption keys for cumulative arbitrary member removal

7. Conclusion

The protocols discussed in the paper deal with two
members removal(leave) and cumulative removal of
arbitrary members from a secure group in an efficient
manner. In our scheme server is required to store (log2N *
m) keys, along with the Group key GK, where as the
scheme in [2] requires O(N) keys to be stored at the server.
We have shown the comparison of our scheme with the
scheme proposed by Wong et al [2] with respect to
computation. The binary tree concept discussed in [3] is
efficiently extended to m-ary tree in this paper with
reduced storage at user side.

References

[1] A. Bellardie, “Scalable Multicast Key Distribution”,
RFC 1949, May 1996.

[2] Chung Kei Wong, Mohamed Gouda, and Simon S
Lam, “Secure Group Communication Using Key
Graphs”, Proceedings of ACMSIGCOMM,
Vancouver, British Columbia, September 1998.

[3] I. Chang, R.Engel, D.Kandlur, D.Pendarakis and
D.Daha. “Key management for secure internet
multicast using Boolean function minimization
technique”. ACM SIGCOMM’99, March 1999.

[4] Debby M. Wallner, Eric J. Harder, Ryan C. Agee,
“Key Management for Multicast: Issues and
Architectures”, Informational RFC, draft-Wallner-
key-arch-ootxt, July 1997.

[5] H.Harney, C.Muckenhirn, “Group Key Management
Protocol (GKMP) Architecture”, RFC 2094, July
1997.

[6] H.Harney, C.Muckenhirn, “Group Key Management
Protocol (GKMP) Specifications”, RFC 2093, July
1997.

[7] D.McGrew and A. Sherman. “Key establishment in
large dynamic groups using one way function trees”..
Available at
http://www.cs.umbc.edu/~sherman/papers/itse.ps,
May 1998.

[8] A. Perrig, D.Song and J.Tygar, “ELK: A new protocol
for efficient large-group key distribution”. In
Proceedings of the 2001 IEEE symposium on Security
and Privacy, 2001.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007

220

[9] Ran Canetti, Benny Pinkas, “A Taxonomy of
Multicast security issues”, Internet Draft, May 1998.

[10] Suvo Mittra, “Iolus: A Framework for Scalable
Secure Multicasting”, Proceedings of
ACMSIGCOMM’97, Cannes, France, pp. 277-288,
1997.

A.S.Poornima obtained her
M.Tech. from VTU, Belgaum,
Karnataka, India. She is
presently working as an
Assistant Professor in the
Department of Computer Science
and Engineering, Siddaganga
Institute of Technology, Tumkur,
Karnataka, India and pursuing
Ph.D in the area of Cryptography
and Network Security.

R.Aparna obtained her M.S.
from Birla Institute of Technology,
Pilani, Rajasthan, India. She is
presently working as an Assistant
Professor in the Department of
Computer Science and
Engineering, Siddaganga Institute
of Technology, Tumkur,
Karnataka, India and pursuing
Ph.D in the area of Cryptography
and Network Security.

B.B.Amberker obtained his Ph.D
from Department of Computer
Science and Automation, IISc.,
Bangalore, India. He is presently
working as Professor in the
Department of Computer Science
and Engineering, National
Institute of Technology, Warangal,
AP, India.

