
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 231

A Fast Multiple Pattern Matching Algorithm using Context

Free Grammar and Tree Model

 G.Phanindra1 K.V.V.N. Ravi Shankar2 P.Deepak Sreenivas3,

1Computer Sciences Corporation India Pvt Ltd, Hyderabad, Andhra Pradesh, India
phani541@yahoo.co.in

2Infosys Chennai, TamilNadu, India

 3 M.S in Computer Science, Georgia Institute of Technology, Atlanta, GA 30332-0284, USA

Summary
 Multiple Substring-Pattern Matching Algorithm

presented here is implemented in two phases. The first phase is
preprocessing in which an n-ary tree like structure is
constructed for the given text data and Griebach Normal Form
is created for given Context Free Grammar. The second phase
called search phase takes as input an n-ary tree structure and
Griebach Normal Form of given Context free grammar
constructed in phase 1 and outputs those strings that match both
the text data and the context free grammar. The algorithm
proposed here has the advantage that it can retrieve any number
of patterns at the same time. This finds wide applications in
Bio-informatics, information retrieval and requirements
specification stage of software life cycle development.

Key words

Pattern Matching, preprocessing, n-ary tree,
Context Free Grammar, Griebach Normal Form, Bio-
informatics, information retrieval

I. Introduction

Pattern matching is the act of checking for the
presence of the constituents of a given pattern. In the
present work the query is given in the form of Context
Free Grammar.

Context Free Languages are widely used in
different areas, including programming languages,
speech recognition, natural language processing [6],
bioinformatics. and requirements specification stage of
software life cycle development.

The complexity of parsing words according to
context free grammars is usually considered as having
theoretically two parameters: the length of input
sequence and the size of grammar, namely the number of
rules or sum of the length of the rule bodies. The strings
in the context free language are accepted by a Push down
automaton [2], in our present work we have bypassed the
construction of a push down automaton for the
acceptance of the strings generated by the context free

language. The time taken by our algorithm is
independent of the size of patterns, which overcomes the
major limitation which is present in the previous
algorithms.

The syntax rules of formal grammars are used to
generate patterns. Natural English Language can also be
derived from a context free grammar with appropriate
productions. For a given grammar G, the number of
strings generated by that grammar is infinite that means
|L (G)| is ∞. Parsing is a fundamental concept related to
the syntactic approach whose objective is to determine if
the input pattern is syntactically well formed in the
context of the given grammar. Parsing is generally
accomplished by parsers. In the search algorithm
presented here we find the intersection of the strings
present in the text database and the language of the given
grammar, for that we have not used any parser. Multiple
substrings can be obtained at same time using the search
algorithm presented here.

2. Preprocessing phase

2.1 Preprocessing of text data

The text data is preprocessed so that search time
is optimized. Text data is nothing but the set of strings.
The text data is represented with a structure similar to n-
ary tree. The text data is taken, each string is passed to
tree and for each string the tree is modified. The tree
structure is similar to n-ary tree where n represents the
number of distinct symbols in the given text data, in
present work. The node structure for tree is given by
Madhuri et al [4]

2.1.1 Node Structure
Each node of the tree has the following fields.

i) Information Field:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9 September 2007 232

This field contains information.

ii) Pointers to the child nodes:
The pointers that hold the addresses of
child nodes (the no of children is at max is
n).

iii) Flag :
 Flag is used to recognize whether the
particular string obtained by concatenating
the strings from the root up to the current
node in the left to right sequence is present as
an element in the database or not. The flag of
a node is 1 if and only if the string up to the
corresponding node is contained in the
database.

The algorithm for the construction of database tree given
by Madhuri et al [4]

2.2 Preprocessing of the context free grammars:

The query is given in the form of context free
grammars. The given context free grammar is converted
into a Griebach Normal Form which is also a context
free grammar. The language generated by both the
context free grammar and its Griebach normal form is
same. The preprocessing of the context free grammars
increases the efficiency of searching. The conversion
takes place in five steps. They are

 Step1: Elimination of Useless symbols
 Step2: Elimination of Null productions
 Step3: Elimination of Unit Productions
 Step4: Conversion to Chomsky like normal
 Form
 Step5: Conversion to Greibach normal form

The algorithm for the conversion of given context free
grammar to Griebach Normal form is given by Madhuri
et al [4]

3. Search Phase

 A context-free grammar G consists of the
following four entities:

1. The set of terminals or primitive symbols denoted by
T. In many applications, the choice of the terminal set is
difficult and has a large component of art as opposed to
science. T is finite.

2. The set of non-terminal symbols or variables which
are used as intermediate quantities in the generation of
outcome consisting solely of terminal symbols. This set
is denoted as V and it is also finite.

3. The set of productions or production rules that allow
the previous substitutions. It is this set of productions
coupled with terminal symbols that principally gives the
grammar its structure. The set of productions is denoted
by P

4. The starting or root symbol denoted by S S belongs to
V.

The grammar G is denoted formally as G= (T, V, P, S)

A language L is said to be a Context-Free-
Language (CFL) if its grammar is Context-Free. The
production rules P, is used to generate sentences that
consist of linear or 1-D strings of terminals. The length
or number of symbols in string s is denoted by |s|. The
empty string is denoted by ε. The size of empty string is
0. Intersection of the terminals and the variables is empty
set (V ∩ T = Ф).

 3.1 Algorithm for searching the database tree
using Context Free Grammars

Input: 1. n-ary tree representation of text data
 2. Griebach Normal Form of given context free
grammar
 Output: List of data base tree pointers that matches
the given context free grammar

struct list *search_cfg(char *prod,struct list
*db_list)
//Searching CFG which is in GNF
{

 // ‘prod’ is a string that is in the form of
terminal followed by non terminals
 // ‘db_list’ is the list of database pointers in the
format of single linked list

if(is_terminal(prod[0]))
{

match the terminal in ‘prod[0]’ to the present
node in the ‘db_list’
 if(there is no match)
 {

 return(NULL)
 }
 else
{

 Make the present node in the ‘db_list’ to

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9, September 2007 233

the next node to be searched in the
 database
 if(the node in the ‘db_list’ to be searched
is NULL)
{

 if ((production+1) = =NULL)
 {

 return (db_list);
 }
 else
{

 Return(NULL);
 }

}
else
{

Temp_list=search_cfg(production+1,db
_list)
 return(Temp_list);

}
}

}
else
{

Temp_list1=NULL;
for each right hand side production
‘temp_prod’ of non-terminal ‘prod[0]’
{

Append the returned list from
‘search_cfg(temp_prod,db_list)’ to
Temp_list1

}
Temp_list3=NULL;
for each ‘Temp_list2’ in ‘Temp_list1’ linked
list
{

Append the returned list from
‘search_cfg(prod+1,Temp_list2)’ to
Temp_list3

}
return(temp_list3);

}

}

void CFG_substring_matching()
{

db_list db_ls_2, db_ls_3;
for each node ‘node_1’ in data base tree
{

for each character position ‘pos_1’ in ‘node1’
{

db_list db_ls_1;
db_ls_1 = create new db_list;
db_ls_1->pos = pos_1;

db_ls_1->data = node_1;
db_ls_3 =

search_cfg(db_ls_1,Starting_charact
er_of_CFG);

Append ‘db_ls_3’ to ‘db_ls_2’;
return(db¬_ls_2);

}
}
}

This is the algorithm that finds out all the substrings for the
given database that satisfies the Context Free Grammar.
The routine ‘search_cfg’ for finding the Complete-strings
is used in this algorithm internally. For each and every
node in the database, we will call the ‘search_cfg’ routine
so that all the substrings also retrieved.

4. Applications

Requirements are the basis of the systems
engineering life cycle activities[5] but creating a good set
of requirements is really difficult task. Some difficulties
can be reduced through the application of a context- free
grammar for requirements to reduce the complexity of
requirements elicitation [7]. Developing the grammar
involved a melding of computer science and natural
language that yielded useful insights into the nature of
requirements. The grammar was developed to empower a
case-based assessment system for requirements.

Bioinformatics involves the use of techniques
including applied mathematics, informatics, statistics,
computer science, artificial intelligence, chemistry and
biochemistry to solve biological problems usually at a
molecular level. The algorithm presented here can be
used to identify specific patterns of amino acids in the
DNA sequence [3] and thereby help in the diaganosis of
certain diseases [1]. In this case, the terminal set consists
of {a,c,g,t}.

5. Conclusions

 The algorithm proposed here is very helpful in

retrieving the substrings of given context free language
in an easy and efficient manner. The specialty of the
algorithm proposed here is that it do not require any Push
down automata for the acceptance of the strings
generated by given context free grammar. The time taken
to retrieve the substrings is same for same size of text
database and same context free grammar that means
search time independent of the content of text database.

6. References:

[1] Abarbanel, R.M., Wieneke, P.R., Mansfield, E., Jaffe, D.A.,

and Brutlag, D.L. (1984), ‘‘Rapid searches for complex

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.9 September 2007 234

patterns in biological molecules,’’ Nucleic Acids Research,
Vol. 12, No. 1, pp. 263-280.

[2] Aleksander, I. & Hanna F.H., 1976 Automata Theory: An
Engineering Approach, Crane,Russak & Company, Inc.

[3] Hawley, D.K., and McClure, W.R. (1983), ‘‘Compilation
and analysis of Escherichia coli promoter DNA
sequences,’’ Nucleic Acids Research, Vol. 11, No. 8, pp.
2237-2255.

[4] IJCSNS International Journal of Computer Science and
Network Security, VOL.7 No.3, March 2007

[5] INCOSE, 2000 Systems Engineering Handbook, (Online 20
October, 2003)

[6] Luger, G. F., & Stubblefield, W. A., 1998, Artificial
Intelligence, Structures and

Strategies For Complex Problem Solving, Addison Wesley
Longman Inc

[7] Martin, J., 2000, ‘Requirements Mythology: Shattering
Myths About Requirements and the Management Thereof’,
Proceedings of the 2000 INCOSE Symposium

Author Biographies:

G.Phanindra resident of Vizianagram
born on 22-12-1985.He received B-Tech
degree in Computer Science and
Engineering from Gayatri Vidya Parishad
College of Engineering in Visakhapatnam,
Andhra Pradesh, India, and the year 2007.
Currently working as a Software Engineer
in Computer Sciences Corporation India
Pvt Ltd (CSCI). He received Best

Outgoing Student Award from Tata Consultancy Services. He received
Best All Rounder Award from Naval Science and Technological
Laboratories. He presented 10 national level paper presentations. His
current research interests include datamining, natural language
programming and compiler design.

Ravi Shankar Kalla resident of
Visakhapatnam. He received B-Tech
degree in Computer Science and
Engineering in the year 2007 From Gayatri
Vidya Parishad College of Engineering
(India). Won prizes for student projects
presented in Jawaharlal Nehru
Technological University and Andhra
University. His research interests include

Computer graphics, DBMS, Data Warehousing, Compiler design.
Currently working in Infosys Technologies Ltd. Chennai (INDIA).

Deepak Sreenivas Pemmaraju resident of
Visakhapatnam. He received B-Tech degree
in Computer Science and Engineering from
Gayatri Vidya Parishad College of
Engineering in Visakhapatnam, Andhra
Pradesh, India in the year 2007. Currently
doing M.S in Computer Science,
Georgia Institute of Technology,
Atlanta, USA. He presented 10 national
level paper presentations. His current
research interests include software

methodology and engineering, compiler design and natural language
programming.

