
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

1

Manuscript received October 19, 2007

Manuscript revised October 20, 2007

On the Performance of Provably Secure Hashing
with Elliptic Curves

Anton Kargl†, Bernd Meyer†, and Susanne Wetzel††

†Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 München, Germany

††Stevens Institute of Technology, Hoboken NJ 07030, USA

Summary
We propose a cryptographic hash function based on the difficulty
of computing discrete logarithms in the group of points of an
elliptic curve over a finite field. We prove the security of the
hash function and analyze the performance. Our implementation
of the finite field, the elliptic curve arithmetic, and scalar
multiplication is optimized for high throughput on modern 32-bit
desktop processors. The achievable data rates allow the use of
provably secure hash functions in practical applications.
Key words:
Hash Function, Elliptic Curve Cryptosystem, Koblitz Curve,
Optimal Extension Field, Frobenius Representation.

1. Introduction

The security of all commonly used cryptographic hash
functions relies on the heuristic difficulty of
mathematically modeling and analyzing a wild mix of
logic and arithmetic operations in the computation of the
hash value. Such combinatorial hash functions have many
similarities to block ciphers and reach high data rates.
Recent results in the analysis of cryptographic hash
functions using techniques from differential cryptanalysis
of block ciphers [2, 3, 33, 32, 34] have cast serious doubts
on the long-term security of combinatorial hash functions.

On the other hand, there exist proposals for hash
function designs based on algebraic methods and public-
key techniques [11, 7, 9]. These functions offer provable
security in the sense that finding collisions is polynomial-
time reducible to the solution of a hard cryptographic
problem, e.g., the difficulty of computing discrete
logarithms. The main disadvantage of algebraic hash
functions is their slow data rate caused by long integer
arithmetic and the involved mathematical computations for
the public-key part.

The aim of this paper is the analysis of the
performance and security of an algebraic hash function
based on the difficulty of computing discrete logarithms,
where the arithmetic is based on elliptic curve
cryptography over optimal extension fields and the prime
field arithmetic is optimized for modern 32-bit desktop

processors. Using several optimizations for the finite field
and the elliptic curve arithmetic algebraic hash functions
can be an alternative for practical applications with the
advantage of provable security.

The remainder of the paper is organized as follows:
in the next section we recapitulate related work and give
some definitions used in this article. In the third section
we prove the security of our hash function. The efficient
implementation of the hash function is explained in the
fourth section.

2. Cryptographic Hash Functions

A cryptographic hash function h is an efficiently
computable function of messages with the following
properties [23]:
• h compresses a message x of arbitrary length to an

output h(x) of fixed length,

• h is collision resistant, i.e., it is computationally
infeasible to find distinct messages x and x′ such that

)()(xhxh ′= .

For certain applications hash functions need special
properties, for example preimage [and second preimage]
resistance: for a given hash value y [or for a given
message x1] it is computationally infeasible to find a

preimage x with h(x) = y [or a second preimage 2x with
)()(21 xhxh =]. It is easy to see, that preimage and second

preimage resistance is implied by collision-resistance.
Often, a hash function consists of a compression

function that iteratively hashes message blocks of a fixed
length and the actual internal state of the hash function to
the next state. The last computed internal state is the result
of the hash function. Techniques for padding the message
and encoding their length make sure that a collision of the
hash function can be reduced to a collision of the
compression function [11].

There exist proposals for hash function designs that
use symmetric encryption functions as building blocks for

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

2

the compression function of a hash function [24, 10]. For
example in [24] the author proposes the compression
function bbEncbaH a ⊕=)()|(.1 Since standard symme-
tric encryption schemes have relatively short key sizes the
compression ratio of the encryption function is low and,
therefore, the performance of the compression function H
is reduced. The security of this scheme relies on the
heuristic assumption that H is a non-invertible random
function.

Nonetheless, modern hash functions, SHA-1 [23],
RIPEMD-160 [13], or MD5 [23], use the same principle
of construction. The compression functions of these hash
functions can be interpreted as a symmetric encryption
under a very large key followed by a final addition of the
plaintext for chaining. Often, the round functions of the
encryption schemes consist of simple binary and
arithmetic operations in 322Z that are iterated several

times with different additive constants. This method of
building hash functions yields very efficient algorithms
with high data rates [22, 26].

There also exist proposals for hash function designs
using public-key techniques for the compression functions
[11, 7, 9]. Some of these schemes offer provable security, i.

e., finding a collision can be reduced to the solution of a
hard problem, but most have the drawback that the
computation of the public-key part needs costly long-
integer arithmetic.

In [7] Chaum et al. prove the collision-freeness of m-
tuple exponentiation and define a provably secure fixed-
length hash function h based on the discrete logarithm
problem in finite groups. In the following we use the
presentation from [30]: let p be a prime such that

2/)1(−= pq is also prime. Let pZss ∈21 , be primitive

elements. Assume that the discrete logarithm)(log 21
ss is

not known and that it is computationally infeasible to
compute the logarithm. Given s1, s2 the hash function

pZph →− 2}1,,0{: K is defined as follows:

pssxxh xx mod),(21
2121 a .

It is shown in [30]: given one collision for the
function h the discrete logarithm)(log 21

ss can be
computed in polynomial time contradicting our
assumptions. In [7] this result is generalized to the product
of m generators mss ,,1 K and message blocks mxx ,,1 K
without analyzing the exact security of the generalized
scheme.

1 bbEncbaH a ⊕=)()|(denotes encryption of plaintext b
under key a and a|b denotes concatenation of the strings a
and b.

When iterating h as a compression function to build
hash functions for arbitrary length messages (for example
using techniques presented in [11]), one has the problem
that the representation of the field elements resulting from
an application of h is larger than the values fed back to h.
This reduces the length of the message block that can be
hashed in a single application of h. Even for the case of
elliptic curves, where it is possible to choose the number
of points on the curve to be a prime number greater than
the size of the field, a compressed representation of a point
consists of a field element for the x-coordinate and the
sign of the y-coordinate.

Moreover, we would like to use Koblitz curves [15]
which offer faster scalar multiplication over extension
fields due to the efficient computation of the Frobenius
endomorphism. With Koblitz curves the situation is even
worse since the number of points can never be a prime: the
order of the subgroup defining the Koblitz curve over the
prime field always divides the order of the group over the
extension field.

In the next section we present a hash function based
on elliptic curves. Our construction discards the y-
coordinate of the result of the compression function and
uses m-tuple scalar multiplication to increase the
throughput.

3. Security of the Compression and the Hash
Function

In elliptic curve cryptography one considers the set of
all solutions to a non-singular cubic equation

64
2

2
3

31
2 axaxaxaxyay +++=++ over a finite field

kpF . The set forms an additive group, where the neutral

element O is the point at infinity. Given two points U and
V on a cryptographically strong curve2 the fastest known
algorithms for the computation of the discrete logarithm

)(log UV have exponential running time in the bit-size of
the representation of points [29].

Let E be a cyclic group of points of a
cryptographically strong elliptic curve where ord(E) = q is
a large prime number and let l be the largest integer such
that 2/2 q<l . Let }{,,1 OESS m −∈K be randomly

chosen pairwise distinct elements. Let uE }1,0{: →ϕ be
an efficiently computable mapping which is injective with
respect to the x-coordinates, i.e., φ(P) is a representation

2We refer for example to [6] for a list of requirements for
elliptic curves to be cryptographically strong.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

3

of the affine x-coordinate 3 of P with the additional
property that if φ(P) = φ(P') then we have P = -P' or P =
P', and the value u is the size of the representation of the
x-coordinate.

Given a string lmx }1,0{∈ the compression function
umH }1,0{}1,0{: →l is defined by

)()(11 mm SxSxxH ⋅++⋅= Kϕ
where mxxx ||1 K= is the concatenation of the strings

lK }1,0{,,1 ∈mxx .

Theorem 1: Let n be the bit-size of the representation of
elements in E. If there exists an algorithm A which
computes collisions for H in time t and with probability p
then there exists an algorithm A0 which computes the
discrete logarithm)(log UV for given points

}{, OEVU −∈ in time t + O(n³m) and with probability
2p/m.

Proof: The algorithm A0 of the attacker works as follows:
we choose randomly numbers mj <<1 , qwi <<1 for

mi <<1 and define the compression function
)()(11 mm SxSxxH ′⋅++′⋅=′ Kϕ , where VwS ii =′ for

mi <<1 , ji ≠ and UwS jj =′ . If the iS ′ , mi <<1 , are
not pairwise distinct then we either found the discrete
logarithm or we choose new numbers iw . Next, we use A

to find a collision for H’. Let lmxx }1,0{, ∈′ be the output
of A such that)()(xHxH ′′=′ and ji xx ≠ . The
properties of ϕ imply that the points on the curve E which
correspond to the preimages of ϕ have the same x-
coordinate. Therefore, either the equation

OSxxSxx mmm =′⋅′−++′⋅′−)()(111 K
or

OSxxSxx mmm =′⋅′+++′⋅′+)()(111 K
holds. Furthermore, it follows from the restriction

2/,0 pxx ii <′≤ for mi <<1 that there exist at least two
indices mdc ≤≤ ,1 that do not vanish, i.e.,

qxx cc mod′≠ and qxx dd mod′≠ . If },{ dcj ∈ we can
solve the equation given by the collision for the point U
and get the discrete logarithm)(log UV :

Vxxw
xxw

U
mi

iii
jjj ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
′±

′±
−= ∑

<<1

)(
)(

1 .

3 The point O is mapped to a fixed string that is different
from all images of points in }{OE − .

It is easy to check which sign yields the discrete logarithm.
If },{ dcj ∉ then it is possible that qxx jj mod′= and the

attack fails.
Since all elements of }{OE − are generators of the cyclic
group the distributions of the tuples),,(1 mSS ′′ K are
identical for all choices of j and the behaviour of A on
input H’ is independent from j. The success probability
2p/m of the attack follows. The black-box reduction of A0
involves m scalar multiplications for the randomization
step and several computations in the field Zq for the final
computation of)(log UV . The complexity of these
computations can be upper bounded by O(n³m). �

The hash function G for messages of arbitrary length is
built by iterating the compression function H. Every
message ∗∈ }1,0{w must be padded to get a multiple of
the block length um −l and the length of w must be
encoded. Let rww ||1 K be the padded and encoded
message in blocks of length um −l . The hash value

)||(1 rwwG K is defined recursively:

1)|)||(()||(
)|()(

111

11

>=
=

− iforwwwGHwwG
wIVHwG

iii KK

where uIV }1,0{∈ is a fixed initial value. If the initial
value is chosen such that IV is not a valid representation of
a x-coordinate, i.e.,)(EIV ϕ∉ , then the proof technique
in [11] shows that it is sufficient to encode only the length
of the last block (before padding) instead of the length of
the complete message to get a postfix-free encoding of
arbitrary length messages.4

Since the padding and encoding scheme of the
messages assures that a collision for G implies the
existence of a collision for H the security of the scheme
follows with the same bounds on the probability of
success as in Theorem 1.

When implementing a concrete hash function H it
follows from the construction that the discrete logarithms
of the elements mSS ,,1 K must be kept secret. For
example, a trusted third party could choose and publish the
elements.

4 If fixed points of the compression function can be
computed in polynomial time encoding only the length of
the last block is easily susceptible to the attacks in [18]
resulting in a decreased preimage resistance of the hash
function.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

4

4. Implementation

The proof of security does not impose constraints on
the parameters of the proposed hash function. The
characteristic of the underlying finite field is arbitrary and
can be adapted to the hardware in the targeted systems. It
is clear, that the performance of the hash function is not
comparable to standard hash algorithms since scalar
multiplications on elliptic curves have to be computed. But
a sophisticated choice of the parameters increases the
performance drastically, such that the data rate becomes
acceptable for applications with higher security
requirements.

In our implementation we compared the performance
of hash functions defined over prime and extension fields
of characteristic p > 3. We did not consider fields of
characteristic 2 since according to the performance
comparisons in [15] the arithmetic might not be
competitive without coprocessor. The arithmetic for the
hash function based on elliptic curves over prime fields is
built on the open source multiple precision library GMP
[14]. Since the running time of the modular reduction in
GMP does not depend on the Hamming weight of the
modulus, curve and modulus were chosen randomly.

For the implementation of the hash function based on
elliptic curves over extension fields we used optimal
extension fields (OEF) for the arithmetic and implemented
the basic OEF arithmetic completely in assembly language.
In the next section we outline the chosen parameters and
some of the optimizations.

OEFs kpF have the following properties for

speeding up the modular reduction step [1]:
• p is a pseudo-Mersenne prime cp n ±= 2 , where,

2/)(log2 nc < .

• field elements are represented using a polynomial
basis given by a sparse irreducible polynomial

ω±kx .

Furthermore, it is recommended to select a prime
extension degree greater than 7 to prevent the GHS attack
generalized by Diem in [12].

4.1. Choice and Implementation of the Optimal
Extension Field

For the implementation of the finite field arithmetic
over Fpk we use 511229 −=p , degree of extension k = 11,
and a polynomial basis given by the irreducible
polynomial x11-2. The modulus p is a pseudo-Mersenne
prime with a low Hamming weight representation

122 929 +−=p . 5 Due to this representation reduction
modulo p can be done by four shifts, two subtractions, and
two additions. Moreover, the prime p is chosen in such a
way that during a modular multiplication in kpF all

intermediate sums of (possibly reduced modulo x11-2 ,
i.e., doubled) partial products of coefficients of the
operands can be stored in 64-bit registers without
overflow. Reduction modulo p must only be done once at
the end of the computation of the coefficients of the
product.

Using Intel’s SSE2 assembly instruction set on
Pentium 4 [16, 17] it is possible to parallelize part of the
finite field arithmetic over kpF . The single instruction

multiple data concept (SIMD) of SSE2 instructions and
the 128-bit registers allow the computation of two partial
products at the same time. For addition and subtraction in

kpF it is even possible to compute and reduce four

coefficients simultaneously using SIMD instructions
operating on four doublewords.

The performance was measured on a common PC
equipped with a Pentium 4 HT processor (Northwood core,
3.2 GHz, 512 kByte 2-nd level cache) and 2 GByte RAM
running SuSE Linux 9.2. The program was compiled with
GNU gcc 3.3.4.

Table 1: Performance in the finite field kpF

operation Time in ns

Addition 16.7

Subtraction 25.6

Frobenius endomorphism 53.1
Squaring 102.8
Multiplication 144.8
Inversion 1924.3

4.2. Selecting Elliptic Curve Parameters

In our implementation of the hash function we use the
Koblitz curve baxxy ++= 32 with the parameters a =

468383287, b = 63579074, and 511229 −=p . The curve
has 3⋅178961333 points over the prime field pF . The

order of the group of points over kpF has the prime

factorization

5 Prime numbers with low Hamming weight have been
used before in [27, 5] to speed up modular reduction in
large prime fields.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

5

3⋅178961333⋅19892236277990142984287\
1708206079915135382002538219382554\
8338264304091886560908065367601.

The largest prime factor of the order has length 290

bits and the hash result has length u = 319 bit.

4.3. The Scalar Multiplication on Koblitz Curves

Several implementations of elliptic curve
cryptosystems based on OEFs were reported in [1, 28, 21,
31]. In [19] Kobayashi pointed out the suitability of
Koblitz curves for a fast scalar multiplication using the
Frobenius endomorphism φ over kpF . It can be lifted to a

homomorphism Eφ on E:

),())(),((),(

:
pp

E

yxyxyx

EE

=

→

φφ

φ

a

The linearity of Eφ can be easily verified using the

affine addition law [15]. Since the endomorphism ring (E)
is isomorphic to][φZ every element s ∈ (E) can be
represented by a finite power series in Eφ :

.02/||,
0

∑
=

≤<≤=
l

l
i

i
i
Ei iforpswheress φ

Müller [25] and Kobayashi [19] prove that the length

l of the power series is upper bounded by ⎡ ⎤ 3)(log2 +sp .
The coefficients is can be computed with the algorithm in

[19] or [1]. Since k
Eφ is the identity on E the length of the

series can be shortened further to k-1:

.)(
1

0
2∑

−

=
++ ++=

k

i

i
Ekikii ssss φ

Transforming the scalar s to this Frobenius
representation leads to a fast algorithm consisting of k-1
computations of the iterated Frobenius homomorphism
and k scalar multiplications in E with smaller scalars

kikiii ssss 2
~

++ ++= for ki <≤0 .

For our choice of the prime 511229 −=p , the
extension degree k = 11, and the irreducible polynomial
x11-2 it follows that p ≡ 1 mod k and hence

⎣ ⎦ jjpji
E xx

i 11/2)(=φ , i.e., the iterated Frobenius homo-

morphism)(Pi
Eφ can be calculated with the complexity of

a scalar multiplication in kpF if the appropriate powers of

2 are precomputed. Let kp
k

j
j

j Fxa ∈= ∑ −

=

1

0
α be a coor-

dinate of a point, then we have:

⎣ ⎦ .2)(
1

0

11/ j
j

k

j

jpi
E xa

i
αφ ∑

−

=

=

The short scalar multiplications)(~ Ps i
Ei φ⋅ can be

implemented using known scalar multiplication algorithms.
Standard bit-by-bit algorithms as well as window methods
are relevant [4, 20].

In the proposed hash function H we have to compute
the sum of m scalar multiplications of generators of the
cryptographically strong subgroup of E. Increasing the
number of generators affects the storage requirement of
the precomputed tables, in particular if window methods
are applied. The linearity of the iterated Frobenius
homomorphism can be utilized to decrease the number of
point additions on the curve by the technique of Lim and
Hwang [20]. With this method the sum of several scalar
multiplications is computed during one multiplication.
Since the costs of Frobenius computations are much
smaller than the complexity of an addition on the curve, it
is recommended to neglect the computation of the
Frobenius homomorphism in the precomputation phase in
order to reduce the table size. Table 2 shows this relation
for practically useful table sizes. The precomputed points
are represented in affine coordinates, intermediate results
of scalar multiplications are given in Jacobian
coordinates [8].

Table 2: Memory requirements for precomputed tables in kByte

Number of generators Window
width 2 3 4 5 6 7 8

1 0.4 1.2 3.5 10.4 31.3 94.0 282.0
2 2.1 14.7 103.0 722.0 - - -
4 41.3 1280.0 - - - - -

We have implemented several combinations with

respect to the number of generators and window sizes in
the m-tuple scalar multiplication and measured the
performance of the resulting hash functions. The results
are listed in Table 3.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

6

Table 3: Data rate of the hash function in kByte/s

Window
 width

Number of
generators

Data
rate

1 6 197.9

2 3 125.0
3 2 130.0

5. Conclusion

We proposed a provably secure hash function based
on elliptic curves following the lines of [7]. The hash
function is not as fast as the standard hash algorithms, but
the speed is sufficient for implementation in systems with
higher security requirements.

In our implementation example we used Koblitz
curves over OEFs. The security of the hash function is still
preserved if the underlying field is a prime field or a finite
field of characteristic 2. Actually the choice of the field
depends on the hardware components in the particular
system.

Furthermore, we studied several techniques for the
implementation of the scalar multiplication on Koblitz
curves. It turns out that the Frobenius representation of the
scalar helps to lower the running time of scalar
multiplications and that standard bit-by-bit algorithms will
be the best choice in terms of storage requirements if the
number of generators is increased.

Acknowledgments

The authors would like to thank Erwin Heß and Torsten
Schütze for their help and encouragement during the
implementation of the OEF arithmetic and the writing of
the article.

References
[1] D.V. Bailey and C. Paar. Optimal Extension Fields for Fast

Arithmetic in Public-Key Algorithms. In H. Krawczyk,
editor, Advances in Cryptology – CRYPTO 98, volume
1462 of Lecture Notes in Computer Science, pages 472–485.
Springer-Verlag, 2000.

[2] E. Biham and R. Chen. Near-Collisions of SHA-0. In
M. Franklin, editor, Advances in Cryptology – CRYPTO
2004, volume 3152 of Lecture Notes in Computer Science,
pages 290–305. Springer-Verlag, 2004.

[3] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and
W. Jalby. Collisions of SHA-0 and Reduced SHA-1. In
R. Cramer, editor, Advances in Cryptology – EUROCRYPT
2005, volume 3494 of Lecture Notes in Computer Science,
pages 36–57. Springer-Verlag, 2005.

[4] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in
Cryptography. Cambridge University Press, 1999.

[5] M. Brown, D. Hankerson, J. Lopez, and A. Menezes.
Software Implementation of the NIST Elliptic Curves over
Prime Fields. Technical Report CORR 2000-58, Centre for
Applied Cryptography, University of Waterloo, 2000.

[6] BSI (Bundesamt für Sicherheit in der Informationstechnik).
Geeignete Kryptoalgorithmen zur Erfüllung der
Anforderungen nach § 17 Abs. 1 bis 3 SigG vom 22. Mai
2001 in Verbindung mit Anlage 1 Abschnitt I Nr. 2 SigV
vom 22. November 2001. Available at
http://www.bsi.bund.de/esig/basics/techbas/krypto/index.ht
m, November 2004.

[7] D. Chaum, E. van Heist, and B. Pfitzmann.
Cryptographically Strong Undeniable Signatures
Unconditionally Secure for the Signers. In J. Feigenbaum,
editor, Advances in Cryptology – CRYPTO ’91, volume 576
of Lecture Notes in Computer Science, pages 470–484.
Springer-Verlag, 1991.

[8] H. Cohen, A. Miyaji, and T. Ono. Efficient Elliptic Curve
Exponentiation Using Mixed Coordinates. In K. Ohta and
D. Pei, editors, Advances in Cryptology – ASIACRYPT’98,
volume 1514 of Lecture Notes in Computer Science, pages
51–65. Springer-Verlag, 1998.

[9] S. Contini, A.K. Lenstra, and R. Steinfeld. VSH, an
Efficient and Provable Collision Resistant Hash Function.
In S. Vaudenay, editor, Advances in Cryptology –
EUROCRYPT’06, volume 4004 of Lecture Notes in
Computer Science, pages 165—182. Springer-Verlag, 2006.
Available at http://eprint.iacr.org/ Cryptology ePrint
Archive, Report 2005/193, 2005.

[10] J. Daemen and V. Rijmen. AES Proposal: Rijndael, 1998.
Available at citeseer.ist.psu.edu/daemen98aes.html.

[11] I.B. Damgård. A Design Principle for Hash Functions. In
Gilles Brassard, editor, Advances in Cryptology – CRYPTO
1989, volume 435 of Lecture Notes in Computer Science,
pages 416–427. Springer-Verlag, 1990.

[12] C. Diem. The GHS Attack in Odd Characteristic.
J. Ramanujan. Math. Soc., 18(1):1–32, 2003.

[13] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160:
A Strengthened Version of RIPEMD. In D. Gollmann,
editor, Fast Software Encryption – FSE 1996, volume 1039
of Lecture Notes in Computer Science, pages 71–82.
Springer-Verlag, 1996.

[14] T. Granlund. GNU Multiple Precision Arithmetic Library.
Available at http://www.swox.com/gmp/, 2004.

[15] D. Hankerson, A. Menezes, and S. Vanstone. Guide to
Elliptic Curve Cryptography. Springer-Verlag, 2004.

[16] Intel. IA-32 Intel-Architecture Software Developer’s
Manual, Volume 2A, 2004.

[17] Intel. IA-32 Intel-Architecture Software Developer’s
Manual, Volume 2B, 2004.

[18] J. Kelsey and B. Schneier. Second Preimages on n-Bit Hash

Functions for Much Less than 2n Work. In R. Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005,
volume 3494 of Lecture Notes in Computer Science, pages
474–490. Springer-Verlag, 2005.

[19] T. Kobayashi, H. Morita, K. Kobayashi, and F. Hoshimo.
Fast Elliptic Curve Algorithm Combining Frobenius Map
and Table Reference to Adapt Higher Characteristic. In

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

7

J. Stern, editor, Advances in Cryptology –
EUROCRYPT ’99, volume 1592 of Lecture Notes in
Computer Science, pages 176–189. Springer-Verlag, 1999.

[20] C.H. Lim and H. Hwang. Speeding up Elliptic Scalar
Multiplication with Precomputation. In J. Song, editor,
Information Security and Cryptology 99, volume 1787 of
Lecture Notes in Computer Science, pages 102–119.
Springer-Verlag, 1999.

[21] C.H. Lim and H.S. Hwang. Fast Implementation of Elliptic

Curve Arithmetic in GF (pk) . In H. Imai and Y. Zheng,
editors, Public Key Cryptography – PKC 2000, volume
1751 of Lecture Notes in Computer Science, pages 405–421.
Springer-Verlag, 2000.

[22] M. Matsui and S. Fukuda. How to Maximize Software
Performance of Symmetric Primitives on Pentium III and 4
Processors. In H. Handschuh and H. Gilbert, editors, Fast
Software Encryption – FSE 2005, volume 3557 of Lecture
Notes in Computer Science, pages 411–424. Springer-
Verlag, 2005.

[23] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1997.

[24] R.C. Merkle. One Way Hash Functions and DES. In Gilles
Brassard, editor, Advances in Cryptology – CRYPTO 1989,
volume 435 of Lecture Notes in Computer Science, pages
428–446. Springer-Verlag, 1990.

[25] V. Müller. Fast Multiplication on Elliptic Curves over Small
Fields of Characteristic Two. J. Crypt., 11(4):219–234,
1998.

[26] J. Nakajima and M. Matsui. Performance Analysis and
Parallel Implementation of Dedicated Hash Functions. In
L. Knudsen, editor, Advances in Cryptology –
EUROCRYPT 2002, volume 2332 of Lecture Notes in
Computer Science, pages 165–180. Springer-Verlag, 2002.

[27] National Institute of Standard and Technology. Digital
Signature Standard. FIPS Publication 186-2, 2000.

[28] J.H. Park, J.H. Cheon, and S.G. Hahn. New Type of
Optimal Extension Fields and its Applications. preprint
available at http://crypt.kaist.ac.kr/publications.html, 2005.

[29] G.C. Pohlig and M.E. Hellman. An Improved Algorithm for
Computing Logarithms over GF(p) and its Cryptographic
Significance. IEEE Trans. Info. Theory, 24:106–110, 1978.

[30] D.R. Stinson. Cryptography - Theory and Practice. CRC
Press, first edition, 1995.

[31] Y. Tsuruoka and K. Koyama. Fast Computation over
Elliptic Curves)(nqFE Based on Optimal Addition

Sequences. IEICE Trans. Fund., E84-A(1):114–119,
January 2001.

[32] X. Wang, X. Lai, D. Feng, H. Chen, and H. Yu.
Cryptanalysis of the Hash Functions MD4 and RIPEMD. In
R. Cramer, editor, Advances in Cryptology – EUROCRYPT
2005, volume 3494 of Lecture Notes in Computer Science,
pages 1–18. Springer-Verlag, 2005.

[33] X. Wang and H. Yu. How to Break MD5 and Other Hash
Functions. In R. Cramer, editor, Advances in Cryptology –
EUROCRYPT 2005, volume 3494 of Lecture Notes in
Computer Science, pages 19–35. Springer-Verlag, 2005.

[34] C. De Canniere, F. Mendel and C. Rechberger. Collisions
for 70-step SHA-1: On the Full Cost of Collision Search. To

appear in Proceedings of Selected Areas in Cryptography –
SAC2007, Ottawa, Canada

Anton Kargl received the MS
degree in Mathematics from Ludwig-
Maximilians-University, Munich, in
2002. Since 2004 he works in the
department “Security” of Corporate
Technology at Siemens AG.

Bernd Meyer received the MS
degree in Computer Science in 1992
and the PhD degree in 1995 from
Universität des Saarlandes in
Saarbrücken (Germany). Since 1997 he
works in the department “Security” of
Corporate Technology at Siemens AG.

Susanne Wetzel received her MS
degree in Computer Science in 1993
from the Universität Karlsruhe
(Germany) and her PhD in 1998 from
the Universität des Saarlandes in
Saarbrücken (Germany). Subsequently,
she worked at DaimlerChrysler
Research (Stuttgart, Germany), Lucent
Technologies Bell Laboratories
(Murray Hill, USA), and RSA
Laboratories (Stockholm, Sweden).

Since 2002 she is an Assistant Professor in the Computer Science
Deparment of Stevens Institute of Technology (Hoboken, USA).

