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Summary 
We propose a cryptographic hash function based on the difficulty 
of computing discrete logarithms in the group of points of an 
elliptic curve over a finite field. We prove the security of the 
hash function and analyze the performance. Our implementation 
of the finite field, the elliptic curve arithmetic, and scalar 
multiplication is optimized for high throughput on modern 32-bit 
desktop processors. The achievable data rates allow the use of 
provably secure hash functions in practical applications. 
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1. Introduction 

The security of all commonly used cryptographic hash 
functions relies on the heuristic difficulty of 
mathematically modeling and analyzing a wild mix of 
logic and arithmetic operations in the computation of the 
hash value. Such combinatorial hash functions have many 
similarities to block ciphers and reach high data rates. 
Recent results in the analysis of cryptographic hash 
functions using techniques from differential cryptanalysis 
of block ciphers [2, 3, 33, 32, 34] have cast serious doubts 
on the long-term security of combinatorial hash functions. 

On the other hand, there exist proposals for hash 
function designs based on algebraic methods and public-
key techniques [11, 7, 9]. These functions offer provable 
security in the sense that finding collisions is polynomial-
time reducible to the solution of a hard cryptographic 
problem, e.g., the difficulty of computing discrete 
logarithms. The main disadvantage of algebraic hash 
functions is their slow data rate caused by long integer 
arithmetic and the involved mathematical computations for 
the public-key part. 

The aim of this paper is the analysis of the 
performance and security of an algebraic hash function 
based on the difficulty of computing discrete logarithms, 
where the arithmetic is based on elliptic curve 
cryptography over optimal extension fields and the prime 
field arithmetic is optimized for modern 32-bit desktop 

processors. Using several optimizations for the finite field 
and the elliptic curve arithmetic algebraic hash functions 
can be an alternative for practical applications with the 
advantage of provable security. 

The remainder of the paper is organized as follows: 
in the next section we recapitulate related work and give 
some definitions used in this article. In the third section 
we prove the security of our hash function. The efficient 
implementation of the hash function is explained in the 
fourth section. 

2. Cryptographic Hash Functions 

A cryptographic hash function h is an efficiently 
computable function of messages with the following 
properties [23]:  
• h compresses a message x of arbitrary length to an 

output h(x) of fixed length,  

• h is collision resistant, i.e., it is computationally 
infeasible to find distinct messages x and x′  such that 

)()( xhxh ′= .  

For certain applications hash functions need special 
properties, for example preimage [and second preimage] 
resistance: for a given hash value y [or for a given 
message x1 ] it is computationally infeasible to find a 

preimage x with h(x) = y [or a second preimage 2x  with 
)()( 21 xhxh = ]. It is easy to see, that preimage and second 

preimage resistance is implied by collision-resistance. 
Often, a hash function consists of a compression 

function that iteratively hashes message blocks of a fixed 
length and the actual internal state of the hash function to 
the next state. The last computed internal state is the result 
of the hash function. Techniques for padding the message 
and encoding their length make sure that a collision of the 
hash function can be reduced to a collision of the 
compression function [11]. 

There exist proposals for hash function designs that 
use symmetric encryption functions as building blocks for 
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the compression function of a hash function [24, 10]. For 
example in [24] the author proposes the compression 
function bbEncbaH a ⊕= )()|( .1 Since standard symme-
tric encryption schemes have relatively short key sizes the 
compression ratio of the encryption function is low and, 
therefore, the performance of the compression function H 
is reduced. The security of this scheme relies on the 
heuristic assumption that H is a non-invertible random 
function. 

Nonetheless, modern hash functions, SHA-1 [23], 
RIPEMD-160 [13], or MD5 [23], use the same principle 
of construction. The compression functions of these hash 
functions can be interpreted as a symmetric encryption 
under a very large key followed by a final addition of the 
plaintext for chaining. Often, the round functions of the 
encryption schemes consist of simple binary and 
arithmetic operations in 322Z  that are iterated several 

times with different additive constants. This method of 
building hash functions yields very efficient algorithms 
with high data rates [22, 26]. 

There also exist proposals for hash function designs 
using public-key techniques for the compression functions 
[11, 7, 9]. Some of these schemes offer provable security, i. 

e., finding a collision can be reduced to the solution of a 
hard problem, but most have the drawback that the 
computation of the public-key part needs costly long-
integer arithmetic. 

In [7] Chaum et al. prove the collision-freeness of m-
tuple exponentiation and define a provably secure fixed-
length hash function h based on the discrete logarithm 
problem in finite groups. In the following we use the 
presentation from [30]: let p be a prime such that 

2/)1( −= pq  is also prime. Let pZss ∈21 ,  be primitive 

elements. Assume that the discrete logarithm )(log 21
ss  is 

not known and that it is computationally infeasible to 
compute the logarithm. Given s1, s2 the hash function 

pZph →− 2}1,,0{: K  is defined as follows:  

pssxxh xx mod),( 21
2121 a . 

It is shown in [30]: given one collision for the 
function h the discrete logarithm )(log 21

ss can be 
computed in polynomial time contradicting our 
assumptions. In [7] this result is generalized to the product 
of m generators mss ,,1 K  and message blocks mxx ,,1 K  
without analyzing the exact security of the generalized 
scheme. 

                                                           
1 bbEncbaH a ⊕= )()|( denotes encryption of plaintext b 
under key a and a|b denotes concatenation of the strings a 
and b. 
 

When iterating h as a compression function to build 
hash functions for arbitrary length messages (for example 
using techniques presented in [11]), one has the problem 
that the representation of the field elements resulting from 
an application of h is larger than the values fed back to h. 
This reduces the length of the message block that can be 
hashed in a single application of h. Even for the case of 
elliptic curves, where it is possible to choose the number 
of points on the curve to be a prime number greater than 
the size of the field, a compressed representation of a point 
consists of a field element for the x-coordinate and the 
sign of the y-coordinate. 

Moreover, we would like to use Koblitz curves [15] 
which offer faster scalar multiplication over extension 
fields due to the efficient computation of the Frobenius 
endomorphism. With Koblitz curves the situation is even 
worse since the number of points can never be a prime: the 
order of the subgroup defining the Koblitz curve over the 
prime field always divides the order of the group over the 
extension field. 

In the next section we present a hash function based 
on elliptic curves. Our construction discards the y-
coordinate of the result of the compression function and 
uses m-tuple scalar multiplication to increase the 
throughput. 
 

3. Security of the Compression and the Hash 
Function 

In elliptic curve cryptography one considers the set of 
all solutions to a non-singular cubic equation 

64
2

2
3

31
2 axaxaxaxyay +++=++  over a finite field 

kpF . The set forms an additive group, where the neutral 

element O is the point at infinity. Given two points U and 
V on a cryptographically strong curve2  the fastest known 
algorithms for the computation of the discrete logarithm 

)(log UV  have exponential running time in the bit-size of 
the representation of points [29]. 

Let E be a cyclic group of points of a 
cryptographically strong elliptic curve where ord(E) = q is 
a large prime number and let l be the largest integer such 
that 2/2 q<l . Let }{,,1 OESS m −∈K  be randomly 

chosen pairwise distinct elements. Let uE }1,0{: →ϕ  be 
an efficiently computable mapping which is injective with 
respect to the x-coordinates, i.e., φ(P) is a representation 

                                                           
2We refer for example to [6] for a list of requirements for 
elliptic curves to be cryptographically strong. 
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of the affine x-coordinate 3  of P with the additional 
property that if φ(P) = φ(P') then we have P = -P' or P = 
P', and the value u is the size of the representation of the 
x-coordinate. 

Given a string lmx }1,0{∈ the compression function 
umH }1,0{}1,0{: →l  is defined by  

)()( 11 mm SxSxxH ⋅++⋅= Kϕ  
where mxxx ||1 K=  is the concatenation of the strings 

lK }1,0{,,1 ∈mxx . 
 

Theorem 1: Let n be the bit-size of the representation of 
elements in E. If there exists an algorithm A which 
computes collisions for H in time t and with probability p 
then there exists an algorithm A0 which computes the 
discrete logarithm )(log UV  for given points 

}{, OEVU −∈  in time t + O(n³m) and with probability 
2p/m. 

 
Proof: The algorithm A0 of the attacker works as follows: 
we choose randomly numbers mj <<1 , qwi <<1 for 

mi <<1 and define the compression function 
)()( 11 mm SxSxxH ′⋅++′⋅=′ Kϕ , where VwS ii =′ for 

mi <<1 , ji ≠ and UwS jj =′ . If the iS ′ , mi <<1 , are 
not pairwise distinct then we either found the discrete 
logarithm or we choose new numbers iw . Next, we use A 

to find a collision for H’. Let lmxx }1,0{, ∈′ be the output 
of A such that )()( xHxH ′′=′  and ji xx ≠ . The 
properties of ϕ  imply that the points on the curve E which 
correspond to the preimages of ϕ have the same x-
coordinate. Therefore, either the equation 

OSxxSxx mmm =′⋅′−++′⋅′− )()( 111 K  
or 

OSxxSxx mmm =′⋅′+++′⋅′+ )()( 111 K  
holds. Furthermore, it follows from the restriction 

2/,0 pxx ii <′≤  for mi <<1 that there exist at least two 
indices mdc ≤≤ ,1 that do not vanish, i.e., 

qxx cc mod′≠ and qxx dd mod′≠ . If },{ dcj ∈ we can 
solve the equation given by the collision for the point U 
and get the discrete logarithm )(log UV : 

Vxxw
xxw

U
mi

iii
jjj ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
′±

′±
−= ∑

<<1

)(
)(

1 . 

                                                           
3 The point O is mapped to a fixed string that is different 
from all images of points in }{OE − . 

It is easy to check which sign yields the discrete logarithm. 
If },{ dcj ∉  then it is possible that qxx jj mod′= and the 

attack fails. 
Since all elements of }{OE − are generators of the cyclic 
group the distributions of the tuples ),,( 1 mSS ′′ K are 
identical for all choices of j and the behaviour of A on 
input H’ is independent from j. The success probability 
2p/m of the attack follows. The black-box reduction of A0 
involves m scalar multiplications for the randomization 
step and several computations in the field Zq for the final 
computation of )(log UV . The complexity of these 
computations can be upper bounded by O(n³m). � 
 
 
The hash function G for messages of arbitrary length is 
built by iterating the compression function H. Every 
message ∗∈ }1,0{w  must be padded to get a multiple of 
the block length um −l and the length of w must be 
encoded. Let rww ||1 K  be the padded and encoded 
message in blocks of length um −l . The hash value 

)||( 1 rwwG K  is defined recursively:  

1)|)||(()||(
)|()(

111

11

>=
=

− iforwwwGHwwG
wIVHwG

iii KK
 

where uIV }1,0{∈  is a fixed initial value. If the initial 
value is chosen such that IV is not a valid representation of 
a x-coordinate, i.e., )(EIV ϕ∉ , then the proof technique 
in [11] shows that it is sufficient to encode only the length 
of the last block (before padding) instead of the length of 
the complete message to get a postfix-free encoding of 
arbitrary length messages.4  

Since the padding and encoding scheme of the 
messages assures that a collision for G implies the 
existence of a collision for H the security of the scheme 
follows with the same bounds on the probability of 
success as in Theorem 1. 

When implementing a concrete hash function H it 
follows from the construction that the discrete logarithms 
of the elements mSS ,,1 K  must be kept secret. For 
example, a trusted third party could choose and publish the 
elements. 
 

                                                           
4 If fixed points of the compression function can be 
computed in polynomial time encoding only the length of 
the last block is easily susceptible to the attacks in [18] 
resulting in a decreased preimage resistance of the hash 
function. 
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4. Implementation 

The proof of security does not impose constraints on 
the parameters of the proposed hash function. The 
characteristic of the underlying finite field is arbitrary and 
can be adapted to the hardware in the targeted systems. It 
is clear, that the performance of the hash function is not 
comparable to standard hash algorithms since scalar 
multiplications on elliptic curves have to be computed. But 
a sophisticated choice of the parameters increases the 
performance drastically, such that the data rate becomes 
acceptable for applications with higher security 
requirements. 

In our implementation we compared the performance 
of hash functions defined over prime and extension fields 
of characteristic p > 3. We did not consider fields of 
characteristic 2 since according to the performance 
comparisons in [15] the arithmetic might not be 
competitive without coprocessor. The arithmetic for the 
hash function based on elliptic curves over prime fields is 
built on the open source multiple precision library GMP 
[14]. Since the running time of the modular reduction in 
GMP does not depend on the Hamming weight of the 
modulus, curve and modulus were chosen randomly. 

For the implementation of the hash function based on 
elliptic curves over extension fields we used optimal 
extension fields (OEF) for the arithmetic and implemented 
the basic OEF arithmetic completely in assembly language. 
In the next section we outline the chosen parameters and 
some of the optimizations. 

OEFs kpF  have the following properties for 

speeding up the modular reduction step [1]:  
• p is a pseudo-Mersenne prime cp n ±= 2 , where, 

2/)(log2 nc < . 

• field elements are represented using a polynomial 
basis given by a sparse irreducible polynomial 

ω±kx . 

Furthermore, it is recommended to select a prime 
extension degree greater than 7 to prevent the GHS attack 
generalized by Diem in [12]. 
 

4.1. Choice and Implementation of the Optimal 
Extension Field 

For the implementation of the finite field arithmetic 
over Fpk we use 511229 −=p , degree of extension k = 11, 
and a polynomial basis given by the irreducible 
polynomial x11-2. The modulus p is a pseudo-Mersenne 
prime with a low Hamming weight representation 

122 929 +−=p . 5  Due to this representation reduction 
modulo p can be done by four shifts, two subtractions, and 
two additions. Moreover, the prime p is chosen in such a 
way that during a modular multiplication in kpF  all 

intermediate sums of (possibly reduced modulo x11-2 , 
i.e., doubled) partial products of coefficients of the 
operands can be stored in 64-bit registers without 
overflow. Reduction modulo p must only be done once at 
the end of the computation of the coefficients of the 
product. 

Using Intel’s SSE2 assembly instruction set on 
Pentium 4 [16, 17] it is possible to parallelize part of the 
finite field arithmetic over kpF . The single instruction 

multiple data concept (SIMD) of SSE2 instructions and 
the 128-bit registers allow the computation of two partial 
products at the same time. For addition and subtraction in 

kpF  it is even possible to compute and reduce four 

coefficients simultaneously using SIMD instructions 
operating on four doublewords. 

The performance was measured on a common PC 
equipped with a Pentium 4 HT processor (Northwood core, 
3.2 GHz, 512 kByte 2-nd level cache) and 2 GByte RAM 
running SuSE Linux 9.2. The program was compiled with 
GNU gcc 3.3.4. 

Table 1: Performance in the finite field kpF  

operation Time in ns 

Addition 16.7 

Subtraction 25.6 

Frobenius endomorphism 53.1 
Squaring 102.8 
Multiplication 144.8 
Inversion 1924.3 

 

4.2. Selecting Elliptic Curve Parameters 

In our implementation of the hash function we use the 
Koblitz curve baxxy ++= 32  with the parameters a = 

468383287, b = 63579074, and 511229 −=p . The curve 
has 3⋅178961333 points over the prime field pF . The 

order of the group of points over kpF  has the prime 

factorization  
                                                           
5 Prime numbers with low Hamming weight have been 
used before in [27, 5] to speed up modular reduction in 
large prime fields. 
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3⋅178961333⋅19892236277990142984287\ 
1708206079915135382002538219382554\ 
8338264304091886560908065367601.  
 
The largest prime factor of the order has length 290 

bits and the hash result has length u = 319 bit. 
 
 
 

4.3. The Scalar Multiplication on Koblitz Curves 

Several implementations of elliptic curve 
cryptosystems based on OEFs were reported in [1, 28, 21, 
31]. In [19] Kobayashi pointed out the suitability of 
Koblitz curves for a fast scalar multiplication using the 
Frobenius endomorphism φ  over kpF . It can be lifted to a 

homomorphism Eφ  on E:  
 

),())(),((),(

:
pp

E

yxyxyx

EE

=

→

φφ

φ

a
 

 
The linearity of Eφ  can be easily verified using the 

affine addition law [15]. Since the endomorphism ring (E) 
is isomorphic to ][φZ  every element s ∈ (E) can be 
represented by a finite power series in Eφ :  

 

.02/||,
0

∑
=

≤<≤=
l

l
i

i
i
Ei iforpswheress φ  

 
Müller [25] and Kobayashi [19] prove that the length 

l of the power series is upper bounded by ⎡ ⎤ 3)(log2 +sp . 
The coefficients is  can be computed with the algorithm in 

[19] or [1]. Since k
Eφ  is the identity on E the length of the 

series can be shortened further to k-1:  

.)(
1

0
2∑

−

=
++ ++=

k

i

i
Ekikii ssss φ  

Transforming the scalar s to this Frobenius 
representation leads to a fast algorithm consisting of k-1 
computations of the iterated Frobenius homomorphism 
and k scalar multiplications in E with smaller scalars 

kikiii ssss 2
~

++ ++=  for ki <≤0 . 

For our choice of the prime 511229 −=p , the 
extension degree k = 11, and the irreducible polynomial 
x11-2  it follows that p ≡ 1 mod k and hence 

⎣ ⎦ jjpji
E xx

i 11/2)( =φ , i.e., the iterated Frobenius homo-

morphism )(Pi
Eφ  can be calculated with the complexity of 

a scalar multiplication in kpF  if the appropriate powers of 

2 are precomputed. Let kp
k

j
j

j Fxa ∈= ∑ −

=

1

0
α  be a coor-

dinate of a point, then we have:  
  

⎣ ⎦ .2)(
1

0

11/ j
j

k

j

jpi
E xa

i
αφ ∑

−

=

=  

The short scalar multiplications )(~ Ps i
Ei φ⋅  can be 

implemented using known scalar multiplication algorithms. 
Standard bit-by-bit algorithms as well as window methods 
are relevant [4, 20]. 

In the proposed hash function H we have to compute 
the sum of m scalar multiplications of generators of the 
cryptographically strong subgroup of E. Increasing the 
number of generators affects the storage requirement of 
the precomputed tables, in particular if window methods 
are applied. The linearity of the iterated Frobenius 
homomorphism can be utilized to decrease the number of 
point additions on the curve by the technique of Lim and 
Hwang [20]. With this method the sum of several scalar 
multiplications is computed during one multiplication. 
Since the costs of Frobenius computations are much 
smaller than the complexity of an addition on the curve, it 
is recommended to neglect the computation of the 
Frobenius homomorphism in the precomputation phase in 
order to reduce the table size. Table 2 shows this relation 
for practically useful table sizes. The precomputed points 
are represented in affine coordinates, intermediate results 
of scalar multiplications are given in Jacobian 
coordinates [8]. 

Table 2: Memory requirements for precomputed tables in kByte 

Number of generators Window 
width 2 3 4 5 6 7 8 

1 0.4 1.2 3.5 10.4 31.3 94.0 282.0
2 2.1 14.7 103.0 722.0 - - - 
4 41.3 1280.0 - - - - - 

 
 
We have implemented several combinations with 

respect to the number of generators and window sizes in 
the m-tuple scalar multiplication and measured the 
performance of the resulting hash functions. The results 
are listed in Table 3. 
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Table 3: Data rate of the hash function in kByte/s 

Window 
 width 

Number of  
generators 

Data  
rate 

1 6 197.9 

2 3 125.0 
3 2 130.0 

 

5. Conclusion 

We proposed a provably secure hash function based 
on elliptic curves following the lines of [7]. The hash 
function is not as fast as the standard hash algorithms, but 
the speed is sufficient for implementation in systems with 
higher security requirements. 

In our implementation example we used Koblitz 
curves over OEFs. The security of the hash function is still 
preserved if the underlying field is a prime field or a finite 
field of characteristic 2. Actually the choice of the field 
depends on the hardware components in the particular 
system. 

Furthermore, we studied several techniques for the 
implementation of the scalar multiplication on Koblitz 
curves. It turns out that the Frobenius representation of the 
scalar helps to lower the running time of scalar 
multiplications and that standard bit-by-bit algorithms will 
be the best choice in terms of storage requirements if the 
number of generators is increased. 
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