
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007 
 

 

8 

Manuscript received  October 5, 2007 

Manuscript revised  October 20, 2007 

Resynchronization Interval of Self-synchronizing Modes of 
Block Ciphers 

Karel Burda 
  

The Faculty of Electrical Engineering and Communication  
Brno University of Technology, Brno, Czech Republic 

 
Summary 
In some communication systems, some of the transmitted bits or 
bit groups are lost or, on the contrary, repeated. Lost or repeated 
bits or bit groups are called slips. In the case of cipher transmission, 
these slips produce a loss of the synchronization between 
transmitter and receiver, which is accompanied by the loss of the 
information being transmitted. Self-synchronizing modes of block 
ciphers are used for the elimination of this phenomenon. An 
important characteristic of these mode types is the average number 
of bits that were transmitted between the end of the slip and the 
moment of synchronization recovery - so-called resynchronization 
interval. In this paper, the probability distribution of the 
occurrence of a synchronization sequence in the cryptogram is 
derived first. On this basis, formulas for computing the 
resynchronization interval of OCFB and modified SCFB 
statistical self-synchronizing modes of block ciphers are then 
derived. The formulas obtained are compared with the formula for 
the resynchronization interval of the CFB mode. The results 
obtained may be used to choose a suitable self-synchronizing 
mode of a block cipher. 
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 1. Introduction 

In the paper, we assume that cryptograms are 
encrypted or decrypted in bit groups with length h ≥ 1 bit. 
We will refer to these h-tuples as bytes. In communication 
systems, cryptogram bytes are transmitted per certain 
transmission units (e.g. bits or octets) with length l ≥ 1 bit. 
In some communication systems, however, some of the 
transmitted l-tuples are lost or, on the contrary, repeated. 
Lost or repeated bits or bit groups are called slips. In the 
case of cipher transmission, these slips produce a loss of the 
synchronization between transmitter and receiver, which is 
accompanied by the loss of the information being 
transmitted. Self-synchronizing modes of block ciphers are 
used for eliminating the above effect of slips. The condition 
for self-synchronism is the requirement that l is an integer 
multiple of byte length h. In this paper, we assume that the 
above requirement is fulfilled.  

Currently, three types of self-synchronizing modes of 
block ciphers are published – CFB, OCFB and SCFB 
modes. The block cipher used in these modes operates with 

blocks of n bits in length, whereas the block cipher length is 
an integer multiple N of the byte length, i.e. it is valid that n 
= N⋅h. A message is encrypted or decrypted per single bytes 
in CFB, OCFB and SCFB modes. Let us denote the i-th 
byte of a message, cryptogram and keystream by symbols 
Mi, Ci and Yi, respectively. For encrypting, it is valid that Ci 
= Mi ⊕ Yi, where the symbol ⊕ denotes bit-by-bit 
modulo-two addition of bytes. For decrypting, it is valid 
that Mi = Ci ⊕ Yi. Particular modes differ in the by manner 
of deriving keystream bytes Yi. 

The CFB mode [1] is shown in Fig. 1. The previous 
bytes Ci-1 to Ci-N of the cryptogram are stored in the shift 
register R1. This n-bit block is enciphered by block cipher 
E and the result is stored in output register R2. After this, 
the first byte from R2 is used as the current keystream byte 
Yi. The procedure described is repeated for encrypting or 
decrypting further bytes, with a pre-arranged initialization 
vector IV being used for generating the first keystream byte 
Y1. Depending on the byte size h, the CFB mode is denoted 
as an h-CFB mode, with the most used variants being the 
modes with h = 1 or 8 in practice. The variant with h = 1 
allows resynchronization after slips of arbitrary length 
while the variant with h = 8 permits resynchronization only 
after slips whose length is an integer multiple of eight bits. 
In all variants of this mode, synchronism is restored after N 
bytes, i.e. after one n-bit block. A disadvantage of the CFB 
mode is the low utilization of the block cipher, because only 
one byte from N possible keystream bytes is used.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: The CFB mode. 
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Optimized CFB (OCFB) mode [2]. The principle of the 
h-OCFB mode is illustrated in Fig. 2. At the beginning, the 
shift register R1 is filled with initialization vector IV. This 
vector is encrypted, the result is stored in register R2 and 
bytes from this register are used as keystream bytes Yi. 
Meanwhile, cryptogram bytes Ci are successively stored in 
shift register R1. After the N-th cryptogram byte is 
processed, a new n-tuple of bits is contained in register R1. 
The new content of R1 is then encrypted and another N 
bytes of keystream are obtained. The action described is 
periodically repeated excepting a situation when a 
pre-arranged sequence of s bits occurs in the left part (i.e. at 
the end) of register R1. This sequence is called the 
synchronization sequence SYN. When this sequence is 
detected by the appropriate detector DET, then a new 
encryption is performed in spite of the fact that all N 
keystream bytes have not been used yet. When the receiver 
receives errorless bits and simultaneously no slips occur 
after sequence SYN, the same n-bit blocks occur in 
registers R1 of the transmitter and receiver. Thus, in both 
the transmitter and the receiver, the same bytes of the 
keystream are generated and these bytes are used for 
encrypting or decrypting the same cryptogram bytes Ci. In 
this way, synchronization is restored and maintained in the 
OCFB mode. The average resynchronization interval 
depends on the probability of the occurrence of the 
synchronization sequence. A better utilization of the block 
cipher is an advantage of the mode described because as 
many as N cryptogram bytes are obtained with any 
operation E compared with one byte in the case of the CFB 
mode. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2: The OCFB mode. 

The statistical CFB mode (SCFB mode) is another 
self-synchronizing mode of block ciphers [3, 4]. In 
principle, the SCFB mode is a hybrid between the OFB 
(Output Feedback Mode [1]) and the OCFB modes. Usually, 
the OFB mode is used and at the same time the sequence of 
cryptogram bits is continuously observed. When the SYN 
sequence is detected in the cryptogram, the 
resynchronization is performed. The principle of the SCFB 

mode is shown in Fig. 3. At the beginning, initialization 
vector IV is inserted into register R1, which is then 
encrypted and the result of encryption is stored in register 
R2. Subsequently, bytes from this register are successively 
used as N keystream bytes Yi. Cryptogram bytes Ci are 
being stored in shift register R3 of both the transmitter and 
the receiver. Usually, the content of the R2 register is 
replicated into R1 after using up all keystream bytes, the 
new content of the R1 register is encrypted and the result of 
encryption is used as a new keystream. The operation 
described is periodically repeated (OFB mode practically). 
An exception is the situation when a synchronization 
sequence occurs in the cryptogram. When this sequence is 
detected at the end of the R3 register, the content of R3 is 
encrypted and the result of encryption in R2 is used as a 
keystream (OCFB mode practically). Subsequently, the 
system returns to the OFB mode until a new 
synchronization sequence occurs at the end of register R3. 
The principle of restoring and maintaining the 
synchronization in the SCFB mode is the same as in the 
OCFB mode. The other characteristics are the same too. 
The average resynchronization interval for the SCFB mode 
depends on the occurrence probability of the 
synchronization sequence and the SCFB mode makes a 
better use of the block cipher than the CFB mode does.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: The SCFB mode. 

In this connection it is necessary to note that, so far, we 
have described a modified version of the SCFB mode.  The 
original version of the SCFB mode [3, 4] encrypts per bits 
only (i.e. not per bytes) and when statistical 
resynchronization has taken place any potential statistical 
resynchronization is blocked for n bits. Further, the length 
of the R3 register is not n but (n+s) bits in the original 
variant. The last n bits from the R3 register are used for 
encryption when a synchronization sequence is detected. 
The modification described in this paper allows comparing 
the SCFB mode with the other self-synchronizing modes 
and, moreover, it also reduces the average 
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resynchronization interval of the SCFB mode. It is the 
minimization of this interval that has been the aim of our 
research. 

2. State of the art 

The basic performance criterion of self-synchronizing 
modes of block ciphers is resynchronization interval D, 
which is the average number of bytes between the last byte 
of a slip and the nearest synchronously processed byte. The 
resynchronization interval of the CFB mode is equal to the 
block length of the cipher, i.e. DCFB = n. This is due to the 
fact that when the last byte of the slip leaves the R1 register 
(i.e. byte Ci-N-1), then identical bytes Ci-N to Ci-1 occur in 
registers R1 of both the transmitter and the receiver. (Note: 
It is assumed that bytes Ci-N to Ci-1 are errorless bytes and 
that no slips have occurred after slip Ci-N-1 yet.) In this way, 
the same keystream is obtained and thus synchronism is 
restored beginning with the currently transmitted byte Ci.  

The situation is more complicated with statistical 
self-synchronization modes, because the resynchronization 
interval is a random quantity. An approximation of D = 2s 
bytes is introduced in [2] on the assumption that the length 
of synchronization sequence s ≤ h. This condition means 
that the whole synchronization sequence SYN must occur 
in a single byte. We will call this byte the synchronization 
byte. The occurrence probability of this byte in a 
cryptogram is obviously equal to the value p = 2-s. With 
respect to the assumption of the randomness and mutual 
independence of bits in a cryptogram, the randomness and 
mutual independence of bytes hold too. Then, the 
probability that the synchronization byte is exactly (k-1) 
non-synchronization bytes away from some randomly 
selected byte (from the last byte of the slip in our case), can 
be expressed by the geometric distribution: 

( ) ppkP k ⋅−= −11)( , k = 1, 2, 3...,                            (1) 
The mean value of this random variable is equal to E = 1/p = 
2s. Then the average interval from the end of the slip to the 
end of the synchronization byte d = 2s [byte] = h·2s [bit]. In 
[2], this value is given as a resynchronization interval D. 
We will see later that this statement is not quite exact. 

For the original SCFB mode (i.e. when h = 1), quite a 
complex approximation of D is derived in [3], which for big 
values of s can be simplified to the formula D ≈ 2s bits. For 
this derivation, the author used the assumption that the 
probability distribution of binary synchronization s-tuples 
is given by the shifted geometric distribution: 

( ) ppkP k ⋅−= 1)( , k = 0, 1, 2, 3 ...,                        (2) 
where again p = 2-s. However, this assumption is not correct, 
because the random variable k for this distribution is not in 
units of bits, but in units of bit s-tuples. The following 
considerations thus lead to approximate results only. The 
OCFB and SCFB modes are mutually compared in [5], but 
the respective values of D were obtained via simulation.  

The above description of the current state leads to the 
conclusion that only approximations of the 

resynchronization interval are known for the published 
OCFB and SCFB modes while for the modified SCFB 
mode (i.e. when h ≥ 1) even an estimate of this interval is 
unknown. In this paper, the probability distribution of 
intervals d between a randomly selected cryptogram byte 
(the last byte of a slip in our case) and the terminal byte of 
so-called closed synchronization sequence (see bellow) is 
derived first. Formulas for the resynchronization intervals 
of the OCFB mode and the modified SCFB mode are then 
derived on this basis.  

3. Mathematical model 

In this paper, we assume that the transmission channel 
does not cause any errors and that the values of the 
cryptogram bits are mutually independent random variables. 
At the same time, the occurrence probability of zero bits in 
the cryptogram is equal to the occurrence probability of one 
bits.  

Finally, we assume that the so-called closed 
synchronization sequence is used for resynchronization. A 
closed sequence is a sequence of symbols in which none of 
its prefixes is simultaneously its suffix. An example of a 
closed sequence is the bit string 10000. On the contrary, the 
sequence 10010 is not a closed sequence, because its prefix 
10 (the first two bits) is simultaneously its suffix (the last 
two bits). It is evident that closed sequences do not overlap 
in the cryptogram and therefore their minimal mutual 
distance is equal to the sequence length s. Thus, a minimal 
interval between any two adjacent statistical 
resynchronizations is s bits, which is advantageous from the 
viewpoint of block cipher utilization. 

In this part, we derive the probability distribution of 
intervals d, where d is the distance from the last byte 
termination of the slip in a cryptogram to the last byte 
termination of the nearest synchronization sequence SYN. 
For the purpose of better intelligibility, we will call the 
SYN synchronization sequence the SYN string for short or 
SYN only. The byte length of the SYN string S = ⎡s/h⎤, 
where the value S of function ⎡s/h⎤ expresses the nearest 
integer for which it is valid S ≥ s/h. We assume that the 
beginning of the SYN string is identical to the beginning of 
the respective byte. At the end of the last (i.e. the S-th) byte 
of the SYN string, there are r = (S⋅h – s) bits, which are not 
part of SYN and which therefore may take an arbitrary 
value.   

The above quantities are illustrated by an example in 
Fig. 4, where it holds that S = 2 and r = 1 for h = 3 and s = 5. 
The random variable k is the number of bytes from the last 
byte termination of the slip to the last byte termination of 
the SYN string.  We will number these bytes from the last 
byte of SYN backwards to the slip. In Fig. 4, the situation is 
shown when k = 4. Note that the above numbering has the 
meaning of a distance and not of the order in time.  It means 
that in our example, byte number 1 is the last byte of the 
observed sequence and byte number 4 is the first byte of 
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this sequence.   
 
 
 
 
 
 
 
 

Fig. 4: Parameters of the SYN string. 

For the derivation of the distribution sought, we define 
the terms terminal sequence and bilateral sequence. The 
terminal sequence is a sequence that contains a SYN in its 
termination only. On the contrary, the bilateral sequence is 
a sequence that contains a SYN at both its beginning and its 
termination. The number of terminal sequences of length k 
bytes is denoted T(k) and the number of bilateral sequences 
of length k bytes is U(k). 

Due to the length of SYN, the SYN string cannot be 
contained in the last k bytes, when k < S. Evidently, it is 
valid that T(k) = 0 in this case. For k = S, the SYN string can 
be contained in the last k bytes, with the last r bits taking 
arbitrary values. The number of these terminal sequences is 
obviously 2r and therefore T(S) = 2r. The number of 
terminal sequences for k > S can be computed iteratively on 
the basis of the following, self-evident property of terminal 
sequences: adding any byte in front of the terminal 
sequence with the length (k-1) bytes, gives rise to a 
sequence with the length k bytes which is either terminal or 
bilateral. Therefore, it obviously holds:  

T(k-1)⋅2h = T(k) + U(k),                                            (3) 
where 2h represents the number of all possible values of the 
byte added. 

If the added byte does not cause the creation of the 
SYN string at the beginning of the sequence, then this new 
sequence remains terminal. In opposite case, a bilateral 
sequence arises. Note that the SYN string fills s bits in a 
sequence S bytes long and that the remaining r bits can take 
an arbitrary value. It follows that a bilateral sequence k 
bytes long arises by adding one sequence from 2r different 
sequences S bytes long with the SYN string in front of an 
arbitrary terminal sequence (k-S) bytes long. Then, for the 
number of bilateral sequences U(k) it is valid: 

U(k) = 2r⋅T(k-S).                                                       (4) 
By substituting this formula in (3) and by elementary 

rearrangements, we obtain the formula for iteratively 
computing the number of terminal sequences k > S bytes 
long: 

 T(k) = 2h⋅T(k-1) - 2r⋅T(k-S).                                     (5) Now, 
we can write the resultant formula for computing the 
number of terminal sequences: 

( )
⎪
⎩
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We denote P(k) the occurrence probability of the terminal 

sequence k bytes long. Obviously, it is valid that: 
( )

kh
kTkP ⋅=

2
)(  ,                                                           (7) where 

2h⋅k is the number of all binary sequences k bytes long. This 
probability is simultaneously the probability distribution of 
intervals between the last byte termination of the SYN 
sequence and the last byte termination of the slip. After 
substituting (6) in (7) and after some elementary 
rearrangements, we obtain the following formula for P(k): 

( )
⎪
⎩
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An example of the above distribution is shown in Fig. 
5 for h = 1 and s = 5 (i.e. S = 5). It is evident from the figure 
that a characteristic feature of the P(k) distribution is the 
fact that the first (S-1) probabilities are zero, the next S 
probabilities are identical and have the value 2-s, and then 
the remaining probabilities fall monotonously. The mean of 
P(k) is (see the Appendix): 

E(k) = 2s.                                                                  (9) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: The probability distribution P(k) for h = 1 and s = 5. 

We can see from Fig. 5 that the approximation of P(k) 
by the geometric distribution is not very good, especially 
for greater values of S. However, an interesting feature both 
of the P(k) distribution and of the geometric distribution is 
the identical means.  

The mean E(k) is in fact the mean d of intervals 
between the last byte termination of the SYN sequence and 
the last byte termination of the slip. Thus, we can write: 

d = E(k) = 2s [byte] = h⋅2s [bit].                              (10) 
On this basis, we can now express the average 

resynchronization interval D of the OCFB and the modified 
SCFB modes.  

4. Results 

In the case of the OCFB mode, resynchronization 
happens when the SYN sequence occurs in the last S bytes 
of the R1 register. The last byte of the slip has already left 
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R1 and, meanwhile, d + (N-S) bytes have been processed on 
average. The first addend d represents the average number 
of cryptogram bytes processed between the last byte 
termination of the slip and the last byte termination of the 
SYN sequence. The second addend (N-S) represents the 
number of bytes needed to fill the rest of the R1 register in 
order that the SYN sequence should occupy the last S bytes 
of R1. Thus, the average resynchronization interval of the 
OCFB mode is equal to: 

DOCFB = d + (N-S) = 2s + (N-S)  [byte].                  (11) In 
[2], it is stated that for the OCFB mode D = 2s. We can see 
that this formula is not exact, because it neglects the 
influence of the R1 register length. 

In the case of the modified SCFB mode, 
resynchronization happens when the SYN sequence occurs 
in the last S bytes of the R3 register. The lengths of R3 for 
the modified SCFB mode and R1 for the OCFB mode are 
identical and both these registers are filled by the 
immediately preceding cryptogram bytes. Thus, this 
situation is analogous to the resynchronization situation for 
the OCFB mode and therefore we can, by analogy, write 
that the average resynchronization interval for the SCFB 
mode is:   

DSCFB = d + (N-S) = 2s + (N-S) [byte].                    (12) 
It follows from the two previous formulas that the 

OCFB and the modified SCFB modes are entirely 
equivalent from the viewpoint of resynchronization 
intervals. In this connection, note that the original SCFB 
mode blocks any possibility of statistical resynchronization 
in the interval of the following n bits when the statistical 
resynchronization has been realized. As a result, the 
average resynchronization interval becomes extended 
compared with the modified SCFB mode. This is to mean 
that the original SCFB mode has in no case a better average 
resynchronization interval than the OCFB and the modified 
SCFB modes. This fact is validated in [5] by a simulation 
comparison of the original SCFB mode and the OCFB 
mode. The resynchronization interval of the modified 
SCFB mode is a lower boundary of D for any variant of the 
SCFB principle.   

The formulas for the average resynchronization 
intervals of all modes examined are clearly arranged in 
Table 1. 

Table 1: Formulas for the average resynchronization interval of 
self-synchronizing modes. 

Type of mode D [byte] D [bit] 
CFB N h⋅N = n

OCFB 2s + (N-S) h⋅[2s + (N-S)] 
modified SCFB 2s + (N-S) h⋅[2s + (N-S)] 

 
We can see that the value of the average 

resynchronization interval of statistical modes depends on 
the synchronization sequence length s, on the byte length h 
and on the length n of the feedback register (i.e. on the 
cipher block length).  In Fig. 6, the dependence of the 
average resynchronization interval D on the 

synchronization sequence length s is shown for byte lengths 
h = 1 and 8. This dependence is valid for a block cipher with 
block length n = 128 bits.  It is evident from the figure that 
the CFB mode is the optimal mode from the viewpoint of 
resynchronization interval because offers the shortest 
resynchronization interval D. In the OCFB and the 
modified SCFB modes the interval D is always worse and 
grows approximately exponentially with the growing 
synchronization sequence length s. From the figure, the 
great effect of byte length h on the resultant value of the 
resynchronization interval is also evident. Thus for a 
practical application of the self-synchronization modes, the 
conclusion follows that the choice of the statistical 
resynchronization is correct only in the case when the 
resynchronization delay is not a critical requirement. A 
further conclusion is that the minimal resynchronization 
delay requires a minimal value of byte length h, a minimal 
value of block cipher length n, and, in particular, a minimal 
value of synchronization sequence length s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6: The dependence of the average resynchronization interval D on the 
synchronization sequence length s for n = 128 bits. 

5. Conclusion 

The theoretical contribution of this paper is a 
mathematical representation of the occurrence of closed 
synchronization sequences in a cryptogram. This 
representation is given by formula (8) and holds for the 
general case when the transmission is realized both per bits 
(i.e. h = 1) and per bytes (i.e. h > 1), and the synchronization 
is performed by a binary sequence, which may be contained 
even in more than one byte in the case of byte transmission. 
In this way, particular cases are simultaneously described, 
when both the transmission and the synchronization are of 
the byte character or, on the contrary, of the bit character.   

The practical contribution of this paper is formulas 
(11) and (12) for finding accurately the resynchronization 
interval of statistical modes of block ciphers. These 
formulas can be used in the design phase of the block cipher 
mode, allowing an optimization of the selection of the type 
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and parameters of the mode.  
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Appendix 

The goal of this Appendix is to prove that the mean of 
probability distribution (8) is equal to the value 2s. Note that 
the value P(k) = 0 for k = 1, 2, .., S-1. The following 
equalities are a consequence the above property:  
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Thus, we now have the equality: 
)()(1)()( kESPkEkE ⋅−+= . 

By simple rearrangement, we obtain from this equality the 
formula: 

s
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kE 2
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This is the formula which was to be proved. 
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