
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

44

Manuscript received October 16, 2007

Manuscript revised October 25, 2007

Tabu Programming for Multiobjective Optimization Problems

Jerzy Balicki †,

Naval University of Gdynia, ul. Smidowicza 69, Gdynia, Poland

Summary
In this paper, tabu programming for solving multiobjective
optimization problems has been considered. Tabu search
algorithm has been extended by using a computer program
instead of a mathematical variable. For finding Pareto-
optimal solutions, the ranking procedure in the
neighborhood of the current solutions has been applied.
Moreover, the multiobjective optimization problem of task
assignment in a distributed computer system has been
studied. Finally, results of some numerical experiments
have been presented.
Key words:
Tabu algorithm, efficient solutions, multi-criterion optimization.

1. Introduction

Tabu search algorithm is the alternative approaches to the
modern meta-heuristic optimization techniques such as
genetic algorithms, evolutionary algorithms, evolution
strategies, genetic programming, simulated annealing or
Hopfield models of neural networks [3]. In a tabu search,
special areas are forbidden during the seeking in a space
of all possible combinations [9]. Tabu search can be
treated as a general combinatorial optimization technique
for using in zero-one programming, non-convex non-
linear programming, and general mixed integer
optimization [27].

The tabu search algorithm has been applied on
combinatorial optimization problems [22]. This technique
is basically used to continuous functions by selection
a discrete encoding of the problem. A lot of the
applications involve traveling salesman, scheduling, and
routing problem [16].

Hansen has proposed a multiobjective optimisation tabu
search MOTS [17] to generate non-dominated alternatives.
The MOTS works with a population of solutions, which,
through manipulation of weights, are moved towards the
Pareto front [19]. Tabu search can cooperate with a multi-
criterion evolutionary algorithm as an additional mutation
[2]. During extensive numerical experiments, we notice
that tabu search algorithm with distance function from the
current solution to the ideal point is capable to find some
Pareto-suboptimal solutions [2].

Tabu programming paradigm is implemented as a tabu
search algorithm operated on the computer program that
produces the current solution. A solution is generated as
the program function and then tabu search procedures are
applied for finding Pareto-suboptimal solutions.

In this paper, tabu programming for solving multiobjective
optimization problems has been considered. Tabu search
algorithm has been extended by using a computer program
instead of a mathematical variable. For finding Pareto-
optimal solutions, the ranking procedure in the
neighborhood of the current solutions has been applied.
Moreover, the multiobjective optimization problem of task
assignment in a distributed computer system has been
studied. Finally, results of some numerical experiments
have been presented.

2. Tabu search algorithm

The basic concept of tabu search is a meta-heuristic
applied to the other heuristic [4]. The overall approach is
to avoid entrainment in cycles by forbidding or penalizing
moves which take the solution, in the next iteration, to
points in the solution space previously visited (hence
"tabu"). The method is still actively researched, and is
continuing to evolve and improve [13]. The tabu method
was partly motivated by the observation that human
behavior appears to operate with a random element that
leads to inconsistent behavior given similar circumstances.
The resulting tendency to deviate from a charted course,
might be regretted as a source of error but can also prove
to be source of gain [28]. The tabu method operates in this
way with the exception that new courses are not chosen
randomly. Instead the tabu search proceeds according to
the supposition that there is no point in accepting a new
(poor) solution unless it is to avoid a path already
investigated [23]. This insures new regions of a problems
solution space will be investigated in with the goal of
avoiding local minima and ultimately finding the desired
solution.

The tabu search begins by marching to a local minima. To
avoid retracing the steps used, the method records recent
moves in one or more tabu lists [20]. The original intent of
the list was not to prevent a previous move from being
repeated, but rather to insure it was not reversed [12]. The

IJCSNS International Journal of Computer Science and Network Security, VOL. No.10, October 2007

45

tabu lists are historical in nature and form the tabu search
memory. The role of the memory can change as the
algorithm proceeds [6]. At initialization the goal is make
a coarse examination of the solution space, known as
'diversification', but as candidate locations are identified
the search is more focused to produce local optimal
solutions in a process of 'intensification'. In many cases the
differences between the various implementations of the
tabu method have to do with the size, variability, and
adaptability of the tabu memory to a particular problem
domain [25].

In a tabu search special areas are forbidden during the
seeking in a space of all possible combinations. Tabu
search uses memory structures by reference to dimensions
consisting of recency, frequency, quality and influence
[21]. It inherits from a simple descent method an idea of
a neighbourhood N(xnow) of a current solution xnow. From
this neighbourhood of the current solution, we can choose
the next solution xnext to a search trajectory [8]. The
accepted alternative is supposed to have the best value of
an objective function among the current neighbourhood.
However, the descent method terminates its searching,
when the chosen candidate is worse than the best one from
the search trajectory [18].

In the tabu search algorithm based on the short-term
memory, a basic neighbourhood N(xnow) of a current
solution may be reduced to a considered neighbourhood
K (xnow) because of the maintaining a selective history of
the states encountered during the exploration. Some
solutions, which were visited during the given last term,
are excluded from the basic neighbourhood according to
the tabu classification of movements [24]. If any solutions
performs aspiration criterion, then it can be included to the
considered neighbourhood, only [11].

Let consider the tabu algorithm version called TSZmax [2]
that has been designed to find the task assignment with the
minimum value of the workload of the bottleneck
computer Zmax . Figure 1 shows the process of the
minimization Zmax from the initial value equal to 62 time
units to 32.

2. Tabu programming

Tabu programming is the tabu search algorithm that
operates on the dedicated population of computer program.
Computer programs are constructed from the basic
program that produces the current solution. The basic
program can be modeled as a tree (Fig. 2).

Fig. 1. Minimization of the bottleneck computer workload

by the tabu search algorithm

The size of the generated tree is supposed to be limited by
the number of nodes or by the number of the tree levels.
The tree nodes are divided on functional nodes and
terminal ones. This tree corresponds to the program
written in the LISP language, as follows:

(LT (+ –2 x) (* v (SQRT v)))

Fig. 2. Tree as a model of the computer program

Above program calculates both the value –2x and vv ,

and then compare –2x to vv . If –2x is smaller than

vv , then an outcome of the LISP procedure is equal to
1. In the other case, the result is –1, because the function
LT is defined in such a way.

0 10 20 30 40 50 60 70
30

35

40

45

50

55

60

65

Z max

[TU]

k

SQRT

 LT

 + *

v

 v x -2

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

46

This tree is equivalent to the parse tree that most compilers
construct internally to represent the given computer
program. A current solution xnow can be produced by this
program. A tree can be changed to create the
neighborhood N(xnow) of the current program. We can use
the move in tabu sense that is related to removing a sub-
tree with the randomly chosen node from the parent tree
(Fig. 3). Next, the randomly selected node as a terminal is
required to be inserted. There are L1 moves of removing a
sub-tree, where L1 is the number of functional nodes in the
tree.

Fig. 3. The computer program tree with the dummy node
D0 after substitution the sub-tree with the root SQRT by

a node x

A functional node represents an elementary procedure
randomly chosen from the primary defined set of
functions:

{ }Nn fff ,...,,...,1=F (1)

Each function should be able to accept, as its arguments,
any value and data type that may possible be returned by
the other procedure [2]. Because a procedure is randomly
chosen from the set, and then it is returned, each function
ought to be able to accept, as its arguments, any value and
data type that may possible be returned by itself, too.
Moreover, each procedure is supposed to be capable to
allow any value and data type that may possible be
assumed by any terminal selected from the following
terminal set:

{ }Mm aaa ,...,,...,1=T (2)

An above condition for the procedures can be called
a compatibility requirement because each function should
be well defined and closed for any arrangement of
arguments that it may come across.

Another condition of a set of procedures, called the
sufficiency requirement, postulates that the solution to the
problem is supposed to be expressed by the any
combination of the procedures from the set of functions
and the arguments from the set of terminals. For example,
the set of functions { }NOTORAND ,,=F is sufficient
to articulate any Boolean function. If the logical operator
AND is removed from this set, the remaining procedure set
is still satisfactory for implementation any Boolean
function. In addition, a sufficient set is { }NOTAND , as
well.

Another sort of movements in tabu programming is related
to removing the randomly chosen terminal node and then
adding a sub-tree with the functional node as a root. There
are L2 movements of adding a sub-tree. That sub-tree can
be constructed from the random number of nodes.

The basic neighborhood of the current solution consists of
L= L1+ L2 solutions obtained from L programs. We
introduce some limitation of nodes in the parse tree Lmax
that ensures the reasonable number of nodes in the
program tree and the number of solutions in the
neighborhood.

3. Short-term memory

From this neighborhood of the current solution, we can
choose the next solution xnext to a search trajectory of
a tabu programming [15]. The short-term memory may
reduce a basic neighborhood N(xnow) to a considered
neighborhood K (xnow) because of the maintaining
a selective history of the states encountered during the
exploration [14]. Some solutions, which were visited
during the given last term, are excluded from the basic
neighborhood according to the tabu classification of
movements.

If the node is the root of the reducing sub-tree for the
current program, it can be protected against choosing its to
be that root in a reducing operation until the next λ1
movements is performed. However, that node can be
selected to be the root for adding the sub-tree. Similarly, if
the node is the root of the adding tree, it can be protected
against choosing him to be that root in a adding operation
until the next λ2 movements is performed.

We can implement that by introducing the assignment
vector of the node names to the node numbers. We

 LT

 + *

 x -2 x v

 D0 0

1

2 3

4 5 6 7

IJCSNS International Journal of Computer Science and Network Security, VOL. No.10, October 2007

47

consider a dummy node D0 (Fig. 3) as the number 0, for
the formal reason. The node index ,,1 maxLl = where

maxL represents the assumed maximal number of nodes in
the tree. Numbers are assigned from the dummy node to
lower layers and from the left to the right at the current
layer. The assignment vector of the node names to the
node numbers for the tree from the Figure 3 can be
represented as below:

 ()xvxLTD ,,,2,*,,,0 −+=ω (3)

Moreover, the vector of function f and argument a
assignment can be defined, as follows:

()aaaaffff ,,,,,,,=ψ (4)

The vector of the argument number can be determined, as
below:

()0,0,0,0,2,2,2,1=χ (5)

Now, we can introduce the matrix of reducing node

memory [] ,
maxmax LLnmmM ×

− = where nmm

represents the number of steps that can be missed after
reduction the function fm (with the parent fn) as a root of
the chosen sub-tree. After exchanging that root,

.1λ=nmm

Similarly, we can define the matrix of adding node

memory [] ,~
maxmax LLnmmM ×

+ = where nmm~

represents the number of steps that can be missed after
adding the function fm (with the parent fn) as a root of the
created sub-tree. After exchanging that root, .~

2λ=nmm

Parameters λ1 and λ2 are usually equal to λ, but we can
adjust their values to tune the tabu programming for the
solved problem. On the other hand, the length of the short-
term memory λ is supposed to be no greater than Lmax.
After λ movements, the selected node may be chosen for
operation once again.

If any solutions performs aspiration criterion, then it can
be included to the considered neighborhood [15]. The
accepted alternative is supposed to have the best value of
an objective function among the current neighborhood.

3. Algorithm of the tabu programming

Tabu programming rules can be implemented as an
algorithm ATP (Fig. 4) that can be used for optimisation.

Fig. 4. An algorithm ATP of tabu search programming

ATP can be used for solving an optimization problem with
one criterion, as follows:

)(minmin xFF
Xx∈

= (6)

where

F – criterion f the problem,

X – set of admissible solutions.

The selection function W is constructed from the criterion
F and functions describing constraints [7]. Usually, the
penalty function can be applied.

1. Initial procedure k:=0
(A) Generation of the program that produces xnow
(B) xbest := xnow , xbis:= xnow
(C) Fmin:=F(xnow)
(D) Initialization of restriction matrixes M

+, M
-

(E) Setting λ1, λ2

2. Solution selection and stop criterion k:=k+1
(A) Finding a set of tree candidates K(M

+,M
-, xnow) from

the neighborhood N(xnow)
(B) Selection of the next solution xnext∈ K (M

+, M
-,

xnow) with the minimal value of the selection
function W among solutions taken from K

(C) Aspiration condition. If all solutions from the
neighbourhood are tabu-active and Fmin≥F(xnow),
then xbest := xnow, Fmin:=F(xnow)

(D) Re-linking of search trajectory. If xnext was not
changed during main iteration, then crossover
procedure for parents xbest, xbis is performed. A child
with the smaller value of F is xnext, and another one
is xbis

(E) If k = 0.4 Kmax, then λ1:= 4λ1, λ2:= 4λ2
(F) If k = Kmax or maximal time of calculation is

exceeded, then STOP.

3. Up-dating
(A) xnow := xnext
(B) If F(xnow)< Fmin, then xbis := xbest and go to 1(B)
(C) After reduction the procedure fm (with the parent

fn) as a root of the chosen sub-tree M
-:= M

- –1,
.1λ=nmm

(D) After adding the procedure fm (with the parent fn)
as a root of the created sub-tree M

+:= M
+ –1,

.~
2λ=nmm

(E) go to 2

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

48

3. Tabu programming for multi-criterion
optimization

A ranking idea for non-dominated individuals has been
introduced to avoid the prejudice of the interior Pareto
alternatives [2]. It was developed for genetic algorithm. To
adjust ATM for solving multi-criterion problems a ranking
procedure can be applied for sorting solutions in the
neighborhood of the current solution.

If some admissible solutions are in the neighborhood, then
the Pareto-optimal solutions are determined, and after that
they get the rank 1. Subsequently, they are temporary
eliminated from the neighborhood. Next, the new Pareto-
optimal alternatives are found from the reduced
neighborhood and they get the rank 2. In this procedure,
the level is increased and it is repeated until the set of
admissible solutions is exhausted. All non-dominated
alternatives have the same value of the selection function
W because of the equivalent rank. Then, from the solutions
with the rank 1, the best one is accepted according to the
distance criterion to an ideal point with the optimal values
of coordinates.

Tabu search uses memory structures by reference to
dimensions consisting of recency, not only [5]. Moreover
frequency, quality and influence aspects can be considered
and the capabilities of the ATM can be extended [10].

Let (X, F, P) be the multi-criterion optimisation problem
for finding a Pareto-optimal task assignment in the
distributed computer system [26]. That benchmark
problem can be established, as follows:

1) X - an admissible solution set

|{)(VJVIx VBX ×∈= +

;min lim
max

1 11 11
Zxx+xxt ij

m
vi

V

v=

V

uv
u=

vuij
m
vi

V

v=

I

i=
vi,Ii

≤
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∑∑∑∑
≠

=

ππ τ

;,1,,1,
11

RrIixdxc
J

j
ijjr

V

v

m
vivr ==≤∑∑

==

π

;max
1 1

κκ ≤∑∑
= =

π
ij

I

i

J

j
j x ;max

1 1
ϑϑ ≥∑∑

= =

π
ij

I

i

J

j
j x

 (7)
;,1,1 VvVNv =≤≤

;,1 ,1
1

Vvx
I

i

m
vi ==∑

=
 },1,1

1
Iix

J

j
ij ==∑

=

π

where

B = {0, 1},
V = {1, 2,…,V}

),,(mm Nxxx π=

),(πxxm .],...,,...,,...,,...,,...,,,...,,...,,...,[1111111
T

IJIjIijJ
m
VI

m
vi

m
I

m xxxxxxxxxx ππππππ=

⎩
⎨
⎧=

 , the toassigned is if1
case.other thein0

iwj
ijx

ππ

⎩⎨
⎧= , toassigned is taskif1

case,other thein0
iwvTm

vix
 },...,,...,{ 1 Jj πππ=Π - the set of available computer

sorts,

 {T1,...,Tv,...,TV} - the set of parallel performing tasks,

 },...,,...,{ 1 Ii wwwW = - the se of the processing
nodes,

,],...,,...,[1
T

Vv
m NNNN =

Nv – number of the vth module in the line for its
dedicated computer,

vjt - the overhead performing time of the task Tv by

the computer πj.

vuτ – the total communication time between the task
Tv and the Tu,

z1,...,zr,...,zR - memories available in the system,
djr - the capacity of memory zr in the workstation πj ,
κj - the cost of the computer π j,

jϑ - the numerical performance of the computer π j

for the given benchmark,

2) F - a vector superiority criterion

2 : RX →F , (8)

where
R – the set of real numbers,
F(x) = [–R(x), PD (x)] T for x∈X,

),exp()(
1 1 1

∏∏∏
= = =

−=
V

v

I

i

J

j
ij

m
vivjj xxtxR πλ

∑ ∏
= ∈

−=
K

i Mm
vviD

iv

xCdpxP
1

))(()(ξ

jλ - rate of failing for the computer jπ that can be
failed independently due to an exponential distribution,

dv - the completion deadline for the vth task,
Cv - the completion time for the vth task,
If vv dC ≤ , 1)(=− vv Cdξ .

If vv dC > , 0)(=− vv Cdξ .
K – number of instances in the flow graph

IJCSNS International Journal of Computer Science and Network Security, VOL. No.10, October 2007

49

3) P - the Pareto relation [1].

The relationship P is a subset of the product Y×Y, where
an evaluation set Y=F(X). If a∈Y, b∈Y, and

Nnba nn ,1, =≤ , then the pair of evaluations (a,b)∈P.
The meaning of the Pareto relationship respects the
minimization of all criteria. That is why, criteria for
maximization are written with minus. There is no task
allocation a∈X such that (F(a),F(x*))∈P for the Pareto-
optimal assignment x*∈ X and a ≠ x*.

4. Implementation and numerical
experiments

Each program consists of set of procedures and set of
attributes. Set of procedures is defined, as follows:

{ }/,-,*,,+= listF
(9)

where

list – the procedure that convert I(V+J)+V input real
numbers called activation levels on I(V+J) output binary
numbers ππππππ

IJIjIijJ
m
VI

m
vi

m
I

m xxxxxxxxxx ,...,,...,,...,,...,,...,,,...,,...,,..., 1111111

 and V output integer numbers Vv NNN ,...,,...,1 .

The procedure list is obligatory the root of the program
tree and appears only one in a generated program. An
activation level is a root for the sub-tree that is randomly
generated with using arithmetic operators {+, -, *, /} and
the set of terminals.

Let D be the set of numbers that consists of the given
data for the solved instance. A terminal set is determined
for each instance of the problem, as below:

,LDT ∪= (9)

where L – set of n random numbers D=n
If x calculated by the program is admissible, then the
selection function value is estimated, as below:

,1)()(maxmax ++−= Pxrrxf (10)

where r(x) denotes the rank of an admissible solution,

Let the Pareto points {P1, P2,..., PU} be given for any
instance of the task assignment problem. If the AMEA/GP
finds the efficient point (Au1, Pu2) for the probability that
tasks meet deadlines Pu2, this point is associated to the uth
Pareto result (Pu1, Pu2) with the same value of probability.

The distance between points (Au1, Pu2) and (Pu1, Pu2) is
calculated according to an expression 11 uu AP − . If the
point (Au1, Pu2) is not discovered by the algorithm, we

assume the distance is min
11 uu AP − , where min

1uA is the

minimal reliability of the system for the instance of
problem.

The level of convergence to the Pareto front is calculated,
as follows:

∑
=

−=
U

u
uu APS

1
11 . (11)

An average level S is calculated for several runs of the
evolutionary algorithm. Initial numerical examples
indicated that obtained task assignments had higher value
of the workload of the bottleneck computer than the limit
for some instances with the number of tasks larger than 15.

This tabu programming ATM gives better results than the
genetic programming AMEA/GP (Fig. 5). After 200
selections, an average level of Pareto set obtaining is 1.9%
for the ATM, 3.3% for the AMEA/GP. 30 test preliminary
populations were prepared, and each algorithm starts 30
times from these populations. For integer constrained
coding of chromosomes there are 12 decision variables in
the test optimization problem. The search space consists of
25 600 solutions.

For the other instance with 15 tasks, 4 nodes, and 5
computer sorts there are 80 binary decision variables. An
average level of convergence to the Pareto set is 16.2% for

1,9

9,3

4,1
3,3

6,1

12,3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

50 75 100 125 150 175 200

AMT

AMEA/GP

S [%]

Fig. 5. Outcome convergence for the AMT and the
AMEA/GP

Selection number

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

50

the AMT and 18.4% for the AMEA/GP. A maximal level
is 26.5% for the AMT and 29.6% for the AMEA/GP. For
this instance the average number of optimal solutions is
19.2% for the AMT and 21.1% for the AMEA/GP.

An average level of convergence to the Pareto set, an
maximal level, and the average number of optimal
solutions become worse, when the number of task, number
of nodes, and number of computer types increase. An
average level is 33.6% for the AMT versus 35,7% for the
AMEA/GP, if the instance includes 50 tasks, 4 nodes, 5
computer types and also 220 binary decision variables.

8. Concluding remarks

Tabu programming is new paradigm of artificial
intelligence that can be used for finding solution to several
problems. A computer program as a tree is a subject of
tabu operators such as selection from neighborhood, short-
term memory and re-linking of the search trajectory. It
gives possibility to represent knowledge that is specific to
the problem in more intelligent way than for the data
structure. That is, we process the potential ways of finding
solution not the possible solutions. A tabu programming
has been applied for operating on the computer procedures
written in the Matlab language.

Our initial numerical experiments confirm that feasible,
sub-optimal in Pareto sense, task assignments can be
found by tabu programming. A paradigm of tabu
programming gives opportunity to solve this problem for
changeable environment.

Our future works will focus on testing the other sets of
procedures and terminals to find the Pareto-optimal task
assignments for distinguish criteria and constraints.
Moreover, we will concern on a development the
combination between tabu search and evolutionary
algorithms for finding Pareto-optimal solutions.

References
[1] A. Ameljañczyk, Multicriteria optimization, WAT,

Warsaw 1986.
[2] J. Balicki, Negative selection with ranking procedure

in tabu-based multi-criterion evolutionary algorithm
for task assignment, Lecture Notes in Computer
Science. Vol. 3993, 2006, pp. 863-870.

[3] R. Battiti, Reactive search: Toward self-tuning
heuristics, in V. J. Rayward-Smith, editor, Modern
Heuristic Search Methods, John Wiley and Sons Ltd,
1996, pp. 61-83.

[4] R. Battiti, G. Tecchiolli, The Reactive Tabu Search,
ORSA Journal on Computing, Vol. 6, No. 2, 1994, pp.
126-140.

[5] R. Battiti, G. Tecchiolli, Simulated annealing and
tabu search in the long run: a comparison on qap
tasks, Computer Math. Applic., Vol. 28, No. 6, 1994,
pp. 1-8.

[6] T. G. Crainic, M. Toulouse and M. Gendreau, Toward
a Taxonomy of Parallel Tabu Search Heuristics,
INFORMS Journal on Computing, Vol. 9, No. 1,
1997, pp. 61-72.

[7] M. Dell’Amico, M. Trubian, Applying Tabu Search to
the Job-Shop Scheduling Problem, Annals of
Operations Research, Vol. 41, 1993, pp. 231-252.

[8] U. Faigle, W. Kern, Some Convergence Results for
Probabilistic Tabu Search, ORSA Journal on
Computing, Vol. 4, No. 1, 1992, pp. 32-38.

[9] F. Glover, Heuristics for Integer Programming Using
Surrogate Constraints, Decision Sciences, Vol. 8, No.
1, 1977, pp. 156-166.

[10] F. Glover, Tabu Search — Part I, ORSA Journal
on Computing, Vol. 1, No. 3, 1989, pp. 190-206.

[11] F. Glover, Tabu Search — Part II, ORSA Journal
on Computing, Vol. 2, No. 1, 1990, pp. 4-32.

[12] F. Glover, Tabu Thresholding: Improved Search
by Nonmonotonic Trajectories, ORSA Journal on
Computing, Vol. 7, No. 4, 1995, pp. 426-442.

[13] F. Glover, Future paths for Integer Programming
and Links to Artificial Intelligence, Computers and
Operations Research, Vol. 5, pp. 533-549, 1986.

[14] F. Glover, Tabu Search: A Tutorial, Interfaces,
Vol. 20, No. 4, 1990, pp. 74-94.

[15] F. Glover, M. Laguna, Tabu Search, Kluwer
Academic Publishers, Boston 1997

[16] F. Glover, Laguna M., Tabu Search, in Modern
Heuristic Techniques for Combinatorial Problems,
C.R. Reeves, editor, John Wiley & Sons, Inc, 1993

[17] M. P. Hansen, Tabu Search for Multicriteria
Optimisation: MOTS. Proceedings of the Multi
Criteria Decision Making, Cape Town, South Africa,
1997

[18] A. Hertz, Finding a Feasible Course Schedule
Using Tabu Search, Discrete Applied Mathematics
and Combinatorial Operations Research and Computer
Science, Vol. 35, 1992.

[19] A. Jaszkiewicz, M. Hapke, P. Kominek,
Performance of Multiple Objective Evolutionary
Algorithms on a Distributed System Design Problem –
Computational Experiment. Lectures Notes in
Computer Science, Vol. 1993, 2001, pp. 241-255.

[20] A. M. Laguna, A J. W. Barnes, A F. Glover, Tabu
Search Methodology for a Single Machine Scheduling
Problem, J. of Int. Manufacturing, Vol. 2, 1991, pp.
63-74.

[21] A. M. Laguna, A J. L. Gonzalez-Velarde, A
Search Heuristic for Just-in-time Scheduling in
Parallel Machines, J. of Int. Manu., Vol. 2, 1991, pp.
253-260,

IJCSNS International Journal of Computer Science and Network Security, VOL. No.10, October 2007

51

[22] A. Lokketangen, A. K. Jornsten and S. Storoy,
Tabu Search within a Pivot and Complement
Framework, International Transactions in Operations
Research, Vol. 1, No. 3, 1994, pp. 305-316.

[23] A S. C. S. Porto, A C.C. Ribeiro, Parallel Tabu
Search Message-Passing Synchronous Strategies for
Task Scheduling under Precedence Constraints,
Journal of Heuristics, Vol. 1, 1995

[24] A. S. C. S. Porto, A C.C. Ribeiro, A Tabu Search
Approach to Task Scheduling on Heterogeneous
Processors under Precedence Constraints,
International Journal of High-Speed Computing, Vol.
7, No. 2, 1995

[25] C. Rego, A Subpath Ejection Method for the
Vehicle Routing Problem, Management Science, Vol.
44, No. 10, 1998, pp. 1447-1459.

[26] J. Węglarz, Recent Advances in Project
Scheduling. Kluwer Academic Publishers, Dordrecht
1998.

[27] A. M. Widmer, The Job-shop Scheduling with
Tooling Constraints: A Tabu Search Approach, J. Opt.
Res. S, Vol. 42, 1991, pp. 75-82

[28] A. M. Widmer, A A. Hertz, A New Heuristic
Method for the Flow Shop Sequencing Problem, Euro.
J. Opt. Res., Vol. 41, 1989, pp. 186-193

Jerzy Balicki received the
M.S. and Ph.D. degrees in
Computer Science from Warsaw
University of Technology in 1982
and 1987, respectively. During
1982-1997, he stayed in Computer
Center of Maritime High School of
Gdynia to study management
systems, mobile systems, and
decision support systems. Then, he
achieved habilitation from

Technical University of Poznan in 2001. He was admitted as
a university professor at Naval University of Gdynia in 2002.

