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Summary 
In this paper, tabu programming for solving multiobjective 
optimization problems has been considered. Tabu search 
algorithm has been extended by using a computer program 
instead of a mathematical variable. For finding Pareto-
optimal solutions, the ranking procedure in the 
neighborhood of the current solutions has been applied. 
Moreover, the multiobjective optimization problem of task 
assignment in a distributed computer system has been 
studied. Finally, results of some numerical experiments 
have been presented. 
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1. Introduction 

Tabu search algorithm is the alternative approaches to the 
modern meta-heuristic optimization techniques such as 
genetic algorithms, evolutionary algorithms, evolution 
strategies, genetic programming, simulated annealing or 
Hopfield models of neural networks [3]. In a tabu search, 
special areas are forbidden during the seeking in a space 
of all possible combinations [9]. Tabu search can be 
treated as a general combinatorial optimization technique 
for using in zero-one programming, non-convex non-
linear programming, and general mixed integer 
optimization [27]. 

The tabu search algorithm has been applied on 
combinatorial optimization problems [22]. This technique 
is basically used to continuous functions by selection 
a discrete encoding of the problem. A lot of the 
applications involve traveling salesman, scheduling, and 
routing problem [16]. 

Hansen has proposed a multiobjective optimisation tabu 
search MOTS [17] to generate non-dominated alternatives. 
The MOTS works with a population of solutions, which, 
through manipulation of weights, are moved towards the 
Pareto front [19]. Tabu search can cooperate with a multi-
criterion evolutionary algorithm as an additional mutation 
[2]. During extensive numerical experiments, we notice 
that tabu search algorithm with distance function from the 
current solution to the ideal point is capable to find some 
Pareto-suboptimal solutions [2]. 

Tabu programming paradigm is implemented as a tabu 
search algorithm operated on the computer program that 
produces the current solution. A solution is generated as 
the program function and then tabu search procedures are 
applied for finding Pareto-suboptimal solutions. 

In this paper, tabu programming for solving multiobjective 
optimization problems has been considered. Tabu search 
algorithm has been extended by using a computer program 
instead of a mathematical variable. For finding Pareto-
optimal solutions, the ranking procedure in the 
neighborhood of the current solutions has been applied. 
Moreover, the multiobjective optimization problem of task 
assignment in a distributed computer system has been 
studied. Finally, results of some numerical experiments 
have been presented. 

2. Tabu search algorithm  

The basic concept of tabu search is a meta-heuristic 
applied to the other heuristic [4]. The overall approach is 
to avoid entrainment in cycles by forbidding or penalizing 
moves which take the solution, in the next iteration, to 
points in the solution space previously visited (hence 
"tabu"). The method is still actively researched, and is 
continuing to evolve and improve [13]. The tabu method 
was partly motivated by the observation that human 
behavior appears to operate with a random element that 
leads to inconsistent behavior given similar circumstances. 
The resulting tendency to deviate from a charted course, 
might be regretted as a source of error but can also prove 
to be source of gain [28]. The tabu method operates in this 
way with the exception that new courses are not chosen 
randomly. Instead the tabu search proceeds according to 
the supposition that there is no point in accepting a new 
(poor) solution unless it is to avoid a path already 
investigated [23]. This insures new regions of a problems 
solution space will be investigated in with the goal of 
avoiding local minima and ultimately finding the desired 
solution.  

The tabu search begins by marching to a local minima. To 
avoid retracing the steps used, the method records recent 
moves in one or more tabu lists [20]. The original intent of 
the list was not to prevent a previous move from being 
repeated, but rather to insure it was not reversed [12]. The 
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tabu lists are historical in nature and form the tabu search 
memory. The role of the memory can change as the 
algorithm proceeds [6]. At initialization the goal is make 
a coarse examination of the solution space, known as 
'diversification', but as candidate locations are identified 
the search is more focused to produce local optimal 
solutions in a process of 'intensification'. In many cases the 
differences between the various implementations of the 
tabu method have to do with the size, variability, and 
adaptability of the tabu memory to a particular problem 
domain [25].  

In a tabu search special areas are forbidden during the 
seeking in a space of all possible combinations. Tabu 
search uses memory structures by reference to dimensions 
consisting of recency, frequency, quality and influence 
[21]. It inherits from a simple descent method an idea of 
a neighbourhood N(xnow) of a current solution xnow. From 
this neighbourhood of the current solution, we can choose 
the next solution xnext to a search trajectory [8]. The 
accepted alternative is supposed to have the best value of 
an objective function among the current neighbourhood. 
However, the descent method terminates its searching, 
when the chosen candidate is worse than the best one from 
the search trajectory [18].  

In the tabu search algorithm based on the short-term 
memory, a basic neighbourhood N(xnow) of a current 
solution may be reduced to a considered neighbourhood 
K (xnow) because of the maintaining a selective history of 
the states encountered during the exploration. Some 
solutions, which were visited during the given last term, 
are excluded from the basic neighbourhood according to 
the tabu classification of movements [24]. If any solutions 
performs aspiration criterion, then it can be included to the 
considered neighbourhood, only [11]. 

Let consider the tabu algorithm version called TSZmax [2] 
that has been designed to find the task assignment with the 
minimum value of the workload of the bottleneck 
computer Zmax . Figure 1 shows the process of the 
minimization Zmax from the initial value equal to 62 time 
units to 32.  

2. Tabu programming  

Tabu programming is the tabu search algorithm that 
operates on the dedicated population of computer program. 
Computer programs are constructed from the basic 
program that produces the current solution. The basic 
program can be modeled as a tree (Fig. 2).  

 
 
 

 
 
 
 
 
 
 
 
 

 
 
   
 
 
 
Fig. 1. Minimization of the bottleneck computer workload 

by the tabu search algorithm 
 

The size of the generated tree is supposed to be limited by 
the number of nodes or by the number of the tree levels. 
The tree nodes are divided on functional nodes and 
terminal ones. This tree corresponds to the program 
written in the LISP language, as follows: 

 
(LT (+ –2 x) (* v (SQRT v))) 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Tree as a model of the computer program 

 

Above program calculates both the value –2x and vv , 

and then compare –2x to vv . If  –2x is smaller than 

vv , then an outcome of the LISP procedure is equal to 
1. In the other case, the result is –1, because the function 
LT is defined in such a way.  
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This tree is equivalent to the parse tree that most compilers 
construct internally to represent the given computer 
program. A current solution xnow can be produced by this 
program. A tree can be changed to create the 
neighborhood N(xnow) of the current program. We can use 
the move in tabu sense that is related to removing a sub-
tree with the randomly chosen node from the parent tree 
(Fig. 3). Next, the randomly selected node as a terminal is 
required to be inserted. There are L1 moves of removing a 
sub-tree, where L1 is the number of functional nodes in the 
tree.  

 

 

 

 
 
 
 

 

 
 
 
 
 
 
 

Fig. 3. The computer program tree with the dummy node 
D0 after substitution the sub-tree with the root SQRT by 

a node x 
 

A functional node represents an elementary procedure 
randomly chosen from the primary defined set of 
functions: 

{ }Nn fff ,...,,...,1=F                   (1) 

Each function should be able to accept, as its arguments, 
any value and data type that may possible be returned by 
the other procedure [2]. Because a procedure is randomly 
chosen from the set, and then it is returned, each function 
ought to be able to accept, as its arguments, any value and 
data type that may possible be returned by itself, too. 
Moreover, each procedure is supposed to be capable to 
allow any value and data type that may possible be 
assumed by any terminal selected from the following 
terminal set:  

{ }Mm aaa ,...,,...,1=T                     (2) 
 

An above condition for the procedures can be called 
a compatibility requirement because each function should 
be well defined and closed for any arrangement of 
arguments that it may come across.  

Another condition of a set of procedures, called the 
sufficiency requirement, postulates that the solution to the 
problem is supposed to be expressed by the any 
combination of the procedures from the set of functions 
and the arguments from the set of terminals. For example, 
the set of functions { }NOTORAND ,,=F  is sufficient 
to articulate any Boolean function. If the logical operator 
AND is removed from this set, the remaining procedure set 
is still satisfactory for implementation any Boolean 
function. In addition, a sufficient set is { }NOTAND ,  as 
well.  

Another sort of movements in tabu programming is related 
to removing the randomly chosen terminal node and then 
adding a sub-tree with the functional node as a root. There 
are L2 movements of adding a sub-tree. That sub-tree can 
be constructed from the random number of nodes.  

The basic neighborhood of the current solution consists of 
L= L1+ L2 solutions obtained from L programs. We 
introduce some limitation of nodes in the parse tree Lmax 
that ensures the reasonable number of nodes in the 
program tree and the number of solutions in the 
neighborhood.  

3. Short-term memory  

From this neighborhood of the current solution, we can 
choose the next solution xnext to a search trajectory of 
a tabu programming [15]. The short-term memory may 
reduce a basic neighborhood N(xnow) to a considered 
neighborhood K (xnow) because of the maintaining 
a selective history of the states encountered during the 
exploration [14]. Some solutions, which were visited 
during the given last term, are excluded from the basic 
neighborhood according to the tabu classification of 
movements.  

If the node is the root of the reducing sub-tree for the 
current program, it can be protected against choosing its to 
be that root in a reducing operation until the next λ1 
movements is performed. However, that node can be 
selected to be the root for adding the sub-tree. Similarly, if 
the node is the root of the adding tree, it can be protected 
against choosing him to be that root in a adding operation 
until the next λ2 movements is performed.  

We can implement that by introducing the assignment 
vector of the node names to the node numbers. We 
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consider a dummy node D0 (Fig. 3) as the number 0, for 
the formal reason. The node index ,,1 maxLl =  where 

maxL  represents the assumed maximal number of nodes in 
the tree. Numbers are assigned from the dummy node to 
lower layers and from the left to the right at the current 
layer. The assignment vector of the node names to the 
node numbers for the tree from the Figure 3 can be 
represented as below: 

 ( )xvxLTD ,,,2,*,,,0 −+=ω               (3)  

Moreover, the vector of function f and argument a 
assignment can be defined, as follows: 

( )aaaaffff ,,,,,,,=ψ                (4)  

The vector of the argument number can be determined, as 
below: 

( )0,0,0,0,2,2,2,1=χ                      (5)  

Now, we can introduce the matrix of reducing node 

memory [ ] ,
maxmax LLnmmM ×

− =  where nmm  

represents the number of steps that can be missed after 
reduction the function fm (with the parent fn) as a root of 
the chosen sub-tree. After exchanging that root, 

.1λ=nmm  

Similarly, we can define the matrix of adding node 

memory [ ] ,~
maxmax LLnmmM ×

+ =  where nmm~  

represents the number of steps that can be missed after 
adding the function fm (with the parent fn) as a root of the 
created sub-tree. After exchanging that root, .~

2λ=nmm  

Parameters λ1 and λ2 are usually equal to λ, but we can 
adjust their values to tune the tabu programming for the 
solved problem. On the other hand, the length of the short-
term memory λ is supposed to be no greater than Lmax. 
After λ movements, the selected node may be chosen for 
operation once again.  

If any solutions performs aspiration criterion, then it can 
be included to the considered neighborhood [15]. The 
accepted alternative is supposed to have the best value of 
an objective function among the current neighborhood.  

3. Algorithm of the tabu programming  

Tabu programming rules can be implemented as an 
algorithm ATP (Fig. 4) that can be used for optimisation. 

 

Fig. 4. An algorithm ATP of tabu search programming  
 

ATP can be used for solving an optimization problem with 
one criterion, as follows: 

)(minmin xFF
Xx∈

=                        (6) 

where 

F – criterion f the problem, 

X – set of admissible solutions. 

The selection function W is constructed from the criterion 
F and functions describing constraints [7]. Usually, the 
penalty function can be applied. 

1. Initial procedure   k:=0 
(A) Generation of the program that produces xnow  
(B)  xbest := xnow , xbis:= xnow 
(C)  Fmin:=F( xnow) 
(D) Initialization of restriction matrixes M 

+, M 
-  

(E) Setting λ1, λ2 

2. Solution selection and stop criterion    k:=k+1 
(A) Finding a set of tree candidates K(M 

+,M 
-, xnow) from 

the neighborhood N(xnow) 
(B) Selection of the next solution xnext∈ K (M 

+, M 
-, 

xnow)  with the minimal value of the selection 
function W among solutions taken from K 

(C) Aspiration condition. If all solutions from the 
neighbourhood are tabu-active and Fmin≥F( xnow), 
then xbest := xnow, Fmin:=F( xnow) 

(D) Re-linking of search trajectory. If xnext  was not 
changed during main iteration, then crossover 
procedure for parents xbest, xbis is performed. A child 
with the smaller value of F is xnext, and another one 
is xbis 

(E) If  k = 0.4 Kmax, then λ1:= 4λ1,  λ2:= 4λ2 
(F) If  k = Kmax or maximal time of calculation is 

exceeded, then STOP.  

3. Up-dating 
(A) xnow := xnext 
(B) If F( xnow)< Fmin, then xbis := xbest and go to 1(B) 
(C) After reduction the procedure fm (with the parent 

fn) as a root of the chosen sub-tree M 
-:= M 

- –1, 
.1λ=nmm  

(D) After adding the procedure fm (with the parent fn) 
as a root of the created sub-tree M 

+:= M 
+ –1, 

.~
2λ=nmm  

(E) go to 2 
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3. Tabu programming for multi-criterion 
optimization 

A ranking idea for non-dominated individuals has been 
introduced to avoid the prejudice of the interior Pareto 
alternatives [2]. It was developed for genetic algorithm. To 
adjust ATM for solving multi-criterion problems a ranking 
procedure can be applied for sorting solutions in the 
neighborhood of the current solution.  

If some admissible solutions are in the neighborhood, then 
the Pareto-optimal solutions are determined, and after that 
they get the rank 1. Subsequently, they are temporary 
eliminated from the neighborhood. Next, the new Pareto-
optimal alternatives are found from the reduced 
neighborhood and they get the rank 2. In this procedure, 
the level is increased and it is repeated until the set of 
admissible solutions is exhausted. All non-dominated 
alternatives have the same value of the selection function 
W because of the equivalent rank. Then, from the solutions 
with the rank 1, the best one is accepted according to the 
distance criterion to an ideal point with the optimal values 
of coordinates. 

Tabu search uses memory structures by reference to 
dimensions consisting of recency, not only [5]. Moreover 
frequency, quality and influence aspects can be considered 
and the capabilities of the ATM can be extended [10]. 

Let (X, F, P) be the multi-criterion optimisation problem 
for finding a Pareto-optimal task assignment in the 
distributed computer system [26]. That benchmark 
problem can be established, as follows:  

1) X - an admissible solution set 

|{ )( VJVIx VBX ×∈= +  

;min lim
max

1 11 11
Zxx+xxt ij

m
vi
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where  

B = {0, 1},  
V = {1, 2,…,V} 

),,( mm Nxxx π=  

),( πxxm .],...,,...,,...,,...,,...,,,...,,...,,...,[ 1111111
T

IJIjIijJ
m
VI

m
vi

m
I

m xxxxxxxxxx ππππππ=  

⎩
⎨
⎧=

 ,  the toassigned is if1
case.other   thein0

iwj
ijx

ππ

 

⎩⎨
⎧= , toassigned is taskif1

case,other   thein0
iwvTm

vix
 },...,,...,{ 1 Jj πππ=Π - the set of available computer 

sorts,

 {T1,...,Tv,...,TV} - the set of parallel performing tasks,

 },...,,...,{ 1 Ii wwwW =  - the se of the processing 
nodes, 

,],...,,...,[ 1
T

Vv
m NNNN =  

Nv – number of the vth module in the line for its 
dedicated computer, 

vjt - the overhead performing time of the task Tv by 

the computer πj. 

vuτ – the total communication time between the task 
Tv and the Tu, 

z1,...,zr,...,zR - memories available in the system, 
djr - the capacity of memory zr in the workstation πj , 
κj - the cost of the computer π j, 

jϑ  - the numerical performance of the computer π j 

for the given benchmark, 

2) F - a vector superiority criterion 

2   : RX →F  ,                          (8)  

where 
R  – the set of real numbers, 
F(x) = [–R(x), PD (x)] T for x∈X, 

),exp()(
1 1 1

∏∏∏
= = =

−=
V

v

I

i

J

j
ij

m
vivjj xxtxR πλ  

∑ ∏
= ∈

−=
K

i Mm
vviD

iv

xCdpxP
1

))(()( ξ  

jλ - rate of failing for the computer jπ  that can be 
failed independently due to an exponential distribution,  

dv - the completion deadline for the vth task, 
Cv - the completion time for the vth task, 
If vv dC ≤ , 1)( =− vv Cdξ .  

If vv dC > , 0)( =− vv Cdξ . 
K – number of instances in the flow graph 
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3) P - the Pareto relation [1]. 

The relationship P is a subset of the product Y×Y, where 
an evaluation set Y=F(X). If a∈Y, b∈Y, and 

Nnba nn ,1, =≤ , then the pair of evaluations (a,b)∈P. 
The meaning of the Pareto relationship respects the 
minimization of all criteria. That is why, criteria for 
maximization are written with minus. There is no task 
allocation a∈X such that (F(a),F(x*))∈P for the Pareto-
optimal assignment x*∈ X  and a ≠ x*. 

4. Implementation and numerical 
experiments 

Each program consists of set of procedures and set of 
attributes. Set of procedures is defined, as follows: 

{ }/,-,*,,+= listF                       
(9)

 
where 

list – the procedure that convert I(V+J)+V input real 
numbers called activation levels on I(V+J) output binary 
numbers ππππππ

IJIjIijJ
m
VI

m
vi

m
I

m xxxxxxxxxx ,...,,...,,...,,...,,...,,,...,,...,,..., 1111111

 and V output integer numbers Vv NNN ,...,,...,1 .  

The procedure list is obligatory the root of the program 
tree and appears only one in a generated program. An 
activation level is a root for the sub-tree that is randomly 
generated with using arithmetic operators {+, -, *, /} and 
the set of terminals.   

Let D  be the set of numbers that consists of the given 
data for the solved instance. A terminal set is determined 
for each instance of the problem, as below:   

 
,LDT ∪=                          (9) 

where L  – set of n random numbers D=n  
If x calculated by the program is admissible, then the 
selection function value is estimated, as below: 

,1)()( maxmax ++−= Pxrrxf            (10) 

where r(x) denotes the rank of an admissible solution, 

Let the Pareto points {P1, P2,..., PU} be given for any 
instance of the task assignment problem. If the AMEA/GP 
finds the efficient point (Au1, Pu2) for the probability that 
tasks meet deadlines Pu2, this point is associated to the uth 
Pareto result (Pu1, Pu2) with the same value of probability.  

The distance between points (Au1, Pu2) and (Pu1, Pu2) is 
calculated according to an expression 11 uu AP − . If the 
point (Au1, Pu2) is not discovered by the algorithm, we 

assume the distance is min
11 uu AP − , where min

1uA  is the 

minimal reliability of the system for the instance of 
problem.  

The level of convergence to the Pareto front is calculated, 
as follows: 

∑
=

−=
U

u
uu APS

1
11 .                   (11) 

An average level S  is calculated for several runs of the 
evolutionary algorithm. Initial numerical examples 
indicated that obtained task assignments had higher value 
of the workload of the bottleneck computer than the limit 
for some instances with the number of tasks larger than 15. 

This tabu programming ATM gives better results than the 
genetic programming AMEA/GP (Fig. 5). After 200 
selections, an average level of Pareto set obtaining is 1.9% 
for the ATM, 3.3% for the AMEA/GP. 30 test preliminary 
populations were prepared, and each algorithm starts 30 
times from these populations. For integer constrained 
coding of chromosomes there are 12 decision variables in 
the test optimization problem. The search space consists of 
25 600 solutions.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the other instance with 15 tasks, 4 nodes, and 5 
computer sorts there are 80 binary decision variables. An 
average level of convergence to the Pareto set is 16.2% for 
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the AMT and 18.4% for the AMEA/GP. A maximal level 
is 26.5% for the AMT and 29.6% for the AMEA/GP. For 
this instance the average number of optimal solutions is 
19.2% for the AMT and 21.1% for the AMEA/GP. 

An average level of convergence to the Pareto set, an 
maximal level, and the average number of optimal 
solutions become worse, when the number of task, number 
of nodes, and number of computer types increase. An 
average level is 33.6% for the AMT versus 35,7% for the 
AMEA/GP, if the instance includes 50 tasks, 4 nodes, 5 
computer types and also 220 binary decision variables. 

8. Concluding remarks  

Tabu programming is new paradigm of artificial 
intelligence that can be used for finding solution to several 
problems. A computer program as a tree is a subject of 
tabu operators such as selection from neighborhood, short-
term memory and re-linking of the search trajectory. It 
gives possibility to represent knowledge that is specific to 
the problem in more intelligent way than for the data 
structure. That is, we process the potential ways of finding 
solution not the possible solutions. A tabu programming 
has been applied for operating on the computer procedures 
written in the Matlab language. 

Our initial numerical experiments confirm that feasible, 
sub-optimal in Pareto sense, task assignments can be 
found by tabu programming. A paradigm of tabu 
programming gives opportunity to solve this problem for 
changeable environment.  

Our future works will focus on testing the other sets of 
procedures and terminals to find the Pareto-optimal task 
assignments for distinguish criteria and constraints. 
Moreover, we will concern on a development the 
combination between tabu search and evolutionary 
algorithms for finding Pareto-optimal solutions.   
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