
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

98

Manuscript received October 10, 2007

Manuscript revised October 20, 2007

Distributed Knowledge Map for Mining Data on Grid Platforms

Nhien An Le Khac, Lamine M. Aouad and M-Tahar Kechadi,

School of Computer Science and Informatics

University College Dublin, Belfield, Dublin 4, IRELAND

Summary
Recently, huge datasets representing different applications
domains are produced and stored on distributed platforms. These
datasets are, generally, owned by different organizations. As a
consequence, The scale and distribution nature of these datasets
have created the problem of efficient mining and management on
these platforms. Most of the existing knowledge management
approaches are mainly for centralized data mining. Few of them
propose solutions for mining and handling knowledge on Grid.
However, the new knowledge is stored and managed as any other
kinds of resources.

To solve this problem, we introduce a "distributed knowledge
map", which represents easily and efficiently the new knowledge
mined from these very large distributed platforms such as Grids.
This approach is developed and integrated as part of our
distributed data mining framework. This knowledge map also
facilitates the integration/coordination of local mining processes
and existing knowledge to increase the accuracy of the final
model. Our knowledge map is tested on real large datasets.

Key words:
distributed data mining, distributed knowledge map, knowledge
management.

1. Introduction

Since 90s, different approaches of data mining have
been proposed for discovering useful knowledge from
very large datasets. While massive amounts of distributed
data are being collected and stored by different
organizations from not only science fields but also
industry and commerce fields, the efficient mining and
management of useful information of this data is
becoming a scientific challenge. This phenomenon leads
to the problem of managing the mined results, so called
knowledge, which becomes more complex and
sophisticated. This is even more critical when the local
knowledge of different sites are owned by different
organizations. This led to the development of distributed
data mining (DDM) techniques [16][17] to deal with huge
and multi-dimensional datasets stored on different sites.
However, existing (DDM) techniques are based on a
simple process of performing partial analysis on local data

at individual sites and then generating global models by
aggregating these local results. These two steps are not
independent since naive approaches to local analysis may
produce incorrect and ambiguous global data models. In
order to take the advantage of mined knowledge at
different locations, DDM should have a view of the
knowledge that not only facilitates their integration but
also minimizes the effect of the local results on the global
models. Briefly, an efficient management of distributed
knowledge is one of the key factors affecting the outputs
of these techniques.

Recently, many research projects on knowledge

management in data mining were initiated [28][13][1].
Their goals are to tackle the knowledge management
issues as well as present new approaches. However, most
of them propose solutions for centralized data mining and
only few of them have attempted the issues of large scale
DDM on the Grid. Moreover, some recent research works
[4] have just provided a manner of managing knowledge
but not the integration and coordination of these results
from local results.

In this paper, we propose a distributed knowledge

map, an approach for managing knowledge of (DDM)
tasks on Grid platforms and also supporting the integration
views of related knowledge. The concept of knowledge
map has been efficiently exploited in managing and
sharing knowledge [23] in different domains but not yet in
DDM techniques. Our main goal is to provide a simple
and efficient way to handle a large amount of knowledge
generated by DDM applications on Grid environments.
This knowledge map helps to retrieve quickly any results
needed with a high accuracy. It will also facilitate the
merging and coordination of local results to generate
global models. This knowledge map is one of the key
layers of ADMIRE [18] (Figure 1), a framework DDM
techniques on Grid platforms.

The rest of this paper is organized as follows: In section 2,
we give some backgrounds of knowledge representation
and knowledge map concept as well as related projects.
We present the architecture of our knowledge map in
section 3. Section 4 presents knowledge map's operations.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

99

Implementation issues of knowledge map are presented in
section 5 and a preliminary evaluation of this approach is
presented in section 6. Finally, we conclude in section 7.

Fig. 1 ADMIRE’s core architecture.

2. Background

In this section, we present some methods for representing
knowledge in data mining. We discuss the concept of
knowledge map and its use in managing the knowledge.
Related work on knowledge map and knowledge
management are presented at the end of this section.

2.1 Knowledge representation

There are many different ways of representing mined
knowledge in literature, such as decision tables, decision
trees (Figure 2), classification rules, association rules,
instance-based and clusters. Decision table is one of the
simplest ways of representing knowledge. The columns
contain set of attributes including the decisions and the
rows represent the knowledge elements. This structure is
simple but it can be sparse because of some unused
attributes. Decision tree approach is based on "divide-and-
conquer" concept where each node tests a particular
attribute and the classification is given at the leaves level.
However, it has to deal with missing value problem.
Classification rules [9] are a popular alternative to
decision tree. Association rules [9] are kind of
classification rules except that they can predict any
attribute and this gives them the flexibility to predict
combinations of attributes too. Moreover, association rules
are not intended to be used together as a set as
classification rules are.

Classification rules as well as association rules are a kind
of production rules [2] that are widely used in knowledge
representation [12]. A rule is a knowledge representation

technique and a structure that relates one or more causes,
or a situation, to one or more effects (consequents) or
actions. It is also called cause-effect relationships
represented by an "IF {cause expression} THEN
{conclusion expression}". The IF part of the rule is an
cause expression composed of causes, and the effects are
contained in the conclusion expression of THEN, so that
the conclusions may be inferred from the causes when
they are true. A rule may also be extended to an uncertain
rule or a fuzzy rule by adding appropriate attributes.
Briefly, the knowledge of an intelligent system could be
represented by using a number of rules. In this case, these
rules are usually grouped into sets and each set contains
rules related to the same topic. In the data mining, rules
can be used in the representation of knowledge learnt from
classification tasks, association rules tasks, etc. It is also
called rule-based classification [14] in classification
problems where a set of "IF, THEN" rules including
attributes such as coverage and accuracy is applied.
Moreover, rules can be extracted from other kinds of
model representations such as decision tree, neural
network, etc. In association rule tasks, knowledge is
represented by a set of rules with two attributes:
confidence and support.

Fig. 2 Knowledge representations

The instance-based knowledge representation uses

the instances to represent what is mined rather than
inferring a rule set and store it instead. The problem is that
they do not make explicit the structures of the knowledge.
In the cluster approach, the knowledge can take the form
of a diagram to show how the instances fall into clusters.
There are many kinds of cluster representations such as
space partitioning, Venn diagram, table, tree, etc.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

100

Clustering [9] is often followed by a stage in which a
decision tree or rule set is inferred allocating each instance
to its cluster. Other knowledge representation approaches,
such as Petri net [25], Fuzzy Petri nets [5] and G-net [8]
were also developed and used.

2.2 Knowledge map concept

A knowledge map is generally a representation of
"knowledge about knowledge" rather than of knowledge
itself [7][10][29]. It basically helps to detect the sources of
knowledge and their structures by representing the
elements and structural links of the application domains.
Some kinds of knowledge map structure that can be found
in literature are: hierarchical/radial knowledge map,
networked knowledge map, knowledge source map and
knowledge flow map.

Hierarchical knowledge map, so-called concept map [23],
provides one model for the hierarchical organization of
knowledge: top-level concepts are abstractions with few
characteristics. Concepts of the level below have detailed
traits of the super concept. The link between concepts can
represent any type of relations as "is part of", "influences",
"can determine", etc. A similar approach is radial
knowledge map or mind map [3], which consists of
concepts that are linked through propositions. However, it
is radially organized. Networked knowledge map is also
called causal map which is defined as a technique "for
linking strategic thinking and acting, making sense of
complex problems, and communicating with others what
might be done about them" [3]. This approach is normally
used for systematizing knowledge about causes and effects.
Knowledge source map [10] is a kind of organizational
charts that does not describe functions, responsibility and
hierarchy, but expertise. It helps experts in a specific
knowledge domain. The knowledge flow map [10]
represents the order in which knowledge resources should
be used rather than a map of knowledge.

2.3 Related works

Little research work on knowledge map is given in
[11][21]. However, these few projects were not in the
context of DDM.

The Knowledge Grid project [4] proposed an approach to
manage the knowledge by using Knowledge Discovery
Service. This module is responsible for handling meta-data
of not only knowledge obtained from mining tasks but
also all kinds of resources such as hosts, data repositories,
used tools and algorithms, etc. All metadata information is
stored in a Knowledge Metadata Repository. However,
this approach does not provide a management of meta-data
of knowledge in their relationships to support the

integration view of knowledge as well as the coordination
of local the mining process. There is moreover no distinct
separation between resource, data, and knowledge.

Until now, to the best of our knowledge, in spite of the
popularity of DDM applications, there is only our system
[19] that provides knowledge map layer for DDM
applications on a Grid type platform. This constitutes one
of the motivations of our research to provide a fully
integrated view of knowledge to facilitate the coordination
of local mining processes and increase the accuracy of the
final models.

3. Architecture of knowledge map

The knowledge map (KM) does not attempt to systematize
the knowledge itself but rather to codify "knowledge about
knowledge". In our context, it facilitates (DDM) by
supporting users coordination and interpretation of the
results. The objectives of our (KM) architecture are:
provide an efficient way to handle a large amount of data
collected and stored in large scale distributed system;
retrieve easily, quickly, and accurately the knowledge; and
support the integration process of the knowledge. We
propose an architecture of the (KM) system as shown in
Figure 3, 4, 5 and 6 to achieve these goals. KM consists of
the following components: knowledge navigator,
knowledge map core, knowledge retrieval, local
knowledge map and knowledge map manager (Figure 3).
From now on, we use the term "mined knowledge" to
represent for knowledge built from applications.

Fig. 3 Knowledge map systems

3.1 Knowledge navigator

Usually, users may not exactly know the mined
knowledge they are looking for. Thus, knowledge
navigator component is responsible for guiding users to
explore the KM and for determining the knowledge of
interest. The result of this task is not the knowledge but its
meta-data, called meta-knowledge, which includes related

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

101

information such as data mining task used, data type, and a
brief description of this knowledge and its location. For
example, a user may want to retrieve some knowledge
about tropical cyclone. The application domain
"meteorology" allows the user to navigate through tropical
cyclone area and then a list of knowledge related to it will
be extracted. Next, based on this meta-knowledge and its
application domain, the users will decide which
knowledge and its location are to be retrieved. It will
interact with knowledge retrieval component to collect all
mined knowledge from chosen locations.

3.2 Knowledge map core

This component (Figure 4) is composed of two main parts:
concept tree repository and meta-knowledge repository.
The former is a repository storing a set of application
domains. Each application domain is represented by a
concept tree that has a hierarchical structure such as a
concept map [23]. A node of this tree, so called concept
node represents a sub-application domain and each
concept node includes a unique identity, called concept
identity, in the whole concept tree repository and a name
of its sub-application domain. The content of each concept
tree is defined by the administrator before using the KM
system. The concept tree repository could also be updated
during the runtime. In our approach, a mined knowledge is
assigned to only one sub-application domain and this
assignment is given by the users.

Fig. 4 Knowledge map core structure

As shown in Figure 4 for example, the concept tree
repository contains an application domain named
"meteorology" which includes sub-application domains
such as "weather forecasting", "storm" and "climate". And

then, "thunder storm", "tropical cyclone" and "tornado"
are parts of "storm". By using concept tree, we can deal
with the problem of knowledge context. For instance,
given the distributed nature of the knowledge, some of
them may have variations depending on the context in
which it is presented locally. Moreover, we can also
extend the concept tree of each application domain to an
ontology of this domain in order to increase the accuracy
in retrieving knowledge in different contexts. At that
moment, the concept tree will become a taxonomy tree and
a list of term as well as slots [12] will be added. The
ontology-based architecture of this repository will be
applied in the next version of our KM.

Meta-Knowledge repository (Figure 4): this handles meta-
data of the mined knowledge from different sites. A
knowledge is mapped to a knowledge object and its meta-
data is represented by a meta-knowledge entry in this
repository. Figure 4 also shows an example of a meta-
knowledge entry in XML format. In this example, this
knowledge is built from "pcrgcluster.ucd.ie" (knowledge
location) and its local identity (knowledge identity KID) is
1; its concept identity (CID) is 1122 (sub-application
domain is tropical cyclone); the location of datasets is
"/users/test/"; the used mining task is "clustering" and its
algorithm is "variance-based" [20]. Other related
information are data type of mined datasets, number of
instances, dimension of data and a brief description about
this knowledge. Based on this information, users could
determine which mined knowledge they want to extract.

The goal of KM core, is not only to detect the sources of
knowledge and information but also represent their
relationships with concepts of application domains. The
location of this component depends on the topology of the
system. It could be, for example, implemented in a master
site assigned to a group of sites. The creation and
maintenance of this component as well as its operations
such as retrieving knowledge will be presented in section
4.

3.3 Knowledge retrieval

The role of this component is to seek the knowledge that is
potentially relevant. This task depends on the information
provided by the users after navigating through application
domains and getting the meta-knowledge needed. This
component is similar to a search engine which interacts
with each site and returns knowledge acquired.

3.4 Local knowledge map

This component (Figure 5) is located in each site of the
system where knowledge are built from datasets. Local
knowledge map is a repository of knowledge entries. Each

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

102

entry, which is a knowledge object, represents a mined
knowledge and contains two parts: meta-knowledge and a
representative. Meta-knowledge includes information such
as the identity of its mined knowledge that is unique in
this site, its properties, and its description. Theses
attributes are already explained in the section Knowledge
map core above. This meta-knowledge is also submitted to
the Knowledge map core and will be used in meta-
knowledge entry of its repository at the global level. The
representative of a knowledge entry depends on a given
mining task. KM supports two kinds of representatives:
one for knowledge mined from clustering tasks and
another for mined knowledge represented by production
rule. Our system has however the capacity of adding more
representative types for other mining tasks.

Fig. 5 Organization of local knowledge map

In the clustering case (Figure 5a), a representative of a
mined knowledge stands in one or many clusters. A cluster
has one or more representative elements and each element
consists of fields filled by the user. The number of fields
as well as data type of each field, which is also defined by
the user, depends on the clustering algorithm used. The
meta-data of these fields is also included in each
representative. KM allows the user to define this meta-data
with both scalar and vector data type. A cluster also
contains information about its creation. This information
shows how this cluster was created: by clustering or
integration process. In the former case, the information is
a tuple of (hostname, cluster filename, cluster identity) and
in the latter, it is a tuple of (hostname, knowledge identity,
cluster identity). hostname is the location where clustering
results are stored in files called cluster files with their

cluster filenames. Each cluster has a cluster identity and it
is unique in its knowledge entry. For example, a
knowledge entry which is created by a variance-based
clustering algorithm [20] on test datasets, has its
representative in XML format as shown in Figure 7. In
this example, there are three clusters, each one has only
one representative. A cluster representative consists of
three fields: cluster identity, counts, centers and variances
with their data types which are integer, long, vector 3 of
doubles and matrix 3x3 of doubles respectively. The
content of a cluster representative is presented after its
meta-data. Besides, another important information of
cluster representative is the creation type which shows
how this cluster was created: by either a clustering process
or an integration process which merges sub-clusters from
different sources to build this cluster. In the integration
case, the cluster representative shows its integration link
representing all information needed to build this cluster.
Figure 5c and Figure 6b show an example of integration
link. In this figure, the cluster at the root level is integrated
from three other sub-clusters where the last one is also
integrated from two others. Note that in Figure 5c,
representatives (ii) and (iii) belong to the same knowledge.

Fig. 6 An example of integration link of creation information: (a) one
level; (b) multi-level

In the rule case (Figure 5b), the mined knowledge is
represented as a set of the production rules [2]. As
mentioned above, a rule is of the form "IF cause
expression THEN conclusion expression" and an
expression (cause or conclusion) contains a set of items. A
rule also includes its attributes such as support and
confidence [9] in association rules task or coverage and
accuracy [14] in classification task, etc. In order to
represent these rules by their items, a representative in our
approach consists of two parts: a rule table and an item
index table. The former is a table of rules where each line
represents a rule including its identity, content, attributes
and creation information. The item index table is a data
structure that maps items to the rule table. For example,
the index of a book maps a set of selected terms to page
numbers. There are many different types of index
described in literature. In our approach, the index table is
based on inverted list [30] technique because it is one of
the most efficient index structures [31]. This index table

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

103

consists of two parts: items and a collection of lists, one
list per item, recording the identity of the rule containing
that item. For example (Figure 5a), we assume that the
term "cloud" exists in rules of which identities are 25, 171,
360, so its list is {25, 171, 360}. This index table also
expresses the relationship between items and their
corresponding rule. By using this table, rules which are
related to the given items will be retrieved by the
intersection of their lists, e.g. the list of term "pressure" is
20, 171 so the identity (ID) of rule that contains "cloud"
and "pressure" is 171. This ID is then used to retrieve the
rule and its attributes. In addition, a rule can be created by
using one or more other rules, so its creation information
keeps this link (Figure 5c).

Fig. 7 A representative of Clustering in XML format

3.5 Knowledge map manager

Knowledge map manager is responsible for managing and
coordinating the local knowledge map and the knowledge
map core. For local knowledge map, this component
provides primitives to create, add, delete, update

knowledge entries and their related components (e.g. rule
ne} and item index table) in knowledge repository. It also
allows to submit local meta-knowledge to its repository in
knowledge map core. This component provides also
primitives to handle the meta-knowledge in the repository
as well as the concept node in the concept tree repository.
A key role of this component is to keep the coherence
between the local knowledge map and the knowledge map
core.

4. Knowledge Map operations

4.1 Adding new knowledge

For any new mined knowledge, its corresponding meta-
data and its representative are generated and mapped to a
knowledge object. This object will be added to the local
knowledge repository with an appropriate concept identity.
Its meta-knowledge is then submitted to the meta-
knowledge repository of knowledge map core. The adding
operation is realized via the primitive "put". The Figure 8
shows a flowchart of the adding process.

Fig. 8 Adding a new knowledge: (1) knowledge built by a mining
process; (2) get an appropriate Concept Identity; (3) knowledge object is
added to local knowledge repository; (4) Meta-knowledge is submitted to
meta-knowledge repository

4.2 Update/Delete knowledge

KM allows users to update or to delete an existing
knowledge meta-data via "update" and "delete"
primitives. These operations are executed at local site and
then the system will automatically update knowledge map
core to ensure the coherence between core and local
knowledge map. This operation is moreover atomic.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

104

4.2 Knowledge searching/retrieving

These operations are functions of find/retrieve primitives
(Figure 9). KM supports different levels of search:
concepts or meta-data of mined knowledge. At the concept
level, KM allows the user to search and retrieve concepts
acquired through their identity or name. The search
operation can be done using different criteria such as
concept (e.g. search all meta knowledge of a selected
concept), mining task and algorithm used to build its
knowledge. The retrieve operation is performed through
the knowledge identity and the location of the knowledge
needed. This process returns a knowledge object. This
operation is executed both locally and globally, i.e. users
can retrieve the knowledge needed at its local site or from
a group of sites of the system.

Fig. 9 Retrieving knowledge: (1) Concept (ID or name) retrieving; (2)
Meta knowledge retrieving; (3) Knowledge Retrieving from different
local KMs

5. Implementation and Exploitation

We have implemented a prototype of KM and in the
current version, the topology of distribution is a flat tree
where one local site is elected as the host. The meta-
knowledge repository of KM core is located at this host
while its concept tree resides in every site. In this case,
only the administrator can define and update the content of
this concept tree at one site and KM system will then
update every replicas. The advantages and disadvantages
of this approach will be discussed in the section 6.

In order to exploit mined knowledge, these

knowledge should be managed by KM system. If it is not,
then the first step is to create knowledge objects including
meta-knowledge and representatives, and then add it in
each appropriate local KM. In the current implementation,
a knowledge object has XML format as shown in Figure 7.
Their meta-knowledge will be automatically submitted to
the meta-knowledge repository at the knowledge core map
as an adding operation of a new mined knowledge. Next,

users can exploit these meta-knowledge and knowledge
object in their integration process or explore the
knowledge. In this version, repositories of KM core and
Local KM are also in XML format.
Communication Our aim is to provide an efficient KM for
distributed environments. Our approach provides a
flexible solution so that KM can be carried on or interact
with different communication system (e.g. RMI [15]) as
well as workload management systems on cluster or grid
platforms (e.g. Condor [6], PBS or OpenPBS [26]). We
present a scenario, as an example, where KM system is
cooperating with Condor. In this case, each KM operation
is an independent executable job with its appropriate
parameters including input, output files and others. Users
write the submit description file including resources
needed and then use the Condor system to submit it. An
example of a submitted file is shown in Figure 10. In this
file, a user adds knowledge objects, which are stored in
the file KO1.xml, of mined knowledge to a local KM at a
remote site. This mined knowledge already exists on that
site or has just built after a mining process. The output file
KMout.xml contains the meta-knowledge of knowledge
objects added and the user uses this information to submit
to meta-knowledge repository of KM core. In this case, the
user is responsible for the coherence between KM core
and local KM. In addition, the parameter nocom in the
argument line shows that user does not use the
communication module of the KM system.

Fig. 10 An example of a Condor submit file

An alternative way of exploiting the KM system is to use
its communication module with different communication
middleware. The current KM uses Java RMI but it can
easily use other communication middleware. In this
version, the KM runtime includes a set of KM Daemon
(Figure 11). Each local site has one KM Daemon that is
responsible for processing local/remote requests. These
KM Daemon are created at the start by using the primitive
"init". The primitive "stop" will terminate all the KM
Daemons. A KM application can send request to one or
many remote sites. As shown in Figure 10, for example,
the application finds firstly all the meta-knowledge needed
via primitive "find" (Figure 11a). This action is composed
of four steps: a request is sent to the Host (1) to look for

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

105

the meta-knowledge needed. Then, this will be retrieved
(2) and sent back to the source site (3), and it extracts the
results as meta-knowledge objects (4). The application
extracts knowledge via primitive "retrieve" (Figure 11b).
This action is also composed of four steps: (1) requests are
sent to the appropriate sites; (2) retrieve the knowledge
found at each site; (3) sent back to the source site via KM
Daemon; (4) extracts results as knowledge objects.

Fig. 11 An example of using Knowledge Map

Another issue of the KM implementation is the creation
information of representatives in the integration case (c.f.
3.4). Normally there are two kinds of links: one level
integration and multi-level integration. In the first kind,
the creation information of a representative only contains
integration information from one sub-level that is its direct
children. For example, as shown in Figure 6a, cluster 111
is integrated from three sub-clusters (222, 333, 444) of
which information are registered in creation information
of cluster 111. Meanwhile, the cluster 333 is also
integrated from two other clusters (555 and 666) but this
information is not shown in the creation information of the
cluster 111. The advantage of this approach is its
simplicity and the saving of storage capacity used of
creation information. However, a global search in each
related local KM is needed to retrieve all sub-levels of
integration in this case. Our KM system is implemented
with a multi-level integration of creation information. In
this approach, all integration levels of a representative are
in its creation information (Figure 6b).

6. Evaluation and Discussion

We are using this KM in our framework [19][20]. It is
difficult to evaluate our approach by comparing it to other
systems because it is unique so far. Therefore, we evaluate
different aspects of the system architecture for supporting

the management, mapping, representing and retrieving the
knowledge.

First, we evaluate the complexity of search/retrieve the
knowledge object of the system. This operation includes
two parts: searching relative concept and search/retrieve
the knowledge. Let N be the number of concept tree
entries and n be the number of concept nodes for each
concept tree. The complexity of the first part is O(log N +
log n) because the concept tree entries are indexed
according to the B+tree model. However, the number of
concept entries as well as of concept nodes of a concept
tree is smaller compared to the number of knowledge
entries. So this complexity depends strongly on the cost of
search/retrieve operations. Let M be the number of meta-
knowledge entries in the KM core, so the complexity of
searching a meta-knowledge entry at this level is O(log M).
The complexity of retrieving a knowledge object depends
on the number of knowledge entries m in local KM.
Therefore, this complexity is O(log M + Clog m), where C
is the communication cost.

Next, we discuss the knowledge map architecture. Firstly,
the structure of concept tree is based on the concept map
[23], which is one of the advantages of this model. We can
avoid the problem of semantic ambiguity as well as reduce
the domain search to improve the speed and accuracy of
the results. In our current version, the concept tree is
implemented at each site. The advantage of this approach
is to reduce the communication cost of
searching/retrieving task but the communication cost is
high for updating task. However, the frequency of this
updating task is very low compared with the frequency of
the searching/retrieving tasks. Secondly, the division of
knowledge map into two main components (local and
core) has some advantages: (i) the core component acts as
a summary map of knowledge and it is a representation of
knowledge about knowledge when combined with local
KM; (ii) avoiding the problem of having the whole
knowledge on one master site (or server), which is not
feasible in very large distributed system such as Grid. By
representing meta-knowledge in their relationship links,
the goal is to provide an integration view of this
knowledge.

Moreover, our KM system offers a knowledge map with
flexible and dynamic architecture where users can easily
update the concept tree repository as well as meta-
knowledge entries. The current index technique used in a
rule representative is an inverted list. However, we can
improve it without affecting to whole system structure by
using other index algorithms as in [22] or applying
compressed technique as discussed in [32]. Moreover,
flexible and dynamic features are also reflected by

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

106

mapping a knowledge to a knowledge object. The goal here
is to provide a portable approach where knowledge object
can be represented by different techniques such as an entity,
an XML-based record, or a record of database, etc.

Although the implementation of the creation information
of a representative might not be optimal for the storage
capacity used, it takes an important advantage in the
communication cost compared to one-level approach in
retrieving the whole integration links. For example, we
analyze these costs for two topologies (Figure 12): flat
tree and binary tree. We assume that one representative is
integrated by N elements and the information size of each
element is 32 bytes. In the first topology, information of
all elements are stored in its creation information for both
cases: one level and multi-level. There is no
communication cost and the storage size is 32 × N bytes.
In the second topology, the storage size at this
representative (root of the tree) is only 32 × 2 bytes for
one-level and 32 × N bytes for multi-level. Furthermore, in
one-level case, the storage size at each site (not root) in the
tree is always 32 × 2 bytes except sites at the leaf level. In
the multi-level case, this size of a site at the level h is 32 ×
nh bytes with nh = 2(nh-1 + 1) and n0 = 0. However, there is
no communication cost needed for multi-level case, all
integration links are in this representative. In order to
evaluate this cost for one-level, we assume that the
communication is executed in parallel at each level of
binary tree with the same latency between two sites and
the searching time at each site is negligible compared with
communication time. This means that all sites at the same
level, each one sends two requests to its two children (one
request/child), will receive their replies at the same time.
So the communication cost is evaluated by: 2 × llog2N
where l is the communication latency between two sites or
more general is O(llogpN) with p depends on the chosen
topology. In the Grid environment, the communication
latency and the number of participating sites are important
factors affecting the overall performance of distributed
tasks.

Fig. 12 Different topology of integration

7. Conclusion

 In this paper, we presented an architecture of the
knowledge map layer. This new approach aims at
managing effectively the mined knowledge on large scale
distributed platforms. The purpose of this research is to
provide a knowledge map to facilitate the management of
the results as well as to provide a viable environment for
the DDM applications.

Throughout evaluations of each component and it function,
we can conclude that knowledge map is an efficient and
flexible system in a large and distributed environment. It
satisfies the needs for managing, exploring, and retrieving
the mined knowledge of DDM in large distributed
environment. This knowledge map is integrated in the
ADMIRE framework. Experimental results on real-world
applications are also being produced [20] and this will
allow us to test and evaluate deeply the system robustness
and the distributed data mining approaches at very large
scale.

References
[1] S. S. R. Abidi and Cheah Yu-N, A Convergence of

Knowledge Management and Data Mining: Towards
"Knowledge-Driven" Strategic Services, 3rd International
Conference on the Practical Applications of Knowledge
Management, Manchester, 2000

[2] B. G. Buchanan and E.H. Shortliffe, Rule-Based Expert
Systems: The MYCIN Experiments of The Standford
Heuristic Programming Projects, Reading, MA: Addison-
Wesley, 1984.

[3] T. Buzan and B. Buzan, The Mind Map Book, Plume,
1996.

[4] M. Cannataro, D. Talia and P. Trunfio, Distributed Data
Mining on the Grid, Future Generation Computer Systems,
North-Holland vol. 18, no. 8, pp. 1101-1112.

[5] S. M Chen, J-S. Ke and J-F. Chang, Knowledge
Representation Using Fuzzy Petri Nets, IEEE transaction on
Knowledge and Data Engineering vol.2, no.3, 1990, 311-
319

[6] http://www.cs.wisc.edu/condor/
[7] T. H Davenport and L. Prusak, Working Knowledge,

Havard Business School Press, 1997.
[8] Y. Deng, S-K. Chang, A G-Net model for Knowledge

Representation and Reasoning, IEEE transaction on
Knowledge and Data Engineering vol.2, no.3, 1990, 295-
310

[9] M. H. Dunham, Data Mining Introductory and Advanced
Topics, Prentice Hall, 2002.

[10] M. J. Eppler Making Knowledge Visible through Intranet
Knowledge Maps: Concepts, Elements, Cases Proceedings
of the 34th Hawaii International Conference on System
Sciences, 2001.

[11] C. Faloutsos and K. Lin, FastMap: A Fast Algorithm for
Indexing, Data-Ming and Visualization of Traditional and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

107

Multimedia Datasets, Proceedings of SIGMOD'95
Conference, 1995, 163-174.

[12] D. Gasevic, D. Djuric and V. Devedzic, Model Driven
Architecture and Ontology Development Springer-Verlag,
2006, 46-57

[13] S. K. Gupta, V. Bhatnagar and S.K. Wasan, A propasal
for Data Mining Management System, Integrating Data
Mining and Knowledge Management Workshop, IEEE
ICDM, 2001.

[14] J. Han and M. Kamber, Data Mining: Concepts and
Techniques, 2nd ed.Morgan Kaufmann Publishers, 2006.

[15] http://java.sun.com/javase/technologies/
[16] H. Kargupta and P. Chan, Advances in distributed and

Parallel Knowledge Discovery, 1st ed. AAAI Press/The
MIT Press, London, 2000

[17] J-C. Silva, C. Giannella, R. Bhargava, H. Kargupta, and M.
Klusch, Distributed Data Mining and Agents International
Journal of Engineering Applications of Artificial
Intelligence, 18 (7), Elsevier Science, 2005.

[18] N-A. Le-Khac, M.T. Kechadi, J. Carthy ADMIRE
framework: Distributed data mining on data grid platforms,
Proceedings of 1st International Conference on Software
and Data Technologies ICSOFT’06,2006, 67-72

[19] N-A. Le-Khac, Lamine M. Aouad and M.T. Kechadi
Knowledge Map: Toward a new approach supporting the
knowledge management in Distributed Data Mining, KUI
Workshop, IEEE International Conference on Autonomic
and Autonomous Systems ICAS’07, Athens, Greece,2007.

[20] Lamine M. Aouad, N-A. Le-Khac and M.T. Kechadi
Variance-based Clustering Technique for Distributed Data
Mining Applications, International Conference on Data
Mining (DMIN’07), USA, 2007

[21] F. Lin and C.M. Hsueh, Knowledge map creation and
maintenance for virtual communities of practice, Journal of
Information Processing and Management, vol. 42, 2006,
551-568.

[22] M. Martynov and B. Novikov, An Indexing Algorithm for
Text Retrieval, Proceedings of the International Workshop
on Advances in Databases and Information system
(ADBIS’96), Moscow, 1996, 171-175.

[23] J.D. Novak and D.B. Gowin, Learning how to learn,
Cambridge University Press, 1984.

[24] M.C.F. Oliveira and H. Levkowitz, From Visual Data
Exploration to Visual Data Mining: A survey, IEEE
transaction on visualization and computer graphics vol.9,
no.3, 2003, 378-394

[25] J-L. Peterson, ”Petri Nets”, Journal of ACM Computing
Surveys vol 9 no.3, 1977, 223252.

[26] http://www.openpbs.org/
[27] P-N. Tan, M. Steinbach and V. Kumar, Introduction to Data

Mining,1st ed. Pearson Education, 2006.
[28] A. Veloso, B. Possas, W. Meira and M. B. Carvalho,

Knowledge Management in Association Rule Mining,
Integrating Data Mining and Knowledge Management
Workshop, IEEE ICDM, 2001

[29] M.N. Wexler, The who, what and why of knowledge
mapping, Journal of Knowledge Management, vol. 5, 2001,
249-263.

[30] J. Zobel, A. Moffat, R. Sacks-Davis An efficient indexing
technique for full-text database systems, Proceeding of the

18th VLDB Conference Vancouver, British Columbia,
Canada, 1992, 352-362.

[31] J. Zobel, A. Moffat, R. Sacks-Davis Searching Large
Lexicons for Partially Specified Terms using Compressed
Inverted Files, Proceeding of the 19th VLDB Conference
Dublin, Ireland, 1993, 290-301.

[32] J. Zobel and A. Moffat Inverted Files for Text Search
Engines, Journal of ACM Computing Surveys, Vol. 38,
No.2, Article 6, 2006

Dr. Nhien-An Le-Khac is a
Postdoctoral Fellow at the School of
Computer Science and Informatics,
University College Dublin, Ireland. He
obtained his M.Sc. in Computer
Science in 2000 at National University
of Vietnam(VNU-HCM), and Ph.D. in
Computer Science in 2005 at the INP
(Institut National Polytechnique)
Grenoble, France. His research interest

spans the area of Parallel Computing, Grid computing,
heterogeneous clusters and Distributed Data Mining.

Dr. Lamine M. Aouad is a
Postdoctoral Fellow at the School of
Computer Science and Informatics,
University College Dublin, Ireland.
He obtained his Ph.D. in Computer
Science in 2006 at University of
Lille 1, France. His research interest

spans the area of Distributed Data Mining, Scheduling for the
Grid and distributed resources/data management and
Programming paradigms for the Grid.

Dr. M-Tahar Kechadi was awarded
PhD and a DEA (Diplome d'Etude
Approfondie) - Masters degree - in
Computer Science from University of
Lille 1, France. He joined UCD
School of Computer Science &
Informatics in 1999. His research
interests span the areas of
optimization techniques, Data mining,

heterogeneous distributed systems and Grid computing. He is a
member of the communication of the ACM journal and IEEE
computer society.

