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Summary 
Recently, huge datasets representing different applications 
domains are produced and stored on distributed platforms. These 
datasets are, generally, owned by different organizations. As a 
consequence, The scale and distribution nature of these datasets 
have created the problem of efficient mining and management on 
these platforms. Most of the existing knowledge management 
approaches are mainly for centralized data mining. Few of them 
propose solutions for mining and handling knowledge on Grid. 
However, the new knowledge is stored and managed as any other 
kinds of resources.    
 
To solve this problem, we introduce a "distributed knowledge 
map", which represents easily and efficiently the new knowledge 
mined from these very large distributed platforms such as Grids. 
This approach is developed and integrated as part of our 
distributed data mining framework. This knowledge map also 
facilitates the integration/coordination of local mining processes 
and existing knowledge to increase the accuracy of the final 
model. Our knowledge map is tested on real large datasets. 
 
Key words: 
distributed data mining, distributed knowledge map, knowledge 
management. 

1. Introduction 

Since 90s, different approaches of data mining have 
been proposed for discovering useful knowledge from 
very large datasets. While massive amounts of distributed 
data are being collected and stored by different 
organizations from not only science fields but also 
industry and commerce fields, the efficient mining and 
management of useful information of this data is 
becoming a scientific challenge. This phenomenon leads 
to the problem of managing the mined results, so called 
knowledge, which becomes more complex and 
sophisticated. This is even more critical when the local 
knowledge of different sites are owned by different 
organizations. This led to the development of distributed 
data mining (DDM) techniques [16][17] to deal with huge 
and multi-dimensional datasets stored on different sites. 
However, existing (DDM) techniques are based on a 
simple process of performing partial analysis on local data 

at individual sites and then generating global models by 
aggregating these local results. These two steps are not 
independent since naive approaches to local analysis may 
produce incorrect and ambiguous global data models. In 
order to take the advantage of mined knowledge at 
different locations, DDM should have a view of the 
knowledge that not only facilitates their integration but 
also minimizes the effect of the local results on the global 
models. Briefly, an efficient management of distributed 
knowledge is one of the key factors affecting the outputs 
of these techniques. 

 
Recently, many research projects on knowledge 

management in data mining were initiated [28][13][1]. 
Their goals are to tackle the knowledge management 
issues as well as present new approaches. However, most 
of them propose solutions for centralized data mining and 
only few of them have attempted the issues of large scale 
DDM on the Grid. Moreover, some recent research works 
[4] have just provided a manner of managing knowledge 
but not the integration and coordination of these results 
from local results. 

 
In this paper, we propose a distributed knowledge 

map, an approach for managing knowledge of (DDM) 
tasks on Grid platforms and also supporting the integration 
views of related knowledge. The concept of knowledge 
map has been efficiently exploited in managing and 
sharing knowledge [23] in different domains but not yet in 
DDM techniques. Our main goal is to provide a simple 
and efficient way to handle a large amount of knowledge 
generated by DDM applications on Grid environments. 
This knowledge map helps to retrieve quickly any results 
needed with a high accuracy. It will also facilitate the 
merging and coordination of local results to generate 
global models. This knowledge map is one of the key 
layers of ADMIRE [18] (Figure 1), a framework DDM 
techniques on Grid platforms. 

 
The rest of this paper is organized as follows: In section 2, 
we give some backgrounds of knowledge representation 
and knowledge map concept as well as related projects. 
We present the architecture of our knowledge map in 
section 3. Section 4 presents knowledge map's operations. 
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Implementation issues of knowledge map are presented in 
section 5 and a preliminary evaluation of this approach is 
presented in section 6. Finally, we conclude in section 7. 
 
 

 

Fig. 1  ADMIRE’s core architecture. 

2. Background 

In this section, we present some methods for representing 
knowledge in data mining. We discuss the concept of 
knowledge map and its use in managing the knowledge. 
Related work on knowledge map and knowledge 
management are presented at the end of this section. 

2.1 Knowledge representation 

There are many different ways of representing mined 
knowledge in literature, such as decision tables, decision 
trees (Figure 2), classification rules, association rules, 
instance-based and clusters. Decision table is one of the 
simplest ways of representing knowledge. The columns 
contain set of attributes including the decisions and the 
rows represent the knowledge elements. This structure is 
simple but it can be sparse because of some unused 
attributes. Decision tree approach is based on "divide-and-
conquer" concept where each node tests a particular 
attribute and the classification is given at the leaves level.  
However, it has to deal with missing value problem. 
Classification rules [9] are a popular alternative to 
decision tree. Association rules [9] are kind of 
classification rules except that they can predict any 
attribute and this gives them the flexibility to predict 
combinations of attributes too. Moreover, association rules 
are not intended to be used together as a set as 
classification rules are. 
 
Classification rules as well as association rules are a kind 
of production rules [2] that are widely used in knowledge 
representation [12]. A rule is a knowledge representation 

technique and a structure that relates one or more causes, 
or a situation, to one or more effects (consequents) or 
actions. It is also called cause-effect relationships 
represented by an "IF {cause expression} THEN 
{conclusion expression}". The IF part of the rule is an 
cause expression composed of causes, and the effects are 
contained in the conclusion expression of THEN, so that 
the conclusions may be inferred from the causes when 
they are true. A rule may also be extended to an uncertain 
rule or a fuzzy rule by adding appropriate attributes. 
Briefly, the knowledge of an intelligent system could be 
represented by using a number of rules. In this case, these 
rules are usually grouped into sets and each set contains 
rules related to the same topic. In the data mining, rules 
can be used in the representation of knowledge learnt from 
classification tasks, association rules tasks, etc. It is also 
called rule-based classification [14] in classification 
problems where a set of "IF, THEN" rules including 
attributes such as coverage and accuracy is applied. 
Moreover, rules can be extracted from other kinds of 
model representations such as decision tree, neural 
network, etc. In association rule tasks, knowledge is 
represented by a set of rules with two attributes: 
confidence and support. 
 
 

 
 

Fig. 2  Knowledge representations 
 
The instance-based knowledge representation uses 

the instances to represent what is mined rather than 
inferring a rule set and store it instead. The problem is that 
they do not make explicit the structures of the knowledge. 
In the cluster approach, the knowledge can take the form 
of a diagram to show how the instances fall into clusters. 
There are many kinds of cluster representations such as 
space partitioning, Venn diagram, table, tree, etc. 
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Clustering [9] is often followed by a stage in which a 
decision tree or rule set is inferred allocating each instance 
to its cluster. Other knowledge representation approaches, 
such as Petri net [25], Fuzzy Petri nets [5] and G-net [8] 
were also developed and used. 

2.2 Knowledge map concept 

A knowledge map is generally a representation of 
"knowledge about knowledge" rather than of knowledge 
itself [7][10][29]. It basically helps to detect the sources of 
knowledge and their structures by representing the 
elements and structural links of the application domains. 
Some kinds of knowledge map structure that can be found 
in literature are: hierarchical/radial knowledge map, 
networked knowledge map, knowledge source map and 
knowledge flow map. 

 
Hierarchical knowledge map, so-called concept map [23], 
provides one model for the hierarchical organization of 
knowledge: top-level concepts are abstractions with few 
characteristics. Concepts of the level below have detailed 
traits of the super concept. The link between concepts can 
represent any type of relations as "is part of", "influences", 
"can determine", etc. A similar approach is radial 
knowledge map or mind map [3], which consists of 
concepts that are linked through propositions. However, it 
is radially organized. Networked knowledge map is also 
called causal map which is defined as a technique "for 
linking strategic thinking and acting, making sense of 
complex problems, and communicating with others what 
might be done about them" [3]. This approach is normally 
used for systematizing knowledge about causes and effects. 
Knowledge source map [10] is a kind of organizational 
charts that does not describe functions, responsibility and 
hierarchy, but expertise. It helps experts in a specific 
knowledge domain. The knowledge flow map [10] 
represents the order in which knowledge resources should 
be used rather than a map of knowledge. 

2.3 Related works 

Little research work on knowledge map is given in 
[11][21]. However, these few projects were not in the 
context of DDM. 
 
The Knowledge Grid project [4] proposed an approach to 
manage the knowledge by using Knowledge Discovery 
Service. This module is responsible for handling meta-data 
of not only knowledge obtained from mining tasks but 
also all kinds of resources such as hosts, data repositories, 
used tools and algorithms, etc. All metadata information is 
stored in a Knowledge Metadata Repository. However, 
this approach does not provide a management of meta-data 
of knowledge in their relationships to support the 

integration view of knowledge as well as the coordination 
of local the mining process. There is moreover no distinct 
separation between resource, data, and knowledge. 

 
Until now, to the best of our knowledge, in spite of the 
popularity of DDM applications, there is only our system 
[19] that provides knowledge map layer for DDM 
applications on a Grid type platform. This constitutes one 
of the motivations of our research to provide a fully 
integrated view of knowledge to facilitate the coordination 
of local mining processes and increase the accuracy of the 
final models. 

3. Architecture of knowledge map 

The knowledge map (KM) does not attempt to systematize 
the knowledge itself but rather to codify "knowledge about 
knowledge". In our context, it facilitates (DDM) by 
supporting users coordination and interpretation of the 
results. The objectives of our (KM) architecture are: 
provide an efficient way to handle a large amount of data 
collected and stored in large scale distributed system; 
retrieve easily, quickly, and accurately the knowledge; and 
support the integration process of the knowledge. We 
propose an architecture of the (KM) system as shown in 
Figure 3, 4, 5 and 6 to achieve these goals. KM consists of 
the following components: knowledge navigator, 
knowledge map core, knowledge retrieval, local 
knowledge map and knowledge map manager (Figure 3). 
From now on, we use the term "mined knowledge" to 
represent for knowledge built from applications. 

 

 
 

Fig. 3  Knowledge map systems 
 

3.1 Knowledge navigator 

Usually, users may not exactly know the mined 
knowledge they are looking for. Thus, knowledge 
navigator component is responsible for guiding users to 
explore the KM and for determining the knowledge of 
interest. The result of this task is not the knowledge but its 
meta-data, called meta-knowledge, which includes related 
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information such as data mining task used, data type, and a 
brief description of this knowledge and its location. For 
example, a user may want to retrieve some knowledge 
about tropical cyclone. The application domain 
"meteorology" allows the user to navigate through tropical 
cyclone area and then a list of knowledge related to it will 
be extracted. Next, based on this meta-knowledge and its 
application domain, the users will decide which 
knowledge and its location are to be retrieved. It will 
interact with knowledge retrieval component to collect all 
mined knowledge from chosen locations. 

3.2 Knowledge map core 

This component (Figure 4) is composed of two main parts: 
concept tree repository and meta-knowledge repository. 
The former is a repository storing a set of application 
domains. Each application domain is represented by a 
concept tree that has a hierarchical structure such as a 
concept map [23]. A node of this tree, so called concept 
node represents a sub-application domain and each 
concept node includes a unique identity, called concept 
identity, in the whole concept tree repository and a name 
of its sub-application domain. The content of each concept 
tree is defined by the administrator before using the KM 
system. The concept tree repository could also be updated 
during the runtime. In our approach, a mined knowledge is 
assigned to only one sub-application domain and this 
assignment is given by the users. 
 
 

 
 

Fig. 4  Knowledge map core structure 
 
As shown in Figure 4 for example, the concept tree 
repository contains an application domain named 
"meteorology" which includes sub-application domains 
such as "weather forecasting", "storm" and "climate". And 

then, "thunder storm", "tropical cyclone" and "tornado" 
are parts of "storm". By using concept tree, we can deal 
with the problem of knowledge context. For instance, 
given the distributed nature of the knowledge, some of 
them may have variations depending on the context in 
which it is presented locally. Moreover, we can also 
extend the concept tree of each application domain to an 
ontology of this domain in order to increase the accuracy 
in retrieving knowledge in different contexts. At that 
moment, the concept tree will become a taxonomy tree and 
a list of term as well as slots [12] will be added. The 
ontology-based architecture of this repository will be 
applied in the next version of our KM. 

 
Meta-Knowledge repository (Figure 4): this handles meta-
data of the mined knowledge from different sites. A 
knowledge is mapped to a knowledge object and its meta-
data is represented by a meta-knowledge entry in this 
repository. Figure 4 also shows an example of a meta-
knowledge entry in XML format. In this example, this 
knowledge is built from "pcrgcluster.ucd.ie" (knowledge 
location) and its local identity (knowledge identity KID) is 
1; its concept identity (CID) is 1122 (sub-application 
domain is tropical cyclone); the location of datasets is 
"/users/test/"; the used mining task is "clustering" and its 
algorithm is "variance-based" [20]. Other related 
information are data type of mined datasets, number of 
instances, dimension of data and a brief description about 
this knowledge. Based on this information, users could 
determine which mined knowledge they want to extract. 

 
The goal of KM core, is not only to detect the sources of 
knowledge and information but also represent their 
relationships with concepts of application domains. The 
location of this component depends on the topology of the 
system. It could be, for example, implemented in a master 
site assigned to a group of sites. The creation and 
maintenance of this component as well as its operations 
such as retrieving knowledge will be presented in section 
4. 

3.3 Knowledge retrieval 

The role of this component is to seek the knowledge that is 
potentially relevant. This task depends on the information 
provided by the users after navigating through application 
domains and getting the meta-knowledge needed. This 
component is similar to a search engine which interacts 
with each site and returns knowledge acquired. 

3.4 Local knowledge map 

This component (Figure 5) is located in each site of the 
system where knowledge are built from datasets. Local 
knowledge map is a repository of knowledge entries. Each 
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entry, which is a knowledge object, represents a mined 
knowledge and contains two parts: meta-knowledge and a 
representative. Meta-knowledge includes information such 
as the identity of its mined knowledge that is unique in 
this site, its properties, and its description. Theses 
attributes are already explained in the section Knowledge 
map core above. This meta-knowledge is also submitted to 
the Knowledge map core and will be used in meta-
knowledge entry of its repository at the global level.  The 
representative of a knowledge entry depends on a given 
mining task. KM supports two kinds of representatives: 
one for knowledge mined from clustering tasks and 
another for mined knowledge represented by production 
rule. Our system has however the capacity of adding more 
representative types for other mining tasks. 
 

 
 

Fig. 5  Organization of local knowledge map 
 
In the clustering case (Figure 5a), a representative of a 
mined knowledge stands in one or many clusters. A cluster 
has one or more representative elements and each element 
consists of fields filled by the user. The number of fields 
as well as data type of each field, which is also defined by 
the user, depends on the clustering algorithm used. The 
meta-data of these fields is also included in each 
representative. KM allows the user to define this meta-data 
with both scalar and vector data type.  A cluster also 
contains information about its creation. This information 
shows how this cluster was created: by clustering or 
integration process. In the former case, the information is 
a tuple of (hostname, cluster filename, cluster identity) and 
in the latter, it is a tuple of (hostname, knowledge identity, 
cluster identity). hostname is the location where clustering 
results are stored in files called cluster files with their 

cluster filenames. Each cluster has a cluster identity and it 
is unique in its knowledge entry. For example, a 
knowledge entry which is created by a variance-based 
clustering algorithm [20] on test datasets, has its 
representative in XML format as shown in Figure 7. In 
this example, there are three clusters, each one has only 
one representative. A cluster representative consists of 
three fields: cluster identity, counts, centers and variances 
with their data types which are integer, long, vector 3 of 
doubles and matrix 3x3 of doubles respectively. The 
content of a cluster representative is presented after its 
meta-data. Besides, another important information of 
cluster representative is the creation type which shows 
how this cluster was created: by either a clustering process 
or an integration process which merges sub-clusters from 
different sources to build this cluster. In the integration 
case, the cluster representative shows its integration link 
representing all information needed to build this cluster. 
Figure 5c and Figure 6b show an example of integration 
link. In this figure, the cluster at the root level is integrated 
from three other sub-clusters where the last one is also 
integrated from two others. Note that in Figure 5c, 
representatives (ii) and (iii) belong to the same knowledge. 
 

 
 

Fig. 6 An example of integration link of creation information: (a) one 
level; (b) multi-level 

 
In the rule case (Figure 5b), the mined knowledge is 
represented as a set of the production rules [2]. As 
mentioned above, a rule is of the form "IF cause 
expression THEN conclusion expression" and an 
expression (cause or conclusion) contains a set of items. A 
rule also includes its attributes such as support and 
confidence [9] in association rules task or coverage and 
accuracy [14] in classification task, etc. In order to 
represent these rules by their items, a representative in our 
approach consists of two parts: a rule table and an item 
index table. The former is a table of rules where each line 
represents a rule including its identity, content, attributes 
and creation information. The item index table is a data 
structure that maps items to the rule table. For example, 
the index of a book maps a set of selected terms to page 
numbers. There are many different types of index 
described in literature. In our approach, the index table is 
based on inverted list [30] technique because it is one of 
the most efficient index structures [31]. This index table 
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consists of two parts: items and a collection of lists, one 
list per item, recording the identity of the rule containing 
that item. For example (Figure 5a), we assume that the 
term "cloud" exists in rules of which identities are 25, 171, 
360, so its list is {25, 171, 360}. This index table also 
expresses the relationship between items and their 
corresponding rule. By using this table, rules which are 
related to the given items will be retrieved by the 
intersection of their lists, e.g. the list of term "pressure" is 
20, 171 so the identity (ID) of rule that contains "cloud" 
and "pressure" is 171. This ID is then used to retrieve the 
rule and its attributes. In addition, a rule can be created by 
using one or more other rules, so its creation information 
keeps this link (Figure 5c). 
 

 
 

Fig. 7 A representative of Clustering in XML format 

3.5 Knowledge map manager 

Knowledge map manager is responsible for managing and 
coordinating the local knowledge map and the knowledge 
map core. For local knowledge map, this component 
provides primitives to create, add, delete, update 

knowledge entries and their related components (e.g. rule 
ne} and item index table) in knowledge repository. It also 
allows to submit local meta-knowledge to its repository in 
knowledge map core. This component provides also 
primitives to handle the meta-knowledge in the repository 
as well as the concept node in the concept tree repository. 
A key role of this component is to keep the coherence 
between the local knowledge map and the knowledge map 
core.  

4. Knowledge Map operations 

4.1 Adding new knowledge 

For any new mined knowledge, its corresponding meta-
data and its representative are generated and mapped to a 
knowledge object. This object will be added to the local 
knowledge repository with an appropriate concept identity. 
Its meta-knowledge is then submitted to the meta-
knowledge repository of knowledge map core. The adding 
operation is realized via the primitive "put". The Figure 8 
shows a flowchart of the adding process. 
 

 
 
Fig. 8 Adding a new knowledge: (1) knowledge built by a mining 
process; (2) get an appropriate Concept Identity; (3) knowledge object is 
added to local knowledge repository; (4) Meta-knowledge is submitted to 
meta-knowledge repository 
 

4.2 Update/Delete knowledge 

KM allows users to update or to delete an existing 
knowledge meta-data via "update" and "delete" 
primitives. These operations are executed at local site and 
then the system will automatically update knowledge map 
core to ensure the coherence between core and local 
knowledge map. This operation is moreover atomic. 
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4.2 Knowledge searching/retrieving 

These operations are functions of find/retrieve primitives 
(Figure 9). KM supports different levels of search: 
concepts or meta-data of mined knowledge. At the concept 
level, KM allows the user to search and retrieve concepts 
acquired through their identity or name. The search 
operation can be done using different criteria such as 
concept (e.g. search all meta knowledge of a selected 
concept), mining task and algorithm used to build its 
knowledge. The retrieve operation is performed through 
the knowledge identity and the location of the knowledge 
needed. This process returns a knowledge object. This 
operation is executed both locally and globally, i.e. users 
can retrieve the knowledge needed at its local site or from 
a group of sites of the system. 
 
 

 
 
Fig. 9 Retrieving knowledge: (1) Concept (ID or name) retrieving; (2) 
Meta knowledge retrieving; (3) Knowledge Retrieving from different 
local KMs 

5. Implementation and Exploitation 

We have implemented a prototype of KM and in the 
current version, the topology of distribution is a flat tree 
where one local site is elected as the host. The meta-
knowledge repository of KM core is located at this host 
while its concept tree resides in every site. In this case, 
only the administrator can define and update the content of 
this concept tree at one site and KM system will then 
update every replicas. The advantages and disadvantages 
of this approach will be discussed in the section 6. 

 
In order to exploit mined knowledge, these 

knowledge should be managed by KM system. If it is not, 
then the first step is to create knowledge objects including 
meta-knowledge and representatives, and then add it in 
each appropriate local KM. In the current implementation, 
a knowledge object has XML format as shown in Figure 7. 
Their meta-knowledge will be automatically submitted to 
the meta-knowledge repository at the knowledge core map 
as an adding operation of a new mined knowledge. Next, 

users can exploit these meta-knowledge and knowledge 
object in their integration process or explore the 
knowledge. In this version, repositories of KM core and 
Local KM are also in XML format. 
Communication Our aim is to provide an efficient KM for 
distributed environments. Our approach provides a 
flexible solution so that KM can be carried on or interact 
with different communication system (e.g. RMI [15]) as 
well as workload management systems on cluster or grid 
platforms (e.g. Condor [6], PBS or OpenPBS [26]). We 
present a scenario, as an example, where KM system is 
cooperating with Condor. In this case, each KM operation 
is an independent executable job with its appropriate 
parameters including input, output files and others. Users 
write the submit description file including resources 
needed and then use the Condor system to submit it. An 
example of a submitted file is shown in Figure 10. In this 
file, a user adds knowledge objects, which are stored in 
the file KO1.xml, of mined knowledge to a local KM at a 
remote site. This mined knowledge already exists on that 
site or has just built after a mining process. The output file 
KMout.xml contains the meta-knowledge of knowledge 
objects added and the user uses this information to submit 
to meta-knowledge repository of KM core. In this case, the 
user is responsible for the coherence between KM core 
and local KM. In addition, the parameter nocom in the 
argument line shows that user does not use the 
communication module of the KM system. 
 

 
Fig. 10 An example of a Condor submit file 

 
An alternative way of exploiting the KM system is to use 
its communication module with different communication 
middleware. The current KM uses Java RMI but it can 
easily use other communication middleware. In this 
version, the KM runtime includes a set of KM Daemon 
(Figure 11). Each local site has one KM Daemon that is 
responsible for processing local/remote requests. These 
KM Daemon are created at the start by using the primitive 
"init". The primitive "stop" will terminate all the KM 
Daemons. A KM application can send request to one or 
many remote sites. As shown in Figure 10, for example, 
the application finds firstly all the meta-knowledge needed 
via primitive "find" (Figure 11a). This action is composed 
of four steps: a request is sent to the Host (1) to look for 
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the meta-knowledge needed. Then, this will be retrieved 
(2) and sent back to the source site (3), and it extracts the 
results as meta-knowledge objects (4). The application 
extracts knowledge via primitive "retrieve" (Figure 11b). 
This action is also composed of four steps: (1) requests are 
sent to the appropriate sites; (2) retrieve the knowledge 
found at each site; (3) sent back to the source site via KM 
Daemon; (4) extracts results as knowledge objects. 
 

 
 

Fig. 11 An example of using Knowledge Map 
 
Another issue of the KM implementation is the creation 
information of representatives in the integration case (c.f. 
3.4). Normally there are two kinds of links: one level 
integration and multi-level integration. In the first kind, 
the creation information of a representative only contains 
integration information from one sub-level that is its direct 
children. For example, as shown in Figure 6a, cluster 111 
is integrated from three sub-clusters (222, 333, 444) of 
which information are registered in creation information 
of cluster 111. Meanwhile, the cluster 333 is also 
integrated from two other clusters (555 and 666) but this 
information is not shown in the creation information of the 
cluster 111. The advantage of this approach is its 
simplicity and the saving of storage capacity used of 
creation information. However, a global search in each 
related local KM is needed to retrieve all sub-levels of 
integration in this case. Our KM system is implemented 
with a multi-level integration of creation information. In 
this approach, all integration levels of a representative are 
in its creation information (Figure 6b). 

6. Evaluation and Discussion 

We are using this KM in our framework [19][20]. It is 
difficult to evaluate our approach by comparing it to other 
systems because it is unique so far. Therefore, we evaluate 
different aspects of the system architecture for supporting 

the management, mapping, representing and retrieving the 
knowledge. 
 
First, we evaluate the complexity of search/retrieve the 
knowledge object of the system. This operation includes 
two parts: searching relative concept and search/retrieve 
the knowledge. Let N be the number of concept tree 
entries and n be the number of concept nodes for each 
concept tree. The complexity of the first part is O(log N + 
log n) because the  concept tree entries are indexed 
according to the B+tree model. However, the number of 
concept entries as well as of concept nodes of a concept 
tree is smaller compared to the number of knowledge 
entries. So this complexity depends strongly on the cost of 
search/retrieve operations. Let M be the number of meta-
knowledge entries in the KM core, so the complexity of 
searching a meta-knowledge entry at this level is O(log M). 
The complexity of retrieving a knowledge object depends 
on the number of knowledge entries m in local KM. 
Therefore, this complexity is O(log M + Clog m), where C 
is the communication cost. 
 
Next, we discuss the knowledge map architecture. Firstly, 
the structure of concept tree is based on the concept map 
[23], which is one of the advantages of this model. We can 
avoid the problem of semantic ambiguity as well as reduce 
the domain search to improve the speed and accuracy of 
the results. In our current version, the concept tree is 
implemented at each site. The advantage of this approach 
is to reduce the communication cost of 
searching/retrieving task but the communication cost is 
high for updating task. However, the frequency of this 
updating task is very low compared with the frequency of 
the searching/retrieving tasks. Secondly, the division of 
knowledge map into two main components (local and 
core) has some advantages: (i) the core component acts as 
a summary map of knowledge and it is a representation of 
knowledge about knowledge when combined with local 
KM; (ii) avoiding the problem of having the whole 
knowledge on one master site (or server), which is not 
feasible in very large distributed system such as Grid. By 
representing meta-knowledge in their relationship links, 
the goal is to provide an integration view of this 
knowledge.  
 
Moreover, our KM system offers a knowledge map with 
flexible and dynamic architecture where users can easily 
update the concept tree repository as well as meta-
knowledge entries. The current index technique used in a 
rule representative is an inverted list. However,  we can 
improve it without affecting to whole system structure by 
using other index algorithms as in [22] or applying 
compressed technique as discussed in [32]. Moreover, 
flexible and dynamic features are also reflected by 
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mapping a knowledge to a knowledge object. The goal here 
is to provide a portable approach where knowledge object 
can be represented by different techniques such as an entity, 
an XML-based record, or a record of database, etc. 
 
Although the implementation of the creation information 
of a representative might not be optimal for the storage 
capacity used, it takes an important advantage in the 
communication cost compared to one-level approach in 
retrieving the whole integration links. For example, we 
analyze these costs for two topologies (Figure 12): flat 
tree and binary tree. We assume that one representative is 
integrated by N elements and the information size of each 
element is 32 bytes. In the first topology, information of 
all elements are stored in its creation information for both 
cases: one level and multi-level. There is no 
communication cost and the storage size is 32 × N bytes. 
In the second topology, the storage size at this 
representative (root of the tree) is only 32 × 2 bytes for 
one-level and 32 × N bytes for multi-level. Furthermore, in 
one-level case, the storage size at each site (not root) in the 
tree is always 32 × 2 bytes except sites at the leaf level. In 
the multi-level case, this size of a site at the level h is 32 × 
nh bytes with nh = 2(nh-1 + 1) and n0 = 0. However, there is 
no communication cost needed for multi-level case, all 
integration links are in this representative. In order to 
evaluate this cost for one-level, we assume that the 
communication is executed in parallel at each level of 
binary tree with the same latency between two sites and 
the searching time at each site is negligible compared with 
communication time. This means that all sites at the same 
level, each one sends two requests to its two children (one 
request/child), will receive their replies at the same time. 
So the communication cost is evaluated by: 2 × llog2N 
where l is the communication latency between two sites or 
more general is O(llogpN) with p depends on the chosen 
topology. In the Grid environment, the communication 
latency and the number of participating sites are important 
factors affecting the overall performance of distributed 
tasks. 

 

Fig. 12 Different topology of integration 

7. Conclusion 

 In this paper, we presented an architecture of the 
knowledge map layer. This new approach aims at 
managing effectively the mined knowledge on large scale 
distributed platforms. The purpose of this research is to 
provide a knowledge map to facilitate the management of 
the results as well as to provide a viable environment for 
the DDM applications.  

Throughout evaluations of each component and it function, 
we can conclude that knowledge map is an efficient and 
flexible system in a large and distributed environment. It 
satisfies the needs for managing, exploring, and retrieving 
the mined knowledge of DDM in large distributed 
environment. This knowledge map is integrated in the 
ADMIRE framework. Experimental results on real-world 
applications are also being produced [20] and this will 
allow us to test and evaluate deeply the system robustness 
and the distributed data mining approaches at very large 
scale. 
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