
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

108

Manuscript received October 5, 2007

Manuscript revised October 20, 2007

An Integrated approach of Analytical Hierarchy Process Model
and Goal Model (AHP-GP Model) for Selection of Software

Architecture

A Rama Mohan Reddy† Prof. M M Naidu†† Prof. P.Govindarajulu†††

SVU College of Engineering, Sri Venkateswara University, TIRUPATI, A.P, INDIA.

Abstract

Architecting the distributed software applications is a complex
design activity. The selection of a best design among number of
design alternatives is an important activity. To satisfy various the
stakeholders’ functional and non-functional requirements of a
particular application, there is a need to take a number of
decisions. This problem has become the multiple decision
making problem. Analytical Hierarchy Process (AHP), integer
programming, goal programming have been used in the context.
In this paper we are proposing a frame work for dealing multi
objective functions called an integrated approach of AHP and
GOAL programming for selection of Software Architecture.
Key words:
Software Architecture, Analytical Hierarchy Process, Design
Alternatives, GOAL programming

1.0 Introduction

In general the software development organizations face the
problem of selecting the best design from a group of
designs alternatives. Architecting the systems like
distributed software is a complex design activity. It
involves making decisions about a number of inter-
dependent design choices that relate to a range of design
concerns. Each decision requires selecting among a
number of alternatives; each of which impacts differently
on various quality attributes. Additionally, there are
usually a number of stakeholders participating in the
decision-making process with different, often conflicting,
quality goals, and project constraints, such as cost and
schedule. [1].

The basic approach of Mathematical Programming Models
is to optimize the objective function while simultaneously
satisfying all the constraints equations that limit the
activities of the decision-maker. The current trends of
research is to formulate integrated models, as the
justification of problems become more complex with the
identification of seemingly unconnected factors ranging
from the commitment of top management and managers’
perceptions towards automation to the strategic issues and
production criteria such as quality, flexibility, etc. (2).

Suresh and Kaparthi (3) have developed a procedure that
combines a general mixed integer goal programming
formulation with AHP to utilize both optimization and
evaluation capabilities. A similar attempt has been made
by Myint and Tabucanon (1994) [4] who effectively
combined the GP and AHP methodologies for the
machine selection problem. As a possible extension to
these works on combining AHP and GP methodologies,
an integrated AHP-GP model has been formulated for
selection of software architecture design alternatives. It
formally treats the priorities in the decision hierarchy of
AHP as penalty weights of the goal constraints. This
model has been applied for justifying the choice of
selecting software architecture design alternatives in the
case of designing the software for distributed applications.
In Architecture-based and Architecture-First Software
system development a few or no artifacts exist at this stage,
it is hard, often impossible, to thoroughly reason about the
consequences of many design decisions. Old methods
evaluate and select among given coarse-grained SAs. [5, 6,
7, 8].

2.0 Related work

2.1 Software Architecture Evaluation Techniques

Software quality is the degree to which an application
possesses the desired combination of quality attributes [9].
Software architecture evaluation has emerged as an
important software quality assurance technique. The
principle objective of evaluating architecture is to assess
the potential of the chosen architecture to deliver a system
capable of fulfilling required quality requirements. A
number of methods, such as Architecture Tradeoff
Analysis Method (ATAM) [10] and Architecture-Level
Maintainability Analysis (ALMA) [11], have been
developed to evaluate the quality related issues at the
architecture level. The architecture design evaluation
methods like Quality Attribute Workshop [12], Cost-
Benefit Analysis Method [6], Active Reviews for
Intermediate Designs [13] and Attribute-Driven Design
[14] includes a number of activities that logically belong to

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

109

different parts of the traditional SDLC [15]. Kazman et al.
[6] propose the Cost Benefit Analysis Method (CBAM) to
quantify design decision in terms of cost benefit analysis.
ATAM is a SA evaluation method, which itself needs a
SA as an input to the evaluation process. Mikael et al. [16]
developed a quantitative approach to support the
comparison of candidate architectures using Analytical
Hierarchy Process (AHP).

2.2 The analytic hierarchy process (AHP)

The Analytic Hierarchy Process (AHP) is a Multi Criteria
Decision Making (MCDM) technique that represents a
complex decision problem as a hierarchy with different
levels. Each level contains different elements with a
relevant common characteristic. Using AHP, a cardinal
measure of the importance or priority of each element in a
level is obtained by pair-wise comparisons of all elements
in that level. Each element in level serves as the basis for
effecting pair-wise comparisons of the elements in the
immediate lower level of the hierarchy. The final priorities
of the elements in the lowest level (decision alternatives)
are obtained using the principle of hierarchical
composition. These lead to the overall ranking of design
alternatives. The general methodology of AHP is
described in detail in Saaty (17) and Zahedi (18) have
made detailed reviews of its various applications. To
determine the degree of quality requirements achieved in
the software, the assessment of software architecture for
quality is to be conducted at various phases of the software
development life cycle (SDLC)[19] [20]. So Software
architecture is described as various collections of
architectural decisions that satisfy stake holder’s choice of
having multiple quality requirements [21]. Applying AHP
in a standard manner can provide overall priority weights
of design alternatives. All priority weights of design
alternatives can be computed using the AHP standard
technique. This technique takes into consideration all
quality attributes, priority weights of design alternatives
for individual quality attributes and priority weights
among the quality attributes themselves [22]. In this paper,
we propose Goal Programming (GP) techniques on results
produced by the standard AHP for more precision in
selecting the design alternative. These issues lead to an
architecture better prepared for future change.

3.0 Software Architecture Evaluation

Architecture evaluation can be seen as a phase of
the decision-making process. A decision-making process
consists of the following activities: Problem identification;
problem analysis and solution development; selection and
evaluation. Though architecture evaluation focuses on

selection and evaluation activities, it often covers solution
development in an iterative process. Architecture
evaluation allows us to forecast the optimum quality
attributes by dealing with uncertainties in both subsequent
implementation technology and changing requirements.
Hence, we consider architecture evaluation to be a
decision-making process which contains open-ended
components.

Most architecture evaluation methods conduct evaluation
for individual quality attributes first and consolidate the
results later. Attribute-specific evaluation requires
reasoning models and expertise for the quality attribute in
focus. Consolidation requires a decision making process
for balancing tradeoffs and selecting the best candidates
when quality requirements are conflicting. To facilitate the
architectural design process, Tariq Al-Naeem et al [7]
proposed a quantitative quality-driven approach that
attempts to find the best possible fit between conflicting
stakeholders’ quality goals, competing architectural
concerns, and project constraints.

Architecture Tradeoff Analysis Method (ATAM) is a
scenario-based architecture evaluation method. ATAM is
more suitable for initially identifying trade-offs than for
resolving them. If business benefits are the immediate
concern of a particular architecture evaluation session and
response-utility function can be solicited, CBAM should
be used after ATAM. If the main concern of a particular
architecture evaluation session is the overall quality
(including cost if desire) of the architecture, current
normal practice of AHP can be applied. On the other hand,
it is possible to modify the current way of using AHP by
associating weighted priority with its potential business
benefits utility in the intermediate steps to enable business
benefits interpretations of the final result.

3.1 AHP as a decision making tool

Analytic Hierarchy Process (AHP), as a critical decision
making tool for several disciplines, has proved
controversial [24]. In addition, AHP requires users to take
a holistic view of the design alternatives while comparing
them without taking into account the analysis and
intermediate results leading up the alternatives. This tends
to neglect the Solution Development stage in a decision
making process so the implications of intermediate
decisions and analysis are lost. Tradeoffs with a design
alternative tend to be much less explicit. This holistic view
may lead to situations where the final ranking hinges on
sensitive and critical decisions of which users are not
aware. Several attempts [5, 16, 7] have been made to
incorporate AHP into architecture evaluation.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

110

Figure 3.1 A Framework for AHP Model

Applying AHP in architecture evaluation is best
formalized in Svahnberg et al [16]..

3.2 Case study: glass box project

The following is the analysis and demonstration by Al-
Naeem et al [7] of the Glass Box Project.
The Glass Box (GB) project [22] is a part of a multi-year,
research program to generate new tools and technologies
for information analysts. The GB itself is a production
software system, which is deployed in the analyst’s
working environment. There are approximately 15
separate research projects funded by the overall program.
The research projects are required to link their software
into the GB environment, and demonstrate their
capabilities in helping analysts to solve real problems. This
requires instantaneous notification of the analyst’s actions,
such as opening a document or performing a search. Also,
in order to share knowledge generated from each research

tool, there must be mechanisms for storing data generated
from each tool and notifying other tools of its existence.
The figure 3.2 shows the relation ship between GB
application and various stakeholders involved.
 The initial GB version was a 2-tier client-server
system, utilizing a database, file store, and a set of tools to
capture user activities when they access Web sites,
document, and commenced and completed assignments. It
ran standalone on each user workstations. Nightly scripts
extracted the data from individual databases and emerged
them into a central data store for periodic distribution to
the Research Teams. Applying the principle of AHP on the
Table 2.1(Chapter 5) the following design alternatives
have been generated. The Table 2.2 shows the final results
[7].

Design Decisions Alternatives

Architecture
(ARCH)

Event
Notification

(EVNT)

Authentication
(AUTH)

Remote
Access

(RMAC)

Support non-
windows

platforms for
API (HETR)

THTJ THTD TWOT COABS
EVNT, AUTH, RMAK and API
(HETR) alternatives

SELECTION OF BEST ALTERNATIVES BY USING
AHP MODEL

Modifiability Scalability Performance Cost Dev..Effort Portability Ease of Inst.

Stakeholders’ Preference of Quality attributes

Quality Attributes Support of the above designs

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

111

Figure 3.2 Glass Box stakeholders

3.3 The supporting quality considerations
during software architecture (SA) design

Quality attributes are a central consideration during
application design. Bosch [25] proposes a method that
explicitly considers quality attributes during the design
process. Hofmeister et al [26] describe a framework
knows as global analysis to identify, accommodate, and
describe architecturally significant factors including
quality attributes early into the design phase. Chung et al
[27] provides a framework that considers each design
decision based on its effects on the quality attribute space.

4.0 Goal Programming

Goal Programming is concerned where a decision maker
needs to consider multiple criteria in arriving at the
overall best decision. Goal programming is proposed for
multi-objective optimization. We consider goal
programming as a function of a reference point, either a
reference point with maximal objective values or an
aspiration reference point.

4.1 Goal Programming Model

Goal Programming (GP), with many practical
applications, is the most popular of all multi object
decision-making techniques [28]. GP is referred to as a
quantitative decision-making tool that seeks feasible
solutions that achieve a certain set of desired (but
adjusted) goals as closely as possibly by minimizing or
penalizing deviations from the goals (29, 30). Another
characteristic of these problems is that the objectives are
apparently non-commensurable [31]. Mathematically
this problem can be represented as:
Max [f1 (X), f2 (X) … fk(X)]

Subject to: gi(X) ≤ 0, (i = 1, 2… m)

Where, X is an n-dimensional decision variable vector.
Goal Programming is one of the important methods for
MODM. This is categorized under “Methods for a Priori
Articulation of Preference Information Given”. “A
Priori” means the preference information is given to the
problem consists of ‘n’ decision variables; m is
constraints and k is objectives. Any or all of the
functions may be non-linear analysis before one actually
solves the problem [31].
Charnes & cooper originally proposed goal
Programming in 1961. The technique has been expanded
and popularized by the works of Ijiri, Lee in 1972, [29]
and Ignizio in 1976. [30]

Glass Box
Environment

GB
Data store

Information
Analysts

Funding
Agency

Research Teams GB
Developers Team

Users Funds

Integrate with Develops

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

112

Figure 4.1 A Framework for Integrated approach to AHP-GP Model

The model is flexible enough to handle conflicting
objective situations wherein only underachievement or
over-achievement of goal is penalized, and conditions
where the decision maker seems to come as closely as
possible to a desired target. GP requires the assignment of
ordinal priorities to the respective goals with relative
weights required by any goals placed on the same priority
level.

4.2 Goal Programming Formulation

 The GP model has multi dimensional objective
function that seeks to minimize certain selected absolute
deviations from a stated set goals, usually within an
additional set of given constraints. Each of the selected
deviations in the GP objective carry ordinal priority
weights so that goals are attained (or approached as nearly
as possible) in strict order of priority. A preferred solution
is then defined as the one that minimizes the deviations

from the set goals. In general, the format of the GP
problem can be stated as follows:

Find X = (X1, X2……………… …. Xn) so as to

Min Z = f (d+, d-) ………………… …… (1)
Subject to
A X = B + d+ - d- ……………… ….(2)
C X <= D …………………………… …..(3)
X, d+ , d- => 0 …………………. (4)
Where, X is the solution vector; Equation (1) is the GP
objective of the problem; Equation (2) states the original
problems objectives, converted into goals by the inclusion
of intentionally permissible deviations (di

+ , di
-) from

RHS targets (Bi); i = 1, 2…. ……., m
Equation (3) shows the absolute constraints on the
problem; F (di

+ , di
-) is a linear, prioritized function in of

the permissible deviation variables from the associated
objectives, In equation (2) d+ is a vector of non-negative

Modifiability Scalability Performance Cost Dev.Effort Portability Ease of Inst.

THTJ THTD TWOT COABS

Stakeholders’ Preference of Quality attributes

Design Decisions Alternatives

Architecture
(ARCH)

Event
Notification

(EVNT)

Authentication
(AUTH)

Remote
Access

(RMAC)

Support non-
windows

platforms for
API (HETR)

SELECTION OF BEST ALTERNATIVES BY USING
AHP-GP MODEL

EVNT, AUTH, RMAK and API
(HETR) alternatives

Quality Attributes Support of the above designs

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

113

variables that represent the permissible positive deviations
from the associated objectives, in equation(2) d- is a vector
of non-negative variables, In equation(2); B is a vector of
RHS target values, of aspiration levels, associated with the
objectives. In equation (3) C is a matrix of resources
consumption coefficients: A is a matrix of activity
coefficients; D is the vector of RHS bounds on the
absolute constraints.
Quite often, the objective, Equation (1), takes the form:
MIN Z = { P1 [g1 [d1

+ , d1
-]], P2 [g2 [d2

+ , d2
-]],

………………, Pi [gi [di
+ , di

-]] }

 Where gi[di

+ , d2
-], is a linear function of the

deviation variables P is the ordinal priority level associated
with gi [di

+ , d2
-], i <= m; i.e., the number of ordinal

priorities is equal to or less than the total number of
objectives.

4.3 Deviational Variables

 In GP method ‘intentional’ from the numerically
valued goals are allowed to occur. Deviations can be either
positive, negative, or zero- valued movements away from
goals. All variables are non-negative in a GP model. This
restriction can be circumvented by a simple transformation.
For example, if [di [> or = or <] 0] is a deviation from a
goal, the deviation may be replaced by

 di = (di
+ - dj

-)
Where,

(a) – α < di < + α;
(b) di

+ >= 0;
(c) di

+ >= 0;
(d) (di

+) (dj
-) = 0;

4.4 Achievement Function

 The goal programming achievement function
gi [di

+, di
-] is a variable that is both under the control

of the decision maker and one that can have an impact on
the problem solution. All decision variables are assumed
non-negative.

4.5 Goal Programming For Alternative
Designs

 To be maximization of one of the required quality
attribute, it seems logical that progress toward this global
goal will be facilitated, if it is disintegrated into various
sub-goals; the rational being that as the sub-goals are
achieved, definite strides will be made in the direction of
stakeholders’ requirements maximization.
The general form of GP models is mathematically
expressed as in (31):

Minimize Z = ∑
=

m

1i
W i

+ di
+ + Wi- di

-

Subject to: ∑
=

m

i
a

1
ij xj - di

+ + di
- = gi for all i

xj , di
+ , di

- , Wi
+ , Wi

- >= 0 for all i, j
Where, Wi

+, Wj- = pre assigned weights representing
relative, pre-emptive or Combined relative-pre-emptive
importance of deviations.

di
+ = respective positive deviations(over-

achievement) from the goals: di
- = respective negative

deviations (under-achievement)
from the goals:

aij = technological coefficients
xj = decision variables,
gi = goals
di

+ and di
- are given by the following

equations;

di
+ =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+− ∑∑

==
jj

n

1j
ijjj

n

1j
ij gxagxa

2
1

di
-=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−− ∑∑

==
jj

n

1j
ijjj

n

1j
ij gxagxa

2
1

There are at least two features of GP that need subjective
inputs from decision makers: Assigning numerical
weights to the objectives, and Fixing quantitative goals for
the objective functions.
 In addition, it is necessary to normalize the
objective functions so that the deviations (di

+, di
-) from

the goals are directly comparable. AHP has been employed
by Gass (1986) [32] to enable decision makers to specify
numerical weightages for the objectives; besides there have
been other attempts to employ the Delphi technique and
Conjoint analysis for this purpose. There is a need to use
AHP in conjunction with GP so as to increase the
applicability of both the methodologies for problems
involving syncretic (i.e., both qualitative and quantitative)
criteria. The following are some of the works that have
used integrated AHP-GP models: (a) Ramanathan and
Genesh (1995) [33] for energy resource allocation to urban
households. (b) Greenberg and Nunamaker (1994) [34] for
budgeting of public sector organizations. (c) Benjamin et
al. (1992) [35] for planning facilities at the university of
Missouri-Rolla, (d) Khorramshahgol et al (1988) [36] for
project evaluation and selection.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

114

5.0 AHP-GP MODEL

The integrated AHP-GP model has been employed to
select the best architectural design alternative from a set of
five alternatives for distributed applications. The Glass
Box example specified the five major criteria, viz., ARCH,
EVNT, AUTHN, JAVA and HETR as discussed in
section 3.2 and [22][23][7] along with the corresponding
sub-criteria.

New technology often brings operational changes, viz.,
flexibility, improved quality, reduced inventory, reduced
work-in-progress etc., which are frequently ignored in the
appraisal process. As technology justification involves
active participation of different groups of specialists
(stakeholders), it is absolutely necessary to have their
preferences incorporated in the decision-making process.
AHP serves as an efficient way of achieving this. The
simple ranking of alternatives by using AHP will not
adequate to completely assess the benefits of employing
Architectures. A thorough analysis of the problem, by
examining the levels of fulfillment of various goals (both
economic and technical), is needed. GP is employed to deal
with this situation. The integrated AHP-GP model
provides an excellent means to combine design decisions
with the choice of technological alternatives available.
Data have been collect pertaining to the criteria identified
in the Glass-Box project [7][37]. AHP has been used to set
priorities among the nineteen(19) sub-criteria (belonging to
the five major criteria) identified earlier. The stakeholders
gave subjective value judgments[7], which were used, in
the pair wise comparison matrices. The computational
details of AHP have been provided for the levels 1 and 2
in Tables 5.1 and 5. 2.
The architecture (ARCH) criteria received the maximum
priority followed by Event Notification (EVNT), Security
(SECU) Authentication (AUTH), and HETR. The priority
weights of the individual sub-criteria have also been
indicated in Figure 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7. These
priority weights are then used as penalty weights while
formulating the GP model. They have been converted into
percentages before being employed as penalty weights.
The complete GP formulation has been presented
subsequently. The utility and effectiveness of the
integrated AHP-GP model for justifying the choice of
Architectural design alternatives have been given in this
case study. Integration of ARCH, SECUR, EVNT, AUTH,
and HETR criteria which involve both quantitative and
qualitative sub-criteria. A comprehensive analysis of the
problem, by taking into account the ratings and opinions of
different stakeholders involved in the project.
Incorporation of multiple conflicting objects that do not
necessarily have to be commensurable.

5. 10 PREFERENCES OF STAKEHOLDERS ON ALTERNATIVE
 DECISIONS GLASS – BOX EXAMPLE

Table 5.1 Weights of the different design decisions across a 10-point
 weighting scale.

Sl.No. Design Decision Preferences of
Lead Architect

1. Architecture (ARCH) 10

2. Event Notification (EVNT) 8

3. Authentication (AUTH) 1

4. Remote Access (RMAC) 4

5. Supporting Non-Windows
Platforms API(HETR)

5

Table 5.2 AHP WEIGHTS for Design Decision Alternatives

Design Decision
Alternatives

Architecture
(ARCH

Event
notification

(EVNT)

Authentica-
tion

(AUTH)

Remote
Access

(RMAC)

API
(HETR)

AHP
WEIG
HTS

Architecture
(ARCH)

1
1.0000

2
2.0000

9
9.0000

6
6.0000

5
5.0000

0.482

Event
notification

(EVNT)

½
0.5000

1
1.0000

7
7.0000

4
4.0000

3
3.0000

0.287

Authentication
(AUTH)

1/9
0.1111

1/7
0.1428

1
1.0000

1/3
0.3333

¼
0.25

0.037

Remote Access
(RMAC)

1/6
0.1666

¼
0.25

3
3.0000

1
1.0000

1
1.0000

0.090

API (HETR)

1/5
0.2000

1/3
0.3333

4
4.0000

1
1.0000

1
1.0000

0.105

Figure 5.2 AHP weights for Design Decision Alternatives

Figure 5. 3 AHP weights for Architecture Decisions

Design Decision Alternatives
(1.000)

Architecture
(ARCH)

0.482

Authentication
(AUTH)

0.037

Remote Access
(RMAK)

0.090

Event
Notification

(EVNT)
0.287

Non-Window
API

(HETR)

0.105

Level - 1

ARCH
 (0.482)

• THTJ
 (0.314)

• 0.1513
• 15.13%
• Penalty
• P1

• TWOT
 (0.236)

• 0.1137
• 11.37%
• Penalty
• P3

• COABS
 (0.246)

• 0.1185
• 11.85%
• Penalty
• P4

• THTD
 (0.205)

• 0.0988
• 9.88%
• Penalty
• P2

Level - 2

Overall Priority

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

115

Figure 5.4 Event Generation alternatives

Figure 5.5 AHP weights for Authentication Alternatives

AUTH
(0.037)

• DB
(0.215)

• 0.0079
• 0.79%
• Penalty
• P9

• .NET
(0.223)

• 0.00825
• 0.825%
• Penalty
• P11

• COABS
(0.204)

• 0.0075
• 0.75%
• Penalty
• P12

• J2EE
(0.358)

• 0.01324
• 1.324%
• Penalty
• P10

Level - 2

Overall Priority

EVNT
 (0.287)

• JMS
 (0.258)

• 0.0740
• 7.4%
• Penalty
• P5

• TRGR
 (0.229)

• 0.06572
• 6.57%
• Penalty
• P7

• COAB
 (0.241)

• 0.06916
• 6.916%
• Penalty
• P8

• MSMQ
 (0.272)

• 0.0780
• 7.8%
• Penalty
• P6

Level - 2

Overall Priority

Figure 5.6. Weights of REMOTE CRITERION decision alternatives

Figure 5.7 AHP weights for Non-Window API (HETR)

NON -WINDOW API (HETR)
 (0.105)

• JAVA
(0.257)

• 0.0269

• 2.69%
• Penalty
• P16

• C – Prog. Lang.
(0.155)

• 0.01627

• 1.627%
• Penalty
• P18

• JAVA with THTS
(0.295)

• 0.03097

• 3.097%
• Penalty
• P19

• BROW
 (0.294)

• 0.03087

• 3.087%
• Penalty
• P17

Level - 2

Overall Priority

REMOTE ACCESS
(0.090)

• HTTP
(0.0.326)

• 0.02934
• 2.934%
• Penalty
• P13

• VPN
(0.446)

• 0.04014
• 4.014%
• Penalty
• P15

• WEBS
(0.227)

• 0.02043
• 2.043%
• Penalty
• P14

Level - 2

Overall Priority

5.1 GOAL PROGRAMMING: Achievement Function

ACHIEVEMENT FUNCTION:

Maximize
Z = P1 (d1

+ + d2
-) + P2 (d3

+ + d4
-) + P3 (d5

++ d6
-)

+ P4 (d7
++d8

-) + P5 (d9
+

 +d10
-) + P6 (d11

++ d12
-)

+ P7 (d13
+ +d14

-) + P8 (d15
+ + d16

-) + P9 (d17
++d18

-)
+ P10 (d19

++ d20
-) + P11 (d21

++ d22
-) + P12 (d23

++ d24
-)

+ P13 (d25
++ d26

-) + P14 (d27
++ d28

-) + P15 (d29
+ + d30

-)
+ P16 (d31

++ d32
-) + P17 (d33

++ d34
-) + P18 (d35

++ d36
-)

+ P19 (d37
+ + d38

-)

OBJECTIVES:

(a) ARCH – THTJ design alternative (P1):
 ∑ ji xi - dk

+ + dk
- = J

 Where,
ji = THTJ design alternative,
xi = decision variable,
dk = deviation variable
J = ARCH – THTJ design alternative goal to be

achieved.
(b) ARCH – THRD design alternative (P2):
 ∑ di xi

 - d+
k + dk

- = D
di = THTD design alternative,
D = ARCH – THTD design alternative goal to be

achieved
(c) ARCH – TWOT design alternative (P3):
 ∑ ti xi - dk

+ + dk
- = T

 ti = THTD design alternative
 T = ARCH-TWOT design alternative goal to be

achieved.
(d) ARCH – COABS design alternative (P4):
 ∑ ci xi - dk

+ + dk
- = C

 ci = COABS design alternative
C = ARCH-COABS design alternative goal
 to be achieved.

(e) EVNT – JMS design alternative (P5):
 ∑ mi xi - dk

+ + dk
- = M

 mi = JMS design alternative
 M = EVNT-JMS design alternative goal

 to be achieved
(f) EVNT- MSMQ design alternative (P6):
 ∑ qi xi - dk

+ + dk
- = Q

 Qi = MSMQ design alternative
 Q = EVNT-MSMQdesign alternative goal
 to be achieved
(g) EVNT – TRGR design alternative (P7):
 ∑ gi xi - dk

+ + dk
- = G

gi = TRGR design alternative
 T= EVNT–TRGR design
 Alternative goal to be achieved
(h) EVNT – COABS design alternative (P8):
 ∑ bi xi + - dk

+ + dk
- = B

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

116

bi = COABS design alternative
B = EVNT – COABS design alternative

 goal to be achieved
(i) AUTH-DB design alternative (P9):
 ∑ ai xi - dk

+ + dk
- = A

ai = DB design alternative
A = AUTH-DB design alternative goal to be
achieved

(j) AUTH –J2EE design alternative (P10):
 ∑ ei xi - dk

+ + dk
- = E

ei = J2EE design alternative
E = AUTH –J2EE design alternative goal to be

achieved
(k) AUTH- .NET design alternative (P11):
 ∑ ni xi - dk

+ + dk
- = N

ni = THTD design alternative
N = AUTH- .NET design alternative goal to be

achieved
(l) AUTH – COABS design alternative (P12):
 ∑ oi xi - dk

+ + dk
- = O

oi = COABS design alternative
 T = AUTH – COABS design alternative goal to

be achieved
(m) REMOTE ACCESS- HTTP design alternative (P13):
 ∑ hi xi - dk

+ + dk
- = H

 hi = HTTP design alternative
 H = REMOTE ACCESS- HTTP design

alternative goal to be achieved
(n) REMOTE ACCESS- WEBS design alternative (P14):
 ∑ wi xi - dk

+ + dk
- = W

 wi = WEBS design alternative
 W = REMOTE ACCESS- WEBS design
 alternative goal to be achieved
(o) REMOTE ACCESS- VPN design alternative (P15):
 ∑ vi xi - dk

+ + dk
- = V

 vi = VPN design alternative
 V = REMOTE ACCESS- VPN design alternative

goal to be achieved
(p) API(HETR)-JAVA design alternative (P16):
 ∑ ri xi - dk

+ + dk
- = R

 ri = THTD design alternative
 R = API(HETR)-JAVA design alternative goal to
be achieved
(q) API (HETR)- BROW design alternative (P17):
 ∑ ui xi - dk

+ + dk
- = U

 ui = THTD design alternative
 U = API (HETR)- BROW design alternative goal

to be achieved
(r) API (HETR) - C-Prog. Lang. Design alternative

(P18):
 ∑ li xi - dk

+ + dk
- = L

 li = C-Prog. Lang design alternative
 L = API (HETR) - C-Prog. Lang. design

alternative goal to be achieved

(s) API (HETR) - JAVA with THTS design alternative
(P19):

 ∑ zi xi - dk
+ + dk

- = Z
 zi = JAVA with THTS design alternative
 Z = API (HETR) - JAVA with THTS design

alternative goal to be achieved.

6.0 Conclusion

 As technology justification involves active participation
of different groups of specialists (stakeholders), it is
absolutely necessary to have their preferences
incorporated in the decision-making process. The
integrated AHP-GP model provides an excellent means to
combine design decisions with the choice of technological
alternatives available. Data have been collect pertaining
to the criteria identified in the Glass-Box project. The then
stakeholders subjective value judgments, which were used,
in the pair wise comparison matrices. The computational
details of AHP have been provided for the levels 1 and 2
in Table 5. 1 and 5.2. AHP-GP model formally treats the
priorities in the decision hierarchy of AHP as penalty
weights of the goal constraints. This model has been
applied for justifying the choice of selecting software
architecture design alternatives in the case of designing the
software for distributed applications. These issues lead to
an architecture better prepared for future change.

7.0 Reference

[1] Chung L et al, “Non-Functional Requirements in Software

Engineering”: Kluwer Academic Publishers, Boston, MA.
1999].

[2] Chen, Frank F. and Everett E. Adam Jr., 1991. “The impact
of flexible manufacturing systems on productivity and
quality”. IEEE Transactions on Engineering Management,
Vol.38, No.1, pp.33-45.

[3] Suresh and Nallan C, and Shashidhar Kaparthi, 1992.
“Flexible automation investments: A synthesis of two multi-
objective modeling approaches”. Computer and Industrial
Engineering, Vol.22, No.3, pp. 257-272.

[4] Myint, S and M.T. Tabucanon, 1994. “A multi-criteria
approach to machine selection for flexile manufacturing
systems”. International journal of Production Economics,
Vol.33, Nos.1-3, pp.121-131.

[5] Svahnberg, M., Wohlin, C., Lundberg, L., and Mattsson, M,
2002. “A Method for understanding quality attributes in
software architecture structures”, In Proceedings of the 14th
international conference on Software Engineering and
Knowledge engineering (SEKE), pp. 819-826.

[6] Kazman, Rick; Asundi, Jai; & Klein, Mark. “Quantifying the
Costs and Benefits of Architectural Decisions,” 297-306.
Proceedings of the 23rd International Conference on
Software Engineering (ICSE 2001). Toronto, Ontario,
Canada, May 12 - 19, 2001. Los Alamitos, CA: IEEE
Computer Society, 2001.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

117

[7] Al-Naeem T et al., “A Quality-Driven Systematic Approach
for Architecting Distributed Software Applications”.
UNSW-CSE-TR-0433. 2004.

[8] Roy T. Fielding. “Software Architectural Styles for
Network-Based Applications”. University of California,
Irvine. Phase II Survey, 1999.

[9] Parnas D. L. “On the criteria to be used in decomposing
systems into modules”. Communications of the ACM,
15(12), Dec, 1972, pp. 339-344.

[10] Kazman, R., Barbacci, M., Klein, M., and Carriere, J 1999.
“Experience with performing architecture tradeoff analysis”.
In Proceedings of the 21st International Conferences on
software Engineering (ICSE’99), pp.54-63.

[11] Bengtsson, P., Lassing. N., Bosch, J., and Vliet, H.v. 2004.
“Architecture-level modifiability analysis (ALMA)”. Journal
of Systems and Software 69(1/2): 129-147.

[12] Barbacci, Mario R.; Ellison, Robert; Lattanze, Anthony J.;
Stafford, Judith A.; Weinstock, Charles B.; & Wood,
William G. “Quality Attribute Workshops”, Third Edition
(CMU/SEI-2003-TR- 016). Pittsburgh, PA.

[13] Clements, Paul C. “Active Reviews for Intermediate
Designs” (CMU/SEI-2000-TN-009, ADA383775).
Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2000.

[14] Bass, Len; Clements, Paul; & Kazman, Rick. “Software
Architecture in Practice”, Second Edition. Boston, MA:
Addison-Wesley, 2003.

[15] Kazman Rick “A Life-Cycle View of Architecture Analysis
and Design Methods”, September 2003, TECHNICAL
NOTE, CMU/SEI-2003-TN-026

[16] Svahnberg M, C. Wholin, and L. Lundberg, “A Quality-
Driven Decision-Support Method for Identifying Software
Architecture Candidates”. Int. Journal of Software
Engineering and Knowledge Engineering, 2003, 13(5):p.
547-573

[17] Saaty, Thomas L., 1980. “The Analytic Hierarchy Process”.
McGraw-Hill, New York

[18] Zahedi, Fatemah, 1986, “The Analytic Hierarchy Process: A
Survey of the method and its applications”, Interfaces, Vol.
16, pp.96-108.

[19] Perry D. E and A. L Wolf. “Foundations for the study of
software architecture”. ACM SIGSOFT Software
Engineering Notes, 17(4), Oct. 1992, pp.40-52

[20] Bosch, J. 2004., “Software Architecture: The next step”, In
Proceedings of the First European Workshop on Software
architecture (EWSA), pp. 194-199.

[21] ZHU et al. “Tradeoff and Sensitivity Analysis in Software
Architecture Evaluation Using Analytic Hierarchy Process”,
2005.

[22] Greenberg, Robert R, and Thomas R Nunamaker, 1994.
“Integrating Analytic Hierarchy Process (AHP) into the
multi objective budgeting models of public sector
organizations”. Socio-Economic Planning Sciences, Vol.28
No.3, pp.197-206.

[23] Triantaphyllou, E. and Mann, S.H. 1994. “Some critical
issues in making decisions with pair-wise comparisons”. In
Proceedings of the Third International Symposium on the
AHP, pp.225-236.

[24] Bosch J, “Design & Use of Software Architectures:
Adopting and evolving a product line approach”: Addison-
Wesley, 2000.

[25] Hofmeister C, R. L Nord, and D. Soni, “Applied Software
Architecture”. Teading, MA: Addison-Wesley Longman,
2000.

[26]
[27] White D. J., 1990. “A bibliography on the application of

mathematical programming multiple-objective methods”,
Journal of Operational Research society, Vol.41, No. 8,
pp.669-691.

[28] Lee, Sang M., 1972. “Goal Programming for Decision
Analysis”, Auerbach Publishers, Philadelphia.

[29] Ignizio, James P. “Goal Programming and Extensions”.
Lexington Books, D.C.Heath and Company, Massachusetts,
1976.

[30] Hwang Ching –Lai and Abu Syed Md. Masul, Hutti,
“Objective decision Making Methods and Applications”,
New York; Springer - Verlag, 1997.

[31] Min, Hokey and James Storbeck, 1991. “On the origin and
persistence of misconceptions in goal programming”.
Journal of Operational Research Society, Vol. 42, No.4,
pp.301-312

[32] Gass, Saul I., 1986. “A Process for determining priorities
and weights for large scale linear goal programmes”. Journal
of Development Studies, Vol.21, No.4, pp.572-652.

[33] Ramanathan R and L. S Genesh, 1995. “Energy resource
allocation incorporating qualitative and quantitative criteria:
An Integrated model using goal programming AHP”. Socio-
Economic Planning Sciences, Vol.29, No.3, pp.197-218.

[34] Benjamin, Colin O., Ike C. Ehie, and Yildirim Omurtag,
1992. “Planning facilities” at the University of Missouri-
Rolla. Interfaces, Vol.22, No. 4, pp.95-105.

[35] Khorramshahgol, Reza, Hussein Azani, and Yvan Gousty,
1988. “An integrated approach to project evaluation and
selection”. IEEE Transactions on Engineering Management,
Vol.35, No.4, pp.265-270.

[36] Gorton I, and J. Haack. “Architecting in the Face of
Uncertainty”: An Experience Report. Proc. International
Conference on Software Engineering. 2004. Edinburgh,
Scotland.

[37] Francisca Losacio and ledis chirinos Nicole Levy and Amar
Ramdane-cherif,” Quality Characteristics for software
Architecture”, Journal of Object Technology, vol.2, No.2,
March-April 2003.

A Rama Mohan Reddy received
the B.Tech. from JNT
University, Hyderabad, India, in
1986 and M.Tech degrees in
Computer Science from National
Institute of Technology in 2000
Warangal, India. He worked As
Assistant Professor, and Associate
Professor of Computer Science and
Engineering, Sri Venkateswara
University College of Engineering

during the period 1992 and 2005. Presently working as Professor
and Head of Department of Computer Science and Engineering,
Sree Vidyanikethan Engineering College.

