
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

135

Manuscript received October 5, 2007

Manuscript revised October 20, 2007

Software Component Models from a Technical perspective

Mohd Hasan Selamat, Hamid Sanatnama, Abdul Azim Abd Ghani, and Rodziah Atan

Faculty of Computer Science and Information Technology University Putra Malaysia 43400 UPM Serdang

Summary
Component-based Software Development is an approach that has
many benefits, such as improving application developer
productivity, reducing costs and complexity. Programming within
this approach is like assembly rather than development, which
reduce skill requirements, and allow expertise focus on domain
problems. The foundation of any CBSD methodology is its
underlying component model, which defines what components
are, how they can be constructed, and specifies the standards and
conventions that are needed to enable composition of
independently developed component. This paper presents a
survey of the current available component technologies with
focus on the technical perspective of each component model in
order to have better understanding for developing a new
component model. We have categorized them based on
Distributed Application Support and Interaction mechanism.

Key words:
Component Models, Component Compositions, Interoperability,
Remote Procedure Call

1. Introduction

Component-based software technology is becoming an
increasingly popular approach to facilitate the
development of evolving systems, and has many benefits
such as improving application developer productivity,
reducing costs and complexity by reusing of existing code.
Programming within this approach is like assembly rather
than development, which reduce skill requirements, and
allow expertise focus on domain problems.
 The foundation of any CBSD methodology is its
underlying component model, which defines what
components are, how they can be constructed, how they
can be composed or assembled. Within CBSD we also
distinguish development of components from development
of systems. In component-based system development, we
focus on identification of reusable entities and selection of
components that fulfills system’s requirements, but in
developing component our focus is on reusability.
 Components communicate with their environment
only through their interfaces, so it is the interface which
provides all the information needed. The current
component technologies is designed to allow clients to
communicate transparently with objects, regardless of
where those objects are running—in the same process, on
the same machine, or on a different machine. As none of

existing models support composition in both design and
deployment phase [16], in this paper we present widely
used component models from a technical view in order to
have better understanding for developing a new
component model. Since components are supposed to be
used as building blocks from a repository and assembled or
plugged together into larger blocks, composition is a central
issue in CBSD.
 For composition, existing approaches usually adopt
message passing, which allows components to invoke one
another’s operations by remote procedure calls, either
directly or indirectly via a channel such a bus. Examples of
direct message passing are Remote Procedure Calls (RPC)
and Event Delegation. Indirect message-passing in the
other hand uses connectors which are separate entities and
are the basis of many software models [3].

1.1 Interoperability
ISO/IEC 2382-01, interoperability is "The capability to
communicate, execute programs, or transfer data among
various functional units in a manner that requires the user
to have little or no knowledge of the unique characteristics
of those units”. As procedural interactions were confined
to process boundaries, operating systems support a wide
variety of mechanism for Inter-process Communication
(IPC), such as files, pipes, sockets, and shared-memory
[1].

1.2 Remote Procedure Calls
One of the reasons for proposing RPCs by Birrel and
Nelson [28], which is build on top of the IPC, is that all
these IPC mechanisms operate on the level of bits and
bytes – quite far from well-ordered world of procedures
with typed parameters. The evolution of certain
component models shows the achievement on
interoperability on all levels to solve the problem of
interaction/connectivity of software across process
boundaries.
 The current component technologies are designed to
allow clients to communicate transparently with objects,
regardless of where those objects are running; in the same
process, on the same machine, or on a different machine.
Semantic of RPCs allows a client to invoke a procedure on

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

136

a remote host, which looks like a local procedure call. This
is done by providing a stub on the client side, and also for
each remote procedure. The stub marshals and
unmarsalling parameters which should be transmit
between callee and caller.
 The most well-known service implementing RPCs
across heterogeneous platforms is Distributed Computing
Environment (DCE), a standard of the Open Software
Foundation (OSF). DCE has introduced an Interface
Definition/Description Language (IDL), which is a key
component of the CORBA standard and is recommended
as the software interface specification due to its language,
platform, and vendor independence. It is IDL which create
automatically stub and specify, for each remotely callable
procedure, number, passing modes, and the type of the
parameters, as well as the type of possible return value.
DCE also introduced the concept of universally unique
identifiers which guarantees uniqueness until year 3500.

1.2.1 IDL’s weaknesses and strengths
IDL supports the basic specification for distributed
components, such as the operations and attributes provided
by the component. Some IDLs are used with a specific
programming language, but others can be used with
various programming languages, such as OMG IDL. But
IDL can not describe all of the information, such as, the
pre/post conditions, and semantic descriptions of
functionality, of the distributed component. Moreover,
IDLs do not provide any additional information about the
server’s external dependencies such as, the callback
invocation of a client’s method. Although IDL is
human-readable in terms of its syntax, it is a type of
program level specification and can be compiled into
executable code.

1.2.2 Microsoft’s RPC
A decade later Microsoft adopted DCE/RPC as the basis of
their Microsoft Remote Procedure Call (MSRPC)
mechanism, and implemented Distributed Component
Object Model DCOM on top of it. There is also a
lightweight version of remote procedure call (LRPC) [22],
which can be used for inter-process communication on a
single machine. MSRPC include support for Unicode
strings, implicit handles, inheritance of interfaces which
are extensively used in DCOM, and complex calculations
in the variable-length string and structure paradigms
already present in DCE/RPC.

1.2.3 Object invocation vs. Procedural invocation
The object invocation is not the same as procedural
invocation. A method call inspects the class of receiving
object and picks method implementation provided by that
class. Also a method always provides, as another
parameter a reference to the object to which the message

was sent. Many RPCs models share these two properties.
 There are two ways to make this possible. Firstly
implementing method call on top of the machinery that
implements procedure calls. Examples of these approaches
are, System Object Model from IBM and CORBA ORBs
and also Microsoft’s COM, although it does rely on tables
of procedure variables. Secondly to define a new virtual
machine level with build-in support for method calls, such
as JVM and .NET common language runtime (CLR).

1.2.4 Interface and Object reference specification
Components communicate with their environment only
through the interface, so it is only the interface which
provides all the information needed. All current
approaches uniformly define an interface as a collection of
named operations, each with a defined signature and
possibly a return type.
Approaches [1] for connecting interfaces to object are:
• Traditionally, one-to-one relation between interfaces

and object. (CORBA 2, SOM)
• Many interfaces with a single object. (JAVA, CLR)
• Many interfaces with many part objects in a

component.(COM,CCM in CORBA 3)
Interfaces are specified by IDL in all approaches which
follow the DCE. Among competing proposal, the OMG
IDL and COM IDL are the strongest. On object references,
there are also different approaches, but all have
mechanisms to map locally meaningful references that
retain meaning across process, machine and network
boundaries.

1.2.5 Connectors
Components and connectors are the basis of many
software models [3]. ADLs have always defined software
systems in terms of components and connectors. Even
component models that do not use connectors explicitly
often have composition operators that can be interpreted as
connectors at different level of abstraction.
In existing component models, connectors are channels for
coordinating the control flow between components. This
provides a mechanism for message passing, which allows
components to invoke one another’s operations by method
calls or remote procedure calls, either directly or indirectly
via a channel such a bus.

2. Existing Software Component Models
The two concepts component models and component
frameworks sometimes are intermixed. A component
model defines a set of standards and conventions used by
component developer. A component framework is a
support infrastructure for component model.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

137

Figure 1, Component-based Technology
There are many different component models, because
there are many different domains with different
requirements on component-based systems. Existing
component models adopt different component definitions
and composition operators [4]. We will consider the
following software component models: JavaBeans [2] [4],
EJB [5, 6], COM [7] [8] [9], CORBA [10] [11] [12] [13]
[14], Koala [15] [16], SOFA [17] , ADLs [18].

2.1 JavaBeans
A Java Bean is a reusable software component that can be
manipulated visually in a builder tool. One of the goals of
the JavaBeans APIs is to define a software component
model for Java, so that third party can create and ship Java
components that can be composed together into
applications by end users. Another reason for giving birth
to JavaBeans is that, there was no standard technology to
help programmer build java components which can
interact with one other in common way.
 Portability as one of the main goals of the JavaBeans
architecture provides platform neutral component
architecture. When a Bean is nested inside another Bean
then we will provide a full functionality implementation
on all platforms. However, at the top level when the root
Bean is embedded in some platform specific container
such as or Visual Basic or Netscape Navigator then the
JavaBeans APIs should be integrated into the platform’s
local component architecture. This means that on the
Microsoft platforms the JavaBeans APIs will be bridged
through into COM and ActiveX. Similarly, it will be
possible to treat a bean as a Live Object part, or to
integrate a bean with LiveConnect inside Netscape
Navigator.
 The three most important features of a Java Bean are
the set of properties it exposes, the set of methods it allows
other components to call, and the set of events it fires.
 The basic run-time model for Java Bean components
is that they run within the same address space as their
container. So for example, if the container is a Java
application, then the contained bean is run in the same

Java virtual machine as its container. If the container is a
non-Java application, then the Java Bean will run in a Java
virtual machine that is directly associated with the
application.

Figure 2, JavaBeans interaction with different servers/platforms [14]

Although Java environment supports multi-threading,
having a bean running in several threads at the same time
can cause problem. Many Java Beans will have a GUI
representation. When composing beans with a GUI
application builder it may often be this GUI representation
that is the most obvious and compelling part of the beans
architecture. However it is also possible to implement
invisible beans that have no GUI representation. These
beans are still able to call methods, fire events, save
persistent state, etc. They will also be editable in a GUI
builder using either standard property sheets or
customizers. They simply happen to have no screen
appearance of their own.

2.2 Enterprise JavaBeans (EJB)

EJB, besides having competitive advantage it offers in
term of distribution and platform independency, has been
recognized as an excellent platform for creating enterprise
solution, especially for distributed server-side applications.
It combines server-side components with distributed object
technologies such as CORBA and Java RMI to greatly
simplify that task of application development. Server-side
component model defines architecture for developing
distributed business objects, and are used on the
middle-tier application server, which manage the
components at runtime and make them available to remote
clients.
 There are three different kinds of enterprise beans:
• Entity beans, model business data; Java objects that

cache database information.
• Session beans, model business processes; Java

objects that act as agents performing tasks and
services.

Coordination Services (transactions,

Component
Framework

Component
Model

Component
Implementation

Independent
Deployment

Componen

Instance that
satisfy contract

JavaBean

JavaBean

JavaBean

J
D
B
C

Database
Server

CORBA
Server

Java
Server

IIOP

RMI

JavaBeans Application

Database
protocol

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

138

• Message-Driven beans, model message-related
business processes; Java objects that act as message
listeners, which can be triggered be receiving
messages from other beans.

The EJB architecture will be the standard component
architecture for building distributed object-oriented
business applications in the Java™ programming language
and will support the development, deployment, and use of
web services. EJB architecture applications, application
developers do not have to understand low-level transaction
and state management details, multi-threading, connection
pooling, or other complex low-level APIs (EJB
applications will follow the Write Once, Run Anywhere™
philosophy of the Java programming language). The EJB
architecture will also address the development,
deployment, and runtime aspects of an enterprise
application’s life cycle and define the contracts that enable
tools from multiple vendors to develop and deploy
components that can interoperate at runtime. Using EJB
architecture it is possible to build applications by
combining components developed using tools from
different vendors and provide interoperability between
enterprise beans and J2EE components as well as non-Java
programming language applications. The EJB architecture
is compatible with existing server platforms. Vendors are
able to extend their existing products to support Enterprise
JavaBeans and will be compatible with other Java
programming language APIs. The EJB architecture is also
compatible with the CORBA protocols.

2.2.1 Client-Side Objects in a Distributed
Environment
When the RMI-IIOP protocol or similar distribution
protocols are used, the remote client communicates with
the enterprise bean use stubs for the server-side objects
which implement the remote home and remote interfaces.

Figure 3, Location of EJB Client Stubs [8]

The communication stubs used on the client side are
artifacts generated at the enterprise bean’s deployment
time by the Container Provider’s tools. The stubs used on
the client are specific to the wire protocol used for the
remote invocation.

Figure 4, Heterogeneous EJB Environment [8]

2.2.2 Support for Distribution
The remote home and remote interfaces of an enterprise
bean’s remote client view are defined as Java™ RMI
interfaces. This allows the container to implement the
remote home and remote interfaces as distributed objects.
A client using the remote home and remote interfaces can
reside on a different machine than the enterprise bean and
the object references of the remote home and remote
interfaces can be passed over the network to other
applications. Comparing with original JavaBeans, which
are intended to be used for intraprocess purpose, EJB are
designed to be used as interprocess components.

2.2.3 Interoperability Goals
The goals of the interoperability requirements are:
• To allow clients in one application deployed in J2EE

containers from one server provider to access services
from session and entity beans in another application
that is deployed in an EJB container from a different
server provider. For example, web components that
are deployed on a J2EE-compliant web server
provided by one server provider must be able to
invoke the business methods of enterprise beans that
are deployed on a J2EE-compliant EJB server from
another server provider.

• To achieve interoperability without any new
requirements on the J2EE application developer.

• To ensure out-of-the-box interoperability between
compliant J2EE products. It must be possible for an
enterprise customer to install multiple J2EE server
products from different server providers, deploy
applications in the J2EE servers, and have the
multiple applications interoperated.

• To leverage the interoperability work done by
standards bodies (IETF, W3C, and OMG), so that
customers can work with industry standards and use
standard protocols to access enterprise beans.

2.3 COM
 Component Object Model (COM) is a Microsoft

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

139

platform for software componentry introduced by
Microsoft in 1993. It is used to enable interprocess
communication and dynamic object creation in any
programming language that supports the technology. It
means that the language for the source code of a
component can be any programming language that
supports function call via pointers, such as C, C++, and
Ada. The term COM is often used in the software
development world as an umbrella term that encompasses
the OLE, OLE Automation, ActiveX, COM+ and DCOM
technologies.
 COM is a binary compatibility specification and
associated implementation that allows clients to invoke
services provided by COM objects. As shown in Figure 5,
services implemented by COM objects are exposed
through a set of interfaces that represent the only point of
contact between clients and the object.

Figure 5, services provided by COM object through interface pointer
Obviously, the only point of contact between the client and
the object is a set of interfaces. Component interfaces are
specified in Microsoft IDL (COM IDL). Each interface
specifies the signatures of the functions it implements. A
COM component can implement multiple interfaces. Every
component implement an IUnknown interface, which is a
special interface that implements some essential
functionality.
 IUnknown has three methods:
AddRef()- Tells the COM object to increment its reference
count.
Release()- Tells the COM object to decrement its reference
count.
QueryInterface()- Requests an interface pointer from a
COM object.
 For example, Figure 6 expose a COM object that
emulates a clock. IClock, IAlarm, ITimer, and IUnknown
are the interfaces of the clock object.

Figure 6 A Clock COM object

2.3.1 Interface
An interface which provides a grouped collection of
related methods, its name starts with “I” and may inherit
from other interfaces. The implementation of the interfaces

is in a coclass (component object class). A COM server is
a binary (DLL or EXE) that contains on or more coclasses.
To avoid name collisions, each object and interface must
have a GUID (Globally Unique IDentifier) which is a
128-bit number, and COM's language-independent way of
identifying things. UUIDs from OMG is similar to COM
GUIDs. A class ID, or CLSID, is a GUID that names a
coclass. An interface ID, or IID, is a GUID that names an
interface. An HRESULT is an integral type used by COM
to return error and success codes. Interfaces are considered
logically immutable. Once an interface is defined, it
should not be changed. If new functionality has to be
added to a component, it can be exposed through a
different interface.

2.3.2 Interoperability
COM defines a binary structure for the interface between
the client and the object which provides the basis for
interoperability between software components written in
arbitrary languages. Every COM object runs inside a server.
A single server can support multiple COM objects. As
shown in Figure 7, there are three ways in which a client
can access COM objects provided by a server:

Figure 7, Three methods for accessing COM objects [10]
• In-process server: The client can link directly to a

library containing the server. The client and
server execute in the same process.
Communication is accomplished through function
calls.

• Local Object Proxy: The client can access a
server running in a different process but on the
same machine through an inter-process
communication mechanism. This mechanism is
actually a lightweight Remote Procedure Call
(RPC).

• Remote Object Proxy: The client can access a
remote server running on another machine. The
network communication between client and
server is accomplished through DCE RPC. The
mechanism supporting access to remote servers is
called DCOM.

IUnknown
IClock

ITimer

IAlarm Clock
Object

Interface
Pointer

Client
Application Object

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

140

 If the client and server are in the same process, the
sharing of data between the two is simple. However, when
the server process is separate from the client process, as in a
local server or remote server, COM must format and bundle
the data in order to share it. This process of preparing the
data is called marshalling.
 In COM marshalling accomplishes through a "proxy"
object and a "stub" object that handle the cross-process
communication details for any particular interface. The
following figure exposes the client call to the server through
the proxy, which marshals the parameters and passes them
to the server stub. The stub unmarshals the parameters and
makes the actual call inside the server object. When the call
completes, the stub marshals return values and passes them
to the proxy, which in turn returns them to the client. The
same proxy/stub mechanism is used when the client and
server are on different machines. However, the internal
implementation of marshalling and unmarshalling differs
depending on whether the client and server operate on the
same machine (COM) or on different machines (DCOM).

Figure 8, Cross-process communication in COM [10]

2.3.3 The structure of proxy
Proxy support standard marshalling of parameters
belonging to two interfaces: IA1 and IA2. Each interface
proxy implements IRpcProxyBuffer for internal
communication between the aggregate pieces. When the
proxy is ready to pass its marshaled parameters across the
process boundary, it calls methods in the
IRpcChannelBuffer interface, which is implemented by
the channel. The channel in turn forwards the call to the
RPC run-time library so that it can reach its destination in
the object. It is also proxy that generates the appropriate
remote procedure call.

Figure 9, Structure of proxy in COM [7]

2.3.4 The structure of stub
COM creates the "stub" in the object's server process and
has the stub manage the real interface pointer. COM then
creates the "proxy" in the client's process, and connects it to
the stub. The proxy then supplies the interface pointer to the
client. The differences between the stub and the proxy are
• Stub represents the client in the object’s address space.
• The stub is not implemented as an aggregate object.
• The interface stubs are private rather than public.
• The interface stubs implement IRpcStubBuffer, not

IRpcProxyBuffer.
• Instead of packaging parameters to be marshaled, the

stub unpackages them after they have been marshaled
and then packages the reply.

Figure 10, Structure of the stub in COM [7]

Microsoft RPC is a model for programming in a
distributed computing environment. The goal of RPC is to
provide transparent communication so that the client
appears to be directly communicating with the server.
Microsoft's implementation of RPC is compatible with the
Open Software Foundation (OSF) Distributed Computing
Environment (DCE) RPC. Microsoft RPC includes the
Interface Definition Language (IDL) and its compiler.
 Given an IDL file, the Microsoft IDL compiler can
create default proxy and stub code that performs all
necessary marshalling and unmarshalling. COM
technology includes interfaces and API functions that
expose operating system services, as well as other
mechanisms necessary for a distributed environment.
 Some clients need runtime access to type information
about COM objects which is generated by the Microsoft
IDL compiler and is stored in a type library. COM
provides interfaces to navigate the type library.
 COM objects need a way to store their data when they

Process
Boundaries

Platform-
Operative System

Platform-
Operative System

 COM Library

Client

Proxy

Channel

RPC
Runtime

Transport

COM Library

Object

Stub

Channel

RPC
Runtime

Transport

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

141

are not running. COM supports object persistence through
"Structured Storage", which creates an analog of a file
system within a file. Individual COM objects can store
data within the file, thus providing persistence.
 Clients often require a way to allow them to connect
to the exact same object instance with the exact same state
at a later point in time. This support is provided via
"monikers". Uniform Data Transfer provides for data
transfers and notifications of data changes between a
source called the data object, and something that uses the
data, called the consumer object. COM allows such objects
to define outgoing interfaces to clients as well as incoming
interfaces. This enables two-way communication between
the client and the component.

2.4 CORBA

Common Object Request Broker Architecture 1.1 was
introduced in 1991 by OMG and defined the IDL and the
API that enable client/server object interaction within a
specific implementation of an Object Request Broker
(ORB). The standard Internet Inter-Orb Protocol (IIOP) is
a protocol for communication between CORBA ORBs that
has been published by the OMG. IIOP is an
implementation of the General InterORB Protocol (GIOP)
for use over an internet, and provides a mapping between
GIOP messages and the TCP/IP layer.
 Using IIOP a CORBA-based program from any
vendor, on almost any computer, operating system,
programming language, and network, can interoperate
with a CORBA-based program from the same or another
vendor, on almost any other computer, operating system,
programming language, and network. Because of the easy
way that CORBA integrates machines from so many
vendors, with sizes ranging from mainframes through
minis and desktops to hand-helds and embedded systems.
The most important, are most frequent uses is in servers
that must handle large number of clients, at high hit rates,
with high reliability.
 CORBA applications are composed of objects,
individual units of running software that combine
functionality and data, and that frequently represent
something in the real world.The IDL interface definition is
independent of programming language, but maps to all of
the popular programming languages via OMG standards:
OMG has standardized mappings from IDL to C, C++, Java,
COBOL, Smalltalk, Ada, Lisp, Python, and IDLscript. In
CORBA, every object instance has its own unique object
reference, an identifying electronic token.

2.4.1 Ports
CORBA components support a variety of surface features
through which clients and other elements of an application
environment may interact with a component. These surface

features are called ports. The component model supports
four basic kinds of ports:
Facets, which are distinct named interfaces provided by the
component for client interaction.
Receptacles, which are named connection points that
describe the component’s ability to use a reference supplied
by some external agent.
Event sources, which are named connection points that
emit events of a specified type to one or more interested
event consumers, or to an event channel.
Event sinks, which are named connection points into
which events of a specified type may be pushed.
 Attributes, which are named values exposed through
accessor and mutator operations. Attributes are primarily
intended to be used for component configuration, although
they may be used in a variety of other ways.

Figure 11, CORBA Component

The repository of CORBA components is a CCM container
hosted and managed by an application server, and CORBA
components are assembled by method and event delegation
in a way that Facets match Receptacles and Event sources
match Event sink in the design phase.

Figure 12, CCM Container

2.4.2 Interoperability
The client acts as if it's invoking an operation on the object
instance, but it's actually invoking on the IDL stub which
acts as a proxy. Passing through the stub on the client side,
the invocation continues through the ORB, and the skeleton
on the implementation side, to get to the object where it is
executed. Any client that wants to invoke an operation on
the object must use this IDL interface to specify the
operation it wants to perform, and to marshal the arguments
that it sends. When the invocation reaches the target object,
the same interface definition is used there to unmarshal the
arguments so that the object can perform the requested
operation with them.

Application Server

Client Machine

Client
Application

CCM Container

CORBA
Componen

t

CORBA
Componen

t

Facet

Receptacle Event source

Event

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

142

Figure 13, A request flow from client to the object implementation [2]

2.4.3 Remote Invocation
To make the remote invocation, the client uses the same
code that it used in the local invocation, substituting the
object reference for the remote instance. When the ORB
examines the object reference and discovers that the target
object is remote, it routes the invocation out over the
network to the remote object's ORB. In order to invoke the
remote object instance, the client first obtains its object
reference. Naming Service and Trader Service are the easy
ways.

2.4.4 Naming Service
To avoid deal directly with machine representation of
object references, The Naming Service allows the binding
of an object reference with user-friendly names. A name
binding is always defined relative to naming context. A
naming context is an object that contains a set of name
bindings in which each name is unique. The Naming
Service provides the principle mechanism through which
most clients of an ORB-based system located objects that
they intend to use. Given an initial naming context, clients
navigate naming context retrieving lists of the names bound
to that context. The CORBA naming service is defined as
IDL module CosNaming. This module defines two data
types: naming component and name, which is a sequence of
name components. This module also supplies two
interfaces: naming context and binding iterator. The
Naming Context interface provides the necessary operation
to bind a name to an object, and to look up a name in order
to obtain the associated object reference.

module CosNaming [
 typedef string Istring;
 struct NameComponent {Istring id; Istring kind;};
 typedef sequence <NameComponent> Name;
 enum BindingType {nobject, ncontext};
 struct Binding {Name binding_name;
 BindingType binding_type;};
 typedef sequence <Binding> BindingList;
 interface BindingIterator; interface NamingContext {
 exception CannotProceed {
 NamingContext cxt; Name rest_of_name;};
 void bind (in Name n, in object obj)

 raises (CannotProceed);
 void list (in unsigned long how_many,

 out BindingList bl, out BindingIterator bi};
 interface BindingIterator {boolean next_n

 (in unsigned long how_many,
 out BindingList bl); };};

] //other declaration not shown

Example 1, CosNaming IDL

2.4.5 Trader Service
Trading Object Service facilitates the offering and
discovery of instances of services of particular types.
Discovering services is called “import”, and offering a
service is called “export”. Export and import facilitate
dynamic discovery of, and late binding to, services.

Figure 14, Interoperability by ORB-to-ORB communication [2]

OMG has standardized this process at two key levels. First
client stub and object skeleton are generated from the same
IDL, that makes the client knows the type object it’s calling,
and also knows exactly which operation it may invoke.
When the invocation reaches the target, everything is there
and in the right place. Second client's ORB and object's
ORB must agree on a common protocol - that is, a
representation to specify the target object, operation, all
parameters of every type that they may use, and how all of
this is represented over the wire. OMG has defined this also
- it's the standard protocol IIOP.

2.4.6 OMG Interface Definition Language
For each object type, you define an interface in OMG IDL.
The interface is the syntax part of the contract that the
server object offers to the clients that invoke it. The
separation of interface from implementation, enabled by
OMG IDL, is the core of CORBA which enables
interoperability. In contrast, the implementation of an
object - its running code, and its data - is hidden from the
rest of the system behind a boundary that the client may not
cross. IDL compiles into client stubs and object skeletons,
and write object and a client for it. Stubs and skeletons
serve as proxies for clients and servers,
respectively. Because IDL defines interfaces so strictly,

Client
Object

Implementation

IDL
Stub

IDL

Skeleton

Object Request Broker

Request

IIOP

Protocol

 IDL
 Stub

 IDL
 Skeleton

ORB 1

IDL
Skeleton

IDL
Stub

ORB2

Client
Object

Implementation Client

Object
Implementation

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

143

the stub on the client side has no trouble meshing perfectly
with the skeleton on the server side, even if the two are
compiled into different programming languages, or even
running on different ORBs from different vendors.

2.5 Koala
Most Consumer Electronics (CE) today contain embedded
software and have a diversity of features. The past years
has shown that the size and complexity of the software, the
required diversity of products and developing time are the
significant problems which are major challenges.
Embedded software in CE provides basic control of
hardware, signal and data processing has shifted from
hardware to software, and it make new product features
possible. That’s why CE products have become member of
complex product-family structures
 Koala’s primary goals are to manage increasing
software complexity by using software components,
explicit architecture. Architecture description in the first
place instead of using round-trip engineering techniques to
extract design information from the actual code. Koala
manage diversity by reusing of software components,
different configuration–compound components, and
parameterization of component. The answer of “Why
software components?” question in Koala model is to
handling the diversity, which is a central key in embedded
software in CE, is the reuse of software components in
different product. The classical approach of reusability is
good for other domain, such as scientific and graphical
libraries and reuse of low-level codes doesn’t help much in
managing the similarities and differences in structure of
application.
 Component-Oriented approach which is an ideal way
to handle the diversity of software in CE allows
construction of multiple configurations in both variation
and structure. The explicit interface of a component
designed in such a way that can be used in many different
configurations. Late binding and reusability of software let
us apply the same software in different products, which
saves product development effort.
 Koala got inspiration from Darwin ADL which
provides the combination of component model and
architectural language. The explicit hierarchical structure
of components with provides, interfaces, and bindings
make developing CE product families much easier.

The solution key to have different type of configuration is
to take out the binding knowledge out of the components.
 Koala component model strictly separate component
development and configuration, and interface definition
uses simple IDL (resembles COM and Java interface
description) for defining function prototype in C syntax.

interface IVolumeControl {

 void Set Volume (Volume v);
 Volume GetVolume(void); }

Component description uses CDL:
component Amplifier{
 provides VolumeControl vol;
 requires VolumeControl drv;}
Each interface is labeled with two names, the long name
which is also the interface type and is globally unique in a
particular description in an interfaces repository. The other
name is the instance name which is a local name inside the
component. This convention makes it possible to have two
interfaces on the border of a component with the same
interface type.

Figure 15, A Koala Compound Component [15]

Configuration is the process of connecting a set of
components to form a product. The configuration can be
done in different scenarios:

- Many required interface of same type to one
provides interface of the same type.

- One provides interface to one/zero required
interface of same type.

component CTvPlatform{
 provides IProgram pprg; requires II2c slow, fast;
 contains component CFrontEnd cfre;
 component CTunerDriver ctun;
 connects
 pprg =cfre.pprg; cfre.rtun=ctun.ptun; ctun.ri2c=fast; }

Module which is interfaceless component solve the
problem of initialization interfaces (each subcomponent
provides an initialization glue interfaces). For each
module, koala generates a header file with renaming
macros.

2.5.1 Implementation
A component is a set of C and header files in a single
directory, which may freely include and use each other but
may not have any reference to any file outside of the
directory. A function f in a provides interface p of a
component C with short name c is implemented in C as
c_p_f. A function f in a requires-interface r of a component
is called as r_f. How does a call of r_f in one component
arrive at c_p_f in another component? Simply by a:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

144

 #define r_f(...) c_p_f(...)
Such statements are generated by a small tool called Koala
that reads CDL and IDL and produces header files to be
included by component implementations. Note that the
name c_p_f must be globally unique hence the use of c,
but the name r_f has as scope only the calling component.

2.6 SOFA

SOFA (SOFtware Appliances) is a project aiming to
provide a platform for software components. In SOFA
component model, applications are viewed as a hierarchy
of nested components. There are two types of components,
primitive with no subcomponents or composed building up
of other components. In SOFA a component is described
by its frame and architecture. A frame, looks like a
black-box which defines provides-interfaces and
required-interfaces. On the other hand architecture views
as a grey-box that defines first level of nesting in a
component hierarchy.
 There are four types of interface connections:

- Binding of a required-interface to provides-interface
- Delegation from a provides-interface of a component
 to provides-interface of a subcomponent
- Subsuming from a subcomponent's requires-interface
 to a requires-interface of component
- Exempting an interface of a subcomponent from any
 ties.

In SOFA, interfaces, frames, and architectures are
described in the Component Description Language (CDL),
which is based on OMG IDL.
interface Login {
 CentralPlayerServices login(in string who); };
frame Client { provides: Client iClient;
 requires: Login iLogin; CentralPlayerServices iCPS; };
architecture CUNI GameGen implements
GameGenerator {
 inst GameGeneratorDBServices aGGDBS;
 inst ConfigurationFileParser aConfig;
 inst GameGeneratorFunctionality func;
 bind func:iConfig to aConfig:iConfig;
 bind func:iGGDB to aGGDBS:iGGDB;
 subsume aGGDBS:iDatabase to iDatabase; };

Example 2, A sample declaration in CDL

The compiled descriptions (interfaces, frame, and
architecture) are stored in the Type Information Repository
(TIR), which mange an evolution of component’s
description and can store the several versions of every
element defined in CDL. Connectors are first-class entities
like component in SOFA. A connector is described in a
manner as a component by connector frame and connector
architecture. Behavior in SOFA can be defined as

communications among SOFA components can be
captured formally. The events (method call, returns) in
SOFA are denoted by event tokens. For example if there is
method m, there are tokens that stand for different events
as shown in the table below.

Table 1 Event tokens in SOFA

Token Event
!m^ emitting a method call
?m^ accepting a method call
!m$ emitting a return
?m$ accepting a return

 A sequence of event tokens form a trace <!m^; ?m$>.
Behavior of a SOFA entity is the set of all traces, which
can be produced by the entity. A regular-like expression on
the set of all event tokens is called behavior protocol.
There are three types of behavior protocols, interface
protocol which is written by programmer into CDL. Frame
protocol which is written by programmer into CDL, and
architecture protocol – generated by CDL.

interface I {void m(); void n();protocol: m; (n + (n; n))};
frame F{provides: I i1;
 protocol: ?i1.m; (?i1.n + (?i1.n; ?i1.n)); };

Example 3, An interface and frame protocols

Dynamic Component UPdating (DCUP) architecture is a
specific form of SOFA components which enables their
safe updating at runtime. It extends the component model
with implementation object and by a technique for
updating a component at runtime. A DCUP component
can be divided into permanent (is not subject of the
dynamic update) and replaceable (is specific for each
version of the component)
 SOFAnode is a single environment for developing,
distributing and running SOFA applications. SOFAnode
consists of five logical parts: Template repository,
MADE, CDL compiler, Template Information Repository
and Code generator
One SOFAnode is not tied with one host – it can be
distributed across a network.

2.7 Architecture Description Languages ADLs

“The software architecture of a program or computing
system is the structure or structures of the system, which
comprise software elements, the externally visible
properties of those elements, and the relationships among
them.” [18] with other words an ADL is a language that
provides features for modeling a software system’s
conceptual architecture, distinguished from the system’s
implementation. Structure is the components that comprise
a system, the behavioral specification for those

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

145

components, and the patterns and mechanisms for
interaction among them. ADLs are emerging as viable
tools for formally representing the architectures of systems.
While growing in number, they vary widely in terms of the
abstraction they support and analysis capabilities they
provide.
 In contrast to Module Interconnection Languages
(MILS), which only describe the structure of an
implemented system, ADLs are used to define and model
system architecture prior to system implementation. The
ADL community generally agrees that Software
Architecture is a set of components and connections
among them. In addition to identify the components and
connectors of a system, ADL typically address the
component behavioral specification. ADLs typically
provide support for specifying both functional and
non-functional characteristics of components. Component
protocol specification in some ADLs, such as Wright and
Rapide, support the specification of relatively complex
component communication protocols. Others such as
Unicon allow the type of a component to be specified
which in turn restrict the type of the connector that can be
used with it. Connector specification in ADL contains
structure for specifying properties of connectors, where
connectors are used to define the interaction between
components.
 ADLs are well-suited for representing the architecture
of a system and formal, compilable languages. Thus to
understand and use ADL technology and architecture
concepts effectively, developers need training. Because the
structure of a software system can be explicitly
represented in an ADL specification, separate
documentation describing software structure is not
necessary. Examples of ADLs are AADL, ACME, ADML,
Aesop, ArTek, C2SADEL, Darwin, Koala, MetaH, Rapide,
SADL, UML, UniCon, Weaves, Wright, xADL.

2.7.1 ACME
It was developed jointly by Monroe, Garlan from Carnegie
Mellon University and Wile from University of Southern
California. It was originally designed to be a lowest
common denominator interchange language. Systems are
first order entities in Acme, and may also define properties
which describe "system-level" attributes. The following is
a simple example of a client server system with a single
client represented in Acme.
System ClientServerSystem = {
 Component server = {Port requests; };
 Component client1 = {Port makeRequest; };
 Connector req = {Role requestor; Role requestee; };
 Attachments { server.requests to req.requestor;
 .. .client.makeRequest to req.requestee;}}

2.7.2 Rapide
It was developed by Luckham at Stanford and has been
designed with an emphasis on simulation yielding partially

ordered sets of events. Rapide is a language that includes
data types, operations, and generation therefore
specifications are executable. Rapide is a concurrent,
object-oriented, event-based simulation language. In
Rapide a Process defines and simulates behavior of
distributed object system architectures and produces a
simulation represented by a set of events. Posets enable
visualization and analysis of an execution. Architecture
elements in Rapide are components, connections, and
constraints. Component have interfaces which will be
implemented by the Architecture and Module. Connection
connects send interfaces to receive interfaces via calling
actions or functions in its own interface. Three types of
connections are basic connection (A to B), pipe connection
(A => B), agent connection (A ||> B).

The following is a simple example specified in Rapide.
type Producer (Max : Positive) is interface
 action out Send (N: Integer);
 action in Reply(N : Integer);
behavior
 Start => send(0);(?X in Integer) Reply(?X)
 where ?X<Max => Send(?X+1); end Producer;

type Consumer is interface
 action in Receive(N: Integer);action out Ack(N : Integer);
behavior
 (?X in Integer) Receive(?X) => Ack(?X); end Consumer
architecture ProdCon() return SomeType is
 Prod : Producer(100); Cons : Consumer;
 connect
 (?n in Integer) Prod.Send(?n) => Cons.Receive(?n);
 Cons.Ack(?n) => Prod.Reply(?n); end architecture
ProdCon;

2.7.3 Wright
It was developed by Garlan at CMU. Wright has been
designed with an emphasis on analysis of communication
protocols. It uses a variation of Communicating Sequential
Processes (CSP) to specify the behaviors of component,
connectors, and systems. A language primarily focuses on
the basic component./connector/system paradigm. The
following is a simple example specified in Wright.

System simple_cs
Component client = port send-request = [behavioral spec]
 spec = [behavioral spec]
Component server =
 port receive-request= [behavioral spec]
 spec = [behavioral spec]
Connector rpc = role
 caller = (request!x -> result?x ->caller) ^ STOP role
 callee = (invoke?x -> return!x -> callee) [] STOP
 glue = (caller.request?x -> callee.invoke!x ->
 callee.return?x -> callee.result!x -> glue) [] STOP
Instances

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

146

 s : server c : client r : rpc
Attachments :
 client.send-request as rpc.caller
 server.receive-request as rpc.callee
end simple_cs.

2.7.4 xADL
An extension to ADLs which is ADL-neutral interchange
format [19]. xADL is designed for representing
architectures as hypertext. The ArchStudio project under
development in the University of California, Irvine has
created xADL as for its "enabling architecture-centric tool
integration with XML." ArchStudio is "an extensible,
integrated software architecture development environment
that uses an XML-based representation for the underlying
architecture.

3. Categories of Component Models

The Component Models can be classified based on
Distributed Application Support (Middleware,
Client-Server), and Interaction Mechanism
(Direct-message passing, Indirect-message passing)
 An application made up of distinct components
running in separate runtime environments, usually on
different platforms connected via a network. Typical
distributed applications are two-tier (client-server),
three-tier (client-middleware-server), and multi-tier
(client-multiple middleware-multiple servers)

Table 2, Distributed Application Support

Support Distributed
Application Component Models

Client-Middleware-Server CORBA,COM,DECOM,EJB
Client-Server CORBA,COM,DECOM,EJB,ADLs
Client-side JavaBeans, Koala,

Connectors are meant to encapsulate interaction or
communication between components. This leads to
mechanism for message passing which can be either
directly or indirectly by invoking one another’s operations
by method call via a channel such as a bus.

Table 3, Interaction Mechanism

Interaction Mechanism Component Models
Direct message-passing COM, CORBA, EJB
Indirect message- passing JavaBeans, ADLs, Koala, SOFA

4. Concluding Remark
In this paper we reviewed the widely used component
models from a technical and strategy view in order to
have better understanding for developing a new

component model. We also showed in which area or
domain they are mostly used. The evolution of certain
component models shows the achievement of
interoperability on all levels to solve the problem of
interaction/connectivity of software across process
boundaries. The current component technologies are
designed to allow clients to communicate transparently
with objects, regardless of where those objects are
running, in the same process, on the same machine, or on
different machines. Although a decade of research in the
area of CBSD, it seems there is still a long way to what
component-based development promises. As in [16] they
have pointed out, there is still no universally accepted
terminology, and that’s why a software component, is
defined in many different ways. Although we can refer to
the most widely used definition of software component
[1], but it seems that we cannot give a well-defined and
generally-accepted answer to the questions “what is a
software component?” and “how do we correctly
compose software components?

This research is supported by eScience Fund SF0704,
Ministry of Science Technology and Innovation

5. Reference

[1] Clemens Szyperski, D. Gruntz., and S. Murer, Component

Software:Beyond Object-Oriented Programming. 2002:
Addison-Wesley, second edition.

[2] Hamilton, G., Sun Microsystems, JavaBean, S.M. Inc.,
Editor. 1997, August 8.

[3] Kung-Kiu Lau, P.V.E., Zheng Wang. Exogenous Connectors
for Software Components. in Proceedings of Eighth
International SIGSOFT Symposium on Component-based
Software Engineering. 2005: Springer-Verlag.

[4] Jubin, H., JavaBeans by example. 1997: Prentice-Hall, Inc.
[5] Sun Microsystems, L.G.d., Enterprise JavaBeans

Specification, Version 2.1. 2003.
[6] Manson-Haefel, R., Enterprise JavaBeans, ed. M. Loukides.

1999: O'Reilly & Associates, Inc.
[7] MSDN, M. Inter-Object ommunication. 2007 [cited;

Available from:
http://msdn2.microsoft.com/en-us/library/ms694309.aspx.

[8] Comella-Dorda, S. Component Object Model (COM),
DCOM, Related Capabilities. 2001 [cited; Available
from: http://www.sei.cmu.edu/str/descriptions/com.html.

[9] The Component Object Model Specification Version 0.9.
1995, October 24 [cited; Available from:
http://www.microsoft.com/com/resources/comdocs.asp.

[10] Inc, O. CORBA® BASICS. 2007 [cited; Available from:
http://www.omg.org/gettingstarted/corbafaq.htm.

[11] OMG, I., CORBA cOMPONENT mODEL sPECIFICATION,
in OMG Available Specification. 2006.

[12] OMG Inc, Trading Object Services Specification. 2004.
[13] Group, O.M., Naming Service Specification. 2004.
[14] Inc, O. Information comparing DCOM (ActiveX)to
 CORBA.1997 [cited; Available from: http://www.omg.org.
[15] Rob van Ommering, F.v.d.L., Jeff Kramer, Jeff Magee, The

Koala Component Model for Consumer Electronics
Software. 2000.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

147

[16] Kung-Kiu Lau, Z.W. A Survey of Software Component
Models. in Software Engineering and Advanced
Applications. 2005. 31 st EUROMICRO Conference: IEEE
Computer Socity.

[17] František Plášil, D.B., Radovan Janecek. SOFA/DCUP:
Architecture for Component Trading and Dynamic Updating.
in International Conference on Configurable Distributed
Systems. 1998.

[18] Bass, C., and Kazman, Software Architecture in Practice,
Second Edition. 2003, Boston, MA: Addision-Wesley.

[19] Rohit Khare, M.G., Peyman Oreizy. xADL: Enabling
Architecture-Centric Tool Integration With XML. in 34th
Annual Hawaii International Conference on System
Sciences (HICSS-34). 2001. Hawaii.

[20] Inc, O., Object Management Group Documents. 2004.
[21] Dušan Bálek, F.P. SOFTWARE CONNECTORS AND THEIR

ROLE IN COMPONENT DEPLOYMENT. in Proceedings of
the IFIP TC6 / WG6.1 Third International Working
Conference on New Developments in Distributed
Applications and Interoperable Systems. 2001: Kluwer, B.V.

[22] Cynthia Della Torre Cicalese, S.R., Behavioral Specification
of Distributed Software Component Interfaces. IEEE
Computer Socity Press, 1999. 32(7): p. 46-53.

[23] Cory Vondrak, T., Redondo Beach, CA. Remote Procedure
Call. 1997 [cited February 2007]; Available from:
http://www.sei.cmu.edu/str/descriptions.

[24] Bernstein, P.A., "Middleware: A Model for Distributed
Services." Communication of the ACM, 1996. 39(2): p.
86-97.

[25] Chappell, D. DCE and Objects. 1996 [cited; Available
from: http://www.opengroup.org/dce/info/dce_objects.htm.

[26] Jim Waldo, G.W., Ann Wollrath, Sam Kendall, A Note on
Distributed Computing. Sun Microsystems Laboratories, Inc,
1994.

[27] Brain N. Bershad, T.E.A., Edward D. Lazowska, and Henry
M. Levy, Lightweight Remote Procedure Call. ACM, 1989.
089791-338-3.

[28] Andrew D. Birrel and Bruce Jay Nelsonl, Implementing
Remote Procedure Calls , ACM Transaction on Computer
System, Vol. 2, No. 1, February 1984, Pages 39-59.

Mohd Hasan Selamat received
his M.S. degrees in Computer
Science from Essex University in
1981 and MPhil in Information
System from East Anglia University,
United Kingdom in 1989. His
research areas include software
engineering and information system.
He is now a full-time lecturer and

Head Department of Information System in the Faculty of
Computer Science and Information Technology, University
Putra of Malaysia. He has published a number of papers
related to these areas.

Hamid Sanatnama, received his
M. Sc. form Gothenburg
University in 1998. After working
as a software engineer from (1999)
and (2003) in C&S Healthcare
consultant company and Volvo
technological development
department in Sweden respectively,
and from (2003) he started as
instructor in the Shahid Bahonar
University of Kerman. He is now a

PhD student at University Putra Malaysia and doing his
research in field of software engineering.

Abdul Azim Abdul Ghanis
received his M.S. degrees in
Computer Science from University
of Miami, Florida, U.S.A in 1984
and Ph.D. in Computer Science from
University of Strathclyde, Scotland,
U.K in 1993. His research areas
include software engineering,
software metric and software quality.

He is now a full-time lecturer in Department of Information
System and Dean of the Faculty of Computer Science and
Information Technology, University Putra of Malaysia. He
has published a number of papers related to software quality
areas.

Rodziah Binti Atan received her
M.S. degree in Computer Science in
2001 and PhD in Software
Engineering in 2006 from
University Putra Malaysia. Her
research areas include software
process modeling, software
measurement. She is now a fulltime
lecturer in Department of
Information System.

