
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

167

Manuscript received October 5th, 2007.

Manuscript reviced October 20th, 2007.

An Efficient Method of Data Inconsistency Check for Very Large
Relations

Hyontai Sug,

Dongseo University, Busan, South Korea

Summary
In order to deal with the data inconsistency problem in very large
relations, a new method is suggested to help users find
inconsistent data conveniently based on the functional
dependencies of the corresponding relation variables. The
possible wrong data are found by applying an association rule
finding algorithm in a limited way. An experiment showed very
promising result.
Key words:
Data inconsistency check, very large relations.

1. Introduction

As computers become very popular nowadays, lots of
databases are constructed and used because of high
availability of database management systems without
having to pay much to acquire the systems. For example,
one of very widely used database management systems,
MySQL can be freely used unless the system is used for
commercial purpose [1]. Another very popular database
management system for relatively small databases,
Microsoft ACCESS [2] is very widely used because of
good user interfaces that enable users to construct tables
and make queries easily. Even Microsoft SQL server [3]
for middle-sized databases is relatively very easy to use
because of its similarity in user interfaces with those of
Microsoft ACCESS. This ease of use of relational
database management systems has contributed to let many
people who do not have exact knowledge on normal forms
of relation variables design relational databases with ease.
But, this ease of use might play a role of some bad point in
the respect of data management. Because relational
databases are consisted of relations that resemble
conventional tables, users or designers of the databases
consider that the structure of databases is very simple so
that they do not pay much attention to the structures of the
relations. They might consider the relations are just like
conventional tables and they want to store data in a small
number of tables as much as possible, because they
usually think that the complexity of making queries from
the tables is increased as the number of tables is increased,
as the author experienced from many people. Therefore, it
is highly possible that the relations might contain some

redundant information due to the small number of tables.
For example, consider the following example database for
a video DVD rental shop. The shop’s database has a table
called rentalTable to store the DVD rental information.
The table has an attribute set like {renter_number,
renter_name, renter_address, DVD_number, rent_date,
return_date} where words in slanted characters represent
the attributes’ role as a primary key. And the designer of
the database does not want to have a separate table to store
the renter’s information, because most of the customers
are one-time customers, and reports to be printed out need
all the information in the rentalTable. Moreover, separate
table structures like rental_info{DVD_number, rent_date,
return_date} and renter_info{renter_number, renter_name,
renter_address} make inputting data and printing reports
from the two tables harder. But due to the structure of
rentalTable, if some customers rent more than once,
redundant information like renter_name, renter_address
can exist in the table. This redundancy may cause data
inconsistency problem, if the redundant information has
not been updated unanimously. The problem become
worse when the structure of databases is more complex
and the number of tables is increased, which is very
common in real world databases.

One may suggest to using a sorting method to find out
inconsistent data. But, manual checking after sorting is
very difficult when the number of tuples is very large and
the domains of corresponding attributes are large. If we
assume that we want to check inconsistent data between
two attributes and each attribute has k and q number of
values, the possible number of combination of attribute
values is kq. So, if k and q are large numbers, manual
checking for data inconsistency will be very difficult. This
paper suggests a consistency checking method to deal with
such situation. We suggest a method to solve the problems
of data inconsistency based on an approach developed
from association rules and functional dependencies
between attributes.

We will first discuss related works in section 2, in section
3 we present our method in detail and in section 4 we
illustrate our method through experimentation. Finally in
section 5, we present conclusions.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

168

2. Related work

Because we want to apply association rule discovery
algorithms in a limited way, let's take a look at the
algorithm briefly. Association rules are rules about how
often sets of items occur together. These rules produce
information on patterns or regularities that exist in a
database. For example, suppose we have collected a set of
transactional data in a supermarket for some period of time.
We might find an association rule from the data stating
`instant coffee => non-dairy creamer (80%),’ which means
that 80% of customers who buy instant coffee also buy
non-dairy creamer. Such rules can be useful for decision
making on sales, for example, determining an appropriate
layout for items in the store. Basically, association rule
finding algorithms search exhaustively to find association
patterns. So, there can be many association rules and much
computing time can be needed for large target databases,
because of the exhaustive nature of the algorithm. So,
supplying appropriate minimum support based on the
target database size is important.

There are many good algorithms to find association
patterns efficiently; a standard association algorithm,
Apriori, a large main memory-based algorithm like
AprioriTid [4], the hash-table based algorithm, DHP [5],
random sample based algorithms [6], tree structure-based
algorithm [7], and a parallel version of the algorithm [8].
ART [9] tried to achieve scalability by using decision list,
but the exhaustive nature of the algorithm makes a limit to
the applicability of the algorithm.

3. Proposing method

The following is a formal definition of the problem. Let I
= {i1, i2, ..., in} be a set of items that are consisted of
attribute-value pairs with attributes of an interested
functional dependency in a relation R. Each tuple in R has
a unique primary key. For an itemset X ⊂ I,

Support_Number(X) = the number of tuples in R

containing X.

An association rule is an implication of the form Y => Z
where each Y and Z has different attributes, Y ⊂ I, Z ⊂ I,
and Y ∩ Z ≠ φ. The consistency of stored attribute values
in a relation is represented with confidences of found
association rules. The confidence C% of the association
rule Y => Z implies that among all the tuples which
contain itemset Y, C% of them also contains itemset Z. So,
the confidence of a association rule Y => Z is computed as
the ratio:

Support_Number(Y ∧ Z)/Support_Number(Y).

Note that Y ∧ Z means items in a tuple. If there is a
functional dependency between attributes of Y and Z, the
confidence value should be 100%. On the other hand,
even though there is a functional dependency between
attributes of Y and Z, if the confidence of association rule
Y => Z is less than 100%, then there should be
inconsistency in data. For example, if there is a functional
dependency between attributes A and B, and there are two
tuples where one tuple has values A=a1, B=b1, and the
other tuple has values A=a1, B=b2, then the confidence for
rule A=a1 => B=b1 or A=a1 => B=b2 is 50% and data is in
inconsistency.

The functional dependencies we want to check has the
property that each right and left hand side of the functional
dependency consists of one attribute. If some functional
dependencies have several attributes in their right hand
side, we need to separate the attributes of the right hand
side one by one. But, the separation doesn’t matter,
because we can always decompose the right hand side by
Armstrong’s axiom [10]. For example, the functional
dependency A→{B, C} is equivalent to functional
dependencies A→B and A→ C.

If each attribute in left hand side and right hand side has k
and q number of values, the possible number of rules is kq.
So, if k and q are large numbers, the resulting combination
of attribute values will be very large also. For example, if
k and q are 30, then the possible combination is 900 so
that manual inspection will be very difficult.

To find inconsistent data in a given relation we apply the
following steps for each user-selected functional
dependencies in the relation.

(i) Select a functional dependency (FD) for data
inconsistency check.

(ii) Run association rule algorithm for the attributes
in the given FD with the parameter of minimum
support number of 1.

(iii) Generate rules for the right hand side of the FD.
(iv) Find inconsistent data with association rule with

confidence less than 100%.

Note that in (ii) we apply association rule finding
algorithm in limited way so that the computing time to
find frequent patterns with very small value of minimum
support number, 1, cannot cause any significant
computing time. We adapt a hash-table based association
rule finding algorithm like DHP, because the algorithm
can generate short association rules with length two very
fast compared to other association rule finding algorithms.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

169

Moreover, in (iii) because we generate rules with fixed
right hand side, the number of rules generated is much less
than conventional association rule generation algorithms.
For example, if the number of attribute values in right
hand side is two, we have only half number of rules than
conventional association rule algorithms.

4. Experimentation

An experiment was run using a database in UCI machine
learning repository [11] called 'census-income' to see the
effectiveness of the method. In the original data the
number of instances for training is 199,523 in size of
99MB data file. Class probabilities for label -50000 and
50000+ are 93.8% and 6.2% respectively. The database
was selected because it is relatively very large and
contains lots of manifest facts. The total number of
attributes is 41. Among them eight attributes are
continuous attributes. We selected two attributes among
the 41 attributes for the experiment. We assumed that a
functional dependency exists between the selected two
attributes, attribute sex and attribute class. The used
computer is VAIO notebook computer with 512 MB main
memory. It took only a few seconds of computing time.
We found the following rules.

 IF sex = female THEN class = -50000.
(freq=101,321, cf=0.97)

 IF sex = female THEN class = 50000+.
(freq=2,663, cf=0.03)

 IF sex = male THEN class = -50000.
(freq=85,820, cf=0.9)

 IF sex = male THEN class = 50000+.
(freq=9,719, cf=0.1)

In the above rules freq and cf mean frequency and
confidence respectively. If the functional dependency sex
→ class is true, there should be no contradicting data like
the above. Next step will be to correct the inconsistent
data.

5. Conclusions

As computers become very popular nowadays, lots of
databases are constructed and used because of the high
availability of database management systems without
having to pay much to get the systems. So, many
databases are constructed and lots of data are being stored.
But, it is difficult to say all the databases are designed well
to meet the constraints of, so called, the normal forms,
because it is highly possible that some databases or
possibly many databases are not designed with much
consideration about normalization due to the fact that not
all of the designers of the databases are good designers. So,

it is highly possible that some data in the databases are
redundant so that the databases may contain inconsistent
data.

This paper suggests an effect method to find such
inconsistent data based on functional dependencies
between attributes in a relation. We apply an association
rule algorithm with respect to the attribute sets in the
functional dependencies in a limited way to effectively
find out the inconsistent data. We showed by experiment
that it is very effective in finding such inconsistencies.

References
[1] B. Forta, MySQL Crash Course (Sams Teach Yourself in 10

Minutes), Sams, 2005.
[2] J. Viescas, J. Conrad, Microsoft Office Access™ 2007

Inside Out, Microsoft Press, 2007.
[3] R. Rankins, P. Bertucci, C. Gallelli, A.T. Silverstein,

Microsoft® SQL Server 2005 Unleashed, Sams, 2006.
[4] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, A.I.

Verkamo, “Fast Discovery of Association Rules,” In
Advances in Knowledge Discovery and Data Mining, U.M.
Fayyad, G. Piatetsky-Shapiro, P. Smith, R. Uthurusamy
ed., pp.307-328, AAAI Press/The MIT Press, 1996.

[5] J.S. Park, M. Chen, P.S. Yu, “Using a Hash-Based Method
with Transaction Trimming for Mining Association Rules,”
IEEE Transactions on Knowledge and Data Engineering,
vol.9, no.5, pp. 813-825, Sep. 1997.

[6] H. Toivonen, Discovery of Frequent Patterns in Large Data
Collections, phD thesis, Department of Computer Science,
University of Helsinki, Finland, 1996.

[7] J. Han, J. Pei, Y. Yin, “Mining Frequent Patterns without
Candidate Generation,” SIGMOD'00, Dallas, TX, May 2000.

[8] A. Savasere, E. Omiecinski, S. Navathe, An Efficient
Algorithm for Mining Association Rules in Large Databases,
College of Computing, Georgia Institute of Technology,
Technical Report No.: GIT-CC-95-04.

[9] F. Berzal, J. Cubero, D. Sanchez, and J.M. Serrano, “ART:
A Hybrid Classification Model,” Machine Learning, vol.54,
pp.67-92, 2004.

[10] C. J. Date, An Introduction to Database Systems, 8th ed.
Addison-Wesley, pp.338-339, 2004.

[11]] S. Hettich, S.D. Bay, The UCI KDD archive, Technical
Report, University of California, Irvine, Department of
Information and Computer Science, 1999.

 Hyontai Sug received the B.S.
degree in Computer Science and Statistics
from Pusan National University, M.S.
degree in Computer Science from Hankuk
University of Foreign Studies, and Ph.D.
degree in Computer and Information
Science and Engineering from University
of Florida in 1983, 1986, and 1998
respectively. During 1986-1992, he
worked for Agency of Defense

Development as a researcher, and during 1999-2001, he was a
full-time lecturer of Pusan University of Foreign Studies. He is
now with Dongseo University as an associate professor since
2001.

