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Summary 
The purpose of this paper is to demonstrate the Sample Space 
Algorithm that can be used to monitor the QoS and, while 
monitoring, detect the occurrence of failures in wireless and 
wireline communication systems. The algorithm is based in the 
analyzes of data stored in Call Detail Records. Each time a call is 
made in a voice system, VoIP or PSTN, a detailed record is 
generated. Detail Records are tickets whose data provide 
information related to the system elements involved, such as time 
and duration of the call, phone types and numbers, SS7 signaling, 
etc. The tickets are generated and stored either in PSTN switches 
or in VoIP gateways. For VoIP systems the detail records are 
usually called IPDR (Internet Protocol Detail Record). The 
algorithm was tested using data from real voice communication 
systems, in this case, a Brazilian cellular communication 
company. We Applied the algorithm to detect failures in four 
Base Transceiver Stations that uses the CDMA technology. So, 
our main goal here is to show, analyze and classify this algorithm 
according to its performance and use. 
Key words: 
QoS Monitoring, Performance Evaluation, Call Detail Records, 
Management Systems, Failure Detection. 

Introduction 

In the analysis and production of information performed 
by Telecom companies we often see a rather technical and 
immediate approach, frequently disregarding important 
information collected and stored in the 
Telecommunications Management Databases. An 
important example of such occurrence can be found when 
we analyze the use of Call Detail Record. Currently, their 
only function in Telecom Companies is dispose 
information to the billing system. CDRs are tickets whose 
data provide many information related to the call, such as 
time and duration, phone types and numbers, SS7 
signaling, etc. The tickets are generated either in the PSTN 
switches or in VoIP gateways, in the case of Internet 
Protocol Detail Record, IPDRs.  
The objective of this paper is to analyze an algorithm that 
can be used for monitoring the QoS and, in this process, 
detect failures in wireless systems (voice communication 
systems). It is based on a new approach to where the 
information contained in CDR is subjected to several 
treatments and analysis. For CDR we mean the Call Detail 
Records [1], for conventional networks, or the Internet 
Protocol Detail Record [2][3], for VoIP networks.   

There are basically no conceptual differences between 
CDR and IPDR, therefore, the algorithm can be equally 
applied to both cases. Detail records have a complete 
range of information that contains the entire history of a 
call.  It is unlikely that the information contained in the 
detail records can be found anywhere else on the 
telephone network. Some examples of information that a 
detail record contains are: switch’s name and point code, 
in/out voice trunks, in/out voice time slots, origin and 
terminal BTS (base transceiver station) number, origin and 
terminal RF channels (Radio Frequency), switch 
peripheral components (through where the call passes 
inside the switch), calling and called phone numbers, 
serial phone number, dialed number, transferred number, 
phone features, starting and ending conversation time, call 
duration, signaling duration time, SS7 signaling 
information, internal call transit, type of response for the 
call, what happened to the call, etc.  The majority of the 
elements contained in detail records can be monitored in 
order to detect failures.  
Another characteristic of the detail records is reliability. 
This allows us to work with the detailed information 
contained in the CDR to perform critical tasks with large 
confidence in the results. In a broader view, we can 
consider the possibility of using CDR to perform from 
simple tasks like traffic monitoring [4][5] to complex ones, 
like the analysis of social and economic aspects of the 
system [6].  Such analysis can be performed once each call 
received or originated from the system has a 
correspondent detail record, making it possible to analyze 
the behavior of each user/element in the network. 
Therefore, the use of detail records, along with the 
algorithms presented here, can help decrease economic 
losses as well as lower complaints associated to a deficient 
Quality of Service [7].  
There is only a handful of publications available about 
CDRs and IPDRs.  Since the CDR and IPDR carry very 
strategic information for the operators and suppliers, it is 
understandable the reason why Telecom companies 
choose to restrict the information associated to it. There 
are some works developed for the use of CDR in Fraud 
Detection [8][9]. In these works, information is extracted 
from CDR and used to build up customer profiles. Other 
works that use CDR are related to data mining [10][11]. 
As far as we know, there are no publications using detail 
records to monitor the QoS and, consequently, no ways to 
detect failures in communications systems. 
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The remainder of this paper is organized as follows: in 
section 2, we describe detail records classification; in 
section 3, the Sample Space Algorithm is introduced and 
its performance is analyzed; finally, in section 4, we 
present the conclusions of this work. 

2. Records Classification 

The classification of a detail record, which we call event, is a 
representation of what happened in a specific telephone call. 
It’s much like attributing a badge or label to each possible 
detail record.  For instance, if a call were successfully 
concluded, in which user “A” spoke to user “B” and the call 
was finalized by any of the users, we would have an OK call. 
It means that all detail records that represent an OK call will 
receive a label “OK”. This classification is necessary in order 
to identify the system behavior in all of its range and paths 
where the call has been through.  

Some examples of classification:  

• CDMA Carrier Loss (CL); 
• CDMA RF channel dropped (RFD); 
• CDMA RF Channel Congestion (RFCC); 
• Bad Peripheral Component (BPC); 
• Bad Trunk (BT); 
• Trunk Congestion (TC); 
• User B does not answer (UA); 
• User B busy (UB); 
• Technical failure (TF); 
• Incorrect Dialing (ID); 
• Call OK (OK); 
• Etc. 

In some switches it is possible to classify a detail record in 
approximately 300 different ways according the call 
termination, this classification can be considered a highly 
detailed. As the classification increases more precise will 
be the detection and the diagnosis of the failure. On the 
other hand, a highly detailed classification will generate an 
additional work to create the table of events and their 
related data.  
Figure 2.1 describes the hole process to obtain the results. 
In our case the results are the alarms represented by the 
failure detection.  
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Figure 2.1  The hole process. 

3. Algorithm 

We are going to use the algorithm for the monitoring of 
the different resources in a wireless communication 
system. By resource, we refer to all the elements in the 
system, both logical and physical. A physical resource, as 
the name says, is related to a physical component of the 
system, such as: 
• Switch name; 
• Base Transceiver Station number; 
• RF channel number; 
• Base Station Controller number; 
• Home Location Register id; 
• Visitor Location Register id; 
• Calling phone number; 
• Called phone Number; 
• Internal peripheral number; 
• Internal sub-peripheral number; 
• Incoming trunk; 
• Incoming time slot; 
• Outgoing trunk; 
• Outgoing time slot; 
• Etc.  
A logical resource is a definition, such as: 
• Country and area codes in the call direction 

monitoring; 
• Switch software components; 
• Translation tables; 
• Etc.  
The information about the resources are contained in the 
detail records. By monitoring these resources, we aim at 
following the behavior of all the events associated to that 
specific resource. A resource fails when one or more 
events associated to this resource fails. It means that when 
we are monitoring a resource in fact we are monitoring the 
QoS of each event related to that resource. In a general 
way, the QoS term is related with the reliability of the 
resources, but it can have a different meaning depending 
the resource that is being monitored.  
Following, we present the algorithm called Sample Space  
Algorithm which can be used to detect failures using 
CDRs contained in database of telecommunication 
management systems of Telecom companies. 

3.1 Sample Space Algorithm 

The Sample Space Algorithm was developed based on two 
probability distributions: Binomial and Normal [12][13]. 
To explain this, we will start to model the events of the 
system as random variables. For example, let X be a 
random variable that represents an specific event in a 
Bernoulli experiment. The Sample Space of X can take 
two values 
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where the value X = 1 represents the occurrence of a 
specific event and 0 the occurrence of any other event. 
Let’s also assume that the probability of  X = 1 is equal to 
p.  
The equation that express the Binomial distribution is 
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where n is the quantity of elements that will be analyzed or 
the size of the sample. This algorithm is not real time 
because it is necessary to wait until the sample is filled out 
to start the analysis.  
We should also apply the equations above to assure that 
false positive alarms are restricted inside a margin of one 
in one million alarms. A false positive alarm that one that 
in the truth does not exist, there are no real problems.  
Table 3.1 and Table 3.2 can assist us in understanding 
how to use this margin.  To create Table 3.1 we use (2), n 
= 50, p = 0.017 or quality level of 1.7%. To create Table 
3.2 we use (2), n = 400, p = 0.017 or quality level of 1.7%. 
On the first column we have the possible elements )(β  of 
the sample. On the second column we have the probability 
of Binomial Distribution, )( β=XP , which represents the 
probability that in a group with n elements there’s a 
quantity β  of a specific event. The column )( β≤XP is 
the Cumulative Distribution Function, which represents 
the probability that in a group of n elements there are 1 or 
2 or 3 or, …, β of a specific event. Therefore, its values 
can be obtained from 
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On the fourth column we have the values for the following 
equation 
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This function represents the probability that in a group of 
n elements there are 1+β  or 2+β  or ,..., ∞  of a specific 
event.  
The procedure to assure a limit to false positive alarms can 
be implemented as follows. Once we have a Binomial 
Distribution with n elements and the probability of an 
event occurrence is p, we look for the satisfactory element 
on Table I which satisfy the following equation 
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This condition assures that the false positive alarms will be 
maintained within restricted limits, i.e., one in a million. In 
Table 3.1 and Table 3.2 the β values that satisfies the 
condition (5) are 8 and 22 elements, respectively. 
 
 

3.2 Experiment 

The algorithm’s performance was tested using data from 
real voice communication systems, in this case, a Brazilian 
cellular communication company. This company has 5 
million customers approximately and uses CDMA 
technology.   
We applied the algorithm to analyze failures of various 
resources of the system, such as, Base Transceiver Station, 
RF channels, time slots, specific peripheral controllers, etc. 
The results shown in Figure 3.1 and Figure 3.2 synthesize 
the behavior of a Base Transceiver Station (BTS) of a 
cellular system with high traffic density.   

The algorithm behavior was tested over different quality 
levels or probability p, which assumed the values 1%, 

Table 3.1: Sample Curve (Window’ size of  50 elements) 
Beta P(X=k) P(X<=k) P(X>k)

0 4,24303E-01 4,24303E-01 5,75697E-01
1 3,66895E-01 7,91197E-01 2,08803E-01
2 1,55454E-01 9,46652E-01 5,33483E-02
3 4,30148E-02 9,89667E-01 1,03335E-02
4 8,74081E-03 9,98407E-01 1,59267E-03
5 1,39070E-03 9,99798E-01 2,01971E-04
6 1,80381E-04 9,99978E-01 2,15893E-05
7 1,96084E-05 9,99998E-01 1,98093E-06
8 1,82270E-06 1,00000E+00 1,58227E-07
9 1,47102E-07 1,00000E+00 1,11251E-08

10 1,04303E-08 1,00000E+00 6,94754E-10  

Table 3.2: Sample Curve (Window’ size of  400 elements) 
 Beta P(X=k) P(X<=k) P(X>k)

0 1,05053E-03 1,05053E-03 9,98949E-01
1 7,26712E-03 8,31765E-03 9,91682E-01
2 2,50727E-02 3,33903E-02 9,66610E-01
3 5,75252E-02 9,09155E-02 9,09084E-01
4 9,87379E-02 1,89653E-01 8,10347E-01
5 1,35240E-01 3,24893E-01 6,75107E-01
6 1,53973E-01 4,78867E-01 5,21133E-01
7 1,49879E-01 6,28745E-01 3,71255E-01
8 1,27332E-01 7,56077E-01 2,43923E-01
9 9,59127E-02 8,51990E-01 1,48010E-01

10 6,48557E-02 9,16846E-01 8,31544E-02
11 3,97664E-02 9,56612E-01 4,33880E-02
12 2,22936E-02 9,78906E-01 2,10944E-02
13 1,15070E-02 9,90413E-01 9,58740E-03
14 5,50100E-03 9,95914E-01 4,08640E-03
15 2,44812E-03 9,98362E-01 1,63828E-03
16 1,01875E-03 9,99380E-01 6,19524E-04
17 3,97967E-04 9,99778E-01 2,21557E-04
18 1,46443E-04 9,99925E-01 7,51139E-05
19 5,09183E-05 9,99976E-01 2,41956E-05
20 1,67751E-05 9,99993E-01 7,42053E-06
21 5,24957E-06 9,99998E-01 2,17096E-06
22 1,56400E-06 9,99999E-01 6,06959E-07
23 4,44524E-07 1,00000E+00 1,62435E-07
24 1,20759E-07 1,00000E+00 4,16752E-08
25 3,14097E-08 1,00000E+00 1,02655E-08
26 7,83461E-09 1,00000E+00 2,43092E-09  
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2%, 5%, 12%, 22%, 32%, 42%, 52%, 62% and 72% . For 
each level we find, by using formula (5), a number for 
detection of failure for that specific event. The quality 
level or probability p is used here as the Acceptance 
Quality Level (AQL). 
The method adopted in the fault detection was to degrade 
the QoS of the BTS through random generation of 
problems in the RF channels. The troubleshooting was 
generated in a cumulative form, which means, a RF 
channel with a normal behavior starts to behave irregularly, 
presenting problems. In a second instant another channel 
starts to present the same failure and so on successively. 
As more channels present problems the QoS degrades. 
Each time the QoS degrades the algorithm is applied in 
order to detect any anomalies, failures.  
The detection of this type of failure is complex, 
considering that the generation of these problems is purely 
random. It will be easier and faster to detect it if there is 
some order in the degradation of resources. An order 
presumes smaller entropy or a greater amount of 
information than just purely random occurrences. 

3.3 Results 

In Figure 3.1 we have the algorithm’s performance on a 
sample of 50 elements. Figure 3.2 illustrates the 
performance on a sample of 400 elements. Comparing 
both pictures it is evident that increasing the sample’s size 
decreases the level of degradation of the QoS to detect the 
failure, as well as the lower pattern deviation, meaning 
that the algorithm becomes more precise.  
An important conclusion from these results is that the 
Sample Space Algorithm can be used to detect a great 
variety of problems, since problems of low impact to 
problems of high impact. This can be done using a variety 
of samples sizes. Once using different sizes a 
complementary detection is done, embracing all sorts of 
different behaviors. 
Another important variable that should be measured is the 
amount of time needed to detect the fault. Figures 3.3 and 
Figure 3.4 shows that the algorithm’s behavior related to 
time detection varies with the quality level as well as the 
QoS degradation level. Figure 3.3 represents a BTS 
behavior with quality level or p equals to 4% and with a 
degradation of 5.9%, 11.9%, 17.8%, 23.8%, 29.8%, 35.7% 
respectively, and the sample size equals to 50 elements. 
Figure 3.4 represents a BTS behavior with quality level or 
p equals to 4% and with a degradation of 5.9%, 8.9% 
respectively, and the sample size equals to 400 elements. 
The horizontal axes represents the time in which the failure 
was detected and the vertical axes the amount of times in 
which the failure was detected in the total of 4,000 
experiments. 
 Inspecting the four graphs in Figure 3.3 and the two 
graphs in Figure 3.4 we can conclude that larger sizes of 

the sample means larger sensitivity and smaller behavior 
dispersion, i.e., the results are more precise.  However, the 
larger the sample the longer the detection time will be. On 
the other hand, smaller samples mean smaller sensitivity 
and larger behavior dispersion, i.e., less precision. The 
advantage of a smaller window is that the detection time 
also decreases.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1 Response related to resource degradation (50 elements). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.2 Response related to resource degradation (400 elements). 
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Fig. 3.3 Detection time related to resource degradation (50 elements). 
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Fig. 3.4 Detection time related to resource degradation (400 elements). 

4. Conclusions 

Throughout this work we observe the development and 
behavior of Sample Space Algorithm. As we mention 
before the Sample Space Algorithm can be used to detect a 
great variety of problems, since problems of low impact to 
problems of high impact. This can be done using a variety 
of samples sizes. Larger sizes of the sample means larger 
sensitivity and smaller behavior dispersion, i.e., the results 
are more precise.  However, a larger sample’s size also 
means longer waiting time for filling it out and only then 
analyzing the data to detect the failures. On the other hand, 
smaller samples mean smaller sensitivity and larger 
behavior dispersion, i.e., less precision, but smaller 
samples also means decrease the detection time.  
As future work we intend to construct others algorithms. 
Currently we are developing algorithms based on Neural 
Networks. This new algorithm will work along with 
Sample Space Algorithm.  
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