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Summary 
This paper examines the extension of constructive library-
aware logic synthesis to the physical placement stage of 
integrated circuit design. Constructive logic synthesis 
differs from traditional synthesis approaches in that it 
builds a circuit netlist incrementally starting from the 
primary inputs and proceeding towards the primary 
outputs. In each iteration of this procedure, the semantic 
structure of the unsynthesized logic functions is utilized to 
identify and extract a small subcircuit that consists of 
library primitives reflecting that structure. The algorithm 
interleaves the steps of technology-independent 
decomposition and technology-dependent mapping into 
library cells in a way that mitigates its greedy nature. 
Conjecturing that adding a placement step to this 
methodology would further improve synthesis quality we 
developed a system which synthesizes circuits by 
incremental decomposition, mapping, and placement. We 
describe the algorithms used in this system and analyze the 
quality of the designs it generates under a variety of 
options for decomposition and placement. The empirical 
results we obtained, however, suggest that adding a 
placement step to constructive synthesis produces no 
noticeable improvement in design quality. This strongly 
suggests that our original conjecture is false, and we 
examine possible reasons for such a negative result. 
 
Key words: 
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1. Introduction 

In the traditional design flow of Very Large Scale 
Integration (VLSI) chips, the design process is serialized 
into a sequence of manageable steps of high level 
synthesis, logic synthesis, technology mapping, physical 
placement, global routing, and detailed routing. Over the 
past decade, the amount of integration onto a single chip, 
especially with the need for interconnecting sub-circuits to 
support networking infrastructure, has rapidly increased. 
Although Deep Submicron (DSM) technologies enable 

greater degrees of semiconductor integration, such 
integration makes the design, verification, and test more 
challenging. While gates are getting smaller and faster, 
designs are more constrained by the delays of the wires 
interconnecting the gates. The routability of a circuit after 
physical placement is another increasing concern. These 
issues often cause each design step to be iterated many 
times before all constraints are met.  
Each design step involves optimizing some objective 
subject to certain constraints such as area, delay, and 
power consumption. In a serialized design flow, 
constraints imposed in earlier steps are often hard to 
satisfy in later steps. Repetition of the design steps does 
not necessarily guarantee that the constraints will be met, 
and there are often very limited chances to fix the problem 
in the later steps of a design in the serialized design 
paradigm.  
In the 1990s, the increasing need for synthesizing larger 
blocks posed new challenges with the designs more 
constrained by the delays of the wires interconnecting the 
gates. There have been several related attempts to 
overcome these challenges by combining logic and layout 
synthesis. These efforts can be broadly divided into local 
netlist transformation, pre-layout prediction, and layout-
driven optimization.  
Local netlist transformation. In [15] [7] [17], local 
transformation approach is applied to a placed netlist after 
initial placement. Critical factors such as critical paths or 
congested regions of the circuit based on the initial 
placement are identified, then re-synthesized and re-placed. 
Liu et al. [15] proposed a technique that combines logic re-
synthesis and linear placement in order to alleviate routing 
congestion in the most congested region of the routing area 
in order to reduce routing density, and accordingly shrink 
the chip height. Kannan et al. [7] begin with a synthesized 
netlist after initial placement and make incremental 
modifications to generate a final netlist and placement that 
meets the timing constraints after place-and-route. This is 
done by applying fanout buffering and gate resizing. The 
gate and wiring delays based on the initial placement are 
computed and used for selecting the most useful 
transformations. Lou et al. [17] iterate grouping cells along 
the critical paths, re-synthesizing and re-placing those cells 
until timing closure is achieved. These approaches work 
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on accurate net length or congestion estimates and apply 
local transformations to preserve the initial placement as 
much as possible; this, however, tends to restrict the 
optimization potential.  
Pre-layout prediction. Pre-layout prediction approaches 
such as [9] [12] [16] [26] do not employ an initial 
placement solution. Rather, logic optimizations are guided 
by heuristics such as distance [9], adhesion [12], mutual 
contraction [16], and fanout range [26], which are used to 
capture the routability of designs. These heuristics are 
applied during logic decomposition to obtain more 
routable designs with no knowledge about actual 
placement. 
Layout-driven optimization. The majority of combining 
logic and layout synthesis is layout-driven optimization as 
appeared in [2] [4] [3] [13] [14] [20] [21] [22]. In these, 
they first create a companion placement of the technology-
independent netlist for a given logic circuit and then use 
physical coordinate information to guide the logic syn-
thesis process. This companion placement can be 
incrementally updated during logic synthesis. This method 
was initiated by Pedram and Bhat in their papers [20] [21] 
on improving timing closure by taking interconnect delays 
into account. Their approach is based on a point placement 
of a Boolean network. The placement solution is 
incrementally updated as intermediate Boolean nodes are 
extracted or eliminated during the decomposition and 
elimination procedures. Kutzschebauch and Stok [14] 
proposed congestion aware algorithms for layout driven 
decomposition and technology mapping to decrease wire 
length and improve congestion. In the decomposition 
algorithm, they include wiring delays based on estimated 
net lengths and geographical locations of the input signals 
in the companion placement. In their technology mapping 
step, the final implementation is chosen by identifying the 
fastest driver pin of each net. They choose the technology-
dependent implementation as the minimum cost function 
subject to a timing constraint, thus they can reduce total 
wire length resulting in less global congestion. Another 
variation of this approach by Gosti [3] observes that the 
wire-load models in conventional logic synthesis 
underestimate the wire length of many nets, especially nets 
connecting a few pins. To address the timing closure 
problem, the technology decomposition and global 
placement steps are performed repeatedly. Placement is 
done using a quadratic programming placement tool, 
which places nets incrementally and spreads overlapping 
cells apart from the center of the placement area. However, 
the final placement of the layout-driven methods ends up 
being considerably different from the initial one, casting 
doubt on the accuracy of wire length estimates based on it. 
Indeed, these approaches did not exhibit much 

improvement in implementation quality beyond that 
achievable by logic synthesis followed by layout synthesis. 
Against these drawbacks, we embarked on yet another 
attempt to combine logic and layout synthesis. The 
Constructive synthesis approach, pioneered in [10] [8] [11], 
interleaves the technology-independent logic 
decomposition and technology mapping steps to more 
directly relate functional structure of a logic specification 
to the ultimate physical structure of its implementations. 
The method employs full Boolean decomposition and 
takes functional symmetries into account decomposition to 
tackle the problem of serialization in the circuit design 
process. For small synthesis problems, this approach 
produced superior netlist implementations with acceptable 
run times. More recently, Mishchenko et al. [19] proposed 
a new enhanced constructive algorithm which pre-
computes the gate library in the form of supergates, and 
considers all support-reducing decompositions for a set of 
variables.    
Noting the success of constructive library-aware logic 
synthesis in significantly improving the quality of netlist 
implementations, we conjecture that adding an incremental 
placement phase can only yield further improvement. The 
principal difference between our approach and previous 
approaches is that our synthesis flow is constructive and 
incremental. By interleaving functional decomposition and 
technology mapping, the constructive synthesis algorithm 
is able to uncover the natural “structure” of the logic 
functions being synthesized yielding much better netlist 
implementations than is possible by serializing these two 
phases. We reason that incrementally placing the gates as 
they are extracted from the yet-to-be decomposed logic 
would provide more accurate area and delay estimates that 
can inform future decomposition choices. Intuitively, we 
hypothesize such an enhancement can improve imple-
mentation quality further.  
Figure 1 shows the design flow of the traditional approach 
and our constructive approach. Compared to Gosti’s work 
[3], our design flow achieves a much tighter coupling 
between the logic synthesis and placement steps, and is 
aware of the technology library at the decomposition step. 
However, the implementation quality by this approach did 
not surpass that of traditional approach. This paper, thus, 
describes our attempt for testing this conjecture, and 
discusses the experimental results we obtained.  
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Fig. 1. Traditional design flow (left) vs. constructive design flow (right) 

The remainder of this paper is organized as follows. 
Section 2 describes notations used in this paper. Section 3 
describes the concept of the constructive logic and layout 
synthesis design approach, which extends the idea of 
constructive logic synthesis to the physical layout phase. 
This section describes a prototype implementation of this 
approach with a simple placement algorithm and delay 
model. In section 4, we explore the search space of the 
constructive logic and layout synthesis approach by trying 
another placement algorithm and delay model. In section 5, 
we examine possible reasons for the negative result and 
section 6 concludes this paper with its contributions and 
new directions for future work. 

2.  Notation and Preliminaries 

An n -input Boolean function 1( , , )nf x xK  or ( )f X  is 

defined as a mapping : nf B B→  where B  is commonly 
restricted to the two-element set {0,1}B = . Each element 
in the domain nB  is a minterm of f . Support, whose size 
is denoted by X  or n, is the set of variables to the 
function f . A multiple-output function is defined as a 
vector of functions : n mF B B→ . 
Multilevel synthesis can be viewed as a process of 
successive decompositions. Any Boolean function f  can 
be expressed by the following decomposition template: 

( )f X = 1( ( ), , ( ))kh g X g XK    
    
where 1, , kg gK  and h  are referred to the decomposition 
functions, and the composition function, respectively. This 
decomposition template encompasses all types of function 
decomposition. In particular, the Ashenhurst 

decomposition expresses the function f  by the following 
template:  

( )f X = 1 1 1 2( ( ), , ( ), )kh g X g X XK    
   
where 1X  and 2X  are called the bound set and free set, 
respectively.  
In particular, support-reducing decomposition [8] requires 
the composition function h  to depend on fewer variables 
than the original function ( )f X . Support-reducing 
decomposition is based on the decomposition template 
along with the restriction k s<  where 1s X= . Support-
reducing decomposition is not necessarily a disjoint 
decomposition in which the two subsets of the support 1X  

and 2X  are disjoint. This is because iy , where 1 i k≤ ≤ , 
can be an identity function. In this paper, our scope is 
restricted to finding a support-reducing decomposition 
among many choices.  
 

3. Constructive Logic and Layout Synthesis 
Approach  

This section describes the constructive logic and layout 
synthesis algorithm and shows the experimental results of 
designs synthesized by this algorithm.  

3.1 Motivating Example  

Consider a small circuit of 12-bit parity to illustrate the 
idea of constructive logic and layout synthesis. The circuit 
is incrementally synthesized by repeatedly applying the 
steps of logic synthesis, technology mapping, and physical 
placement in a single step with 3-bit XOR and 2-bit XOR 
library primitives as its building blocks. When the circuit 
is decomposed in the constructive design flow, two types 
of information are available; logical and physical. Logical 
or non-physical type indicates information available 
without physical layout. This type of information includes 
functional symmetry, BDD size, logic level, area, and gate 
delay. Physical type information is provided from the 
physical placement, which includes wire-length, 
interconnection delay, I/O pin location, and cell 
coordinates.  
Figure 2 shows the result of constructive synthesis of this 
circuit only using logical information. In this case, 
functional symmetry and logic level are used to select the 
support in performing support-reducing decomposition. 
Note that all variables are functionally symmetric in the 
parity circuit, and that any three variables chosen as 
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decomposition support are mapped to a 3-bit XOR gate. If 
there are more than one candidates evaluated as the highest 
in logical information, a “random” choice will be made. In 
the final circuit placed, there are 20 cells including 
primary input/output pins, and 19 nets.  
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Fig. 2. Mapped (above) and placed netlist (below) of 12-bit parity circuit 
by constructive synthesis using logical information 

In contrast to Figure 2, Figure 3 shows the result of 
constructive synthesis of the same circuit using physical 
information as well as logical information to select the 
support in decomposition. When a set of variables is to be 
selected for the support and there exist more than one 
candidate evaluated the highest in the logical information, 
cell coordinates are used to break the ties. Among the 
candidates, we select a group of cells that are the most 
closely located, assuming that origins of each cell are used 
for pin locations and cell coordinates as well. Initially, all 
inputs are functionally symmetric and have the same 
number of logic levels. Among those inputs, four groups 
of inputs are the most closely located to each other within 
the group; {a, b, c}, {d, e, f}, {g, h, i}, and {j, k, l}. By 
utilizing cell coordinates at each selection, we obtain the 
final circuit having 20 cells and 19 nets, which are the 
same numbers as in Figure 2.   

 

Fig. 3. Mapped (above) and placed netlist (below) of 12-bit parity circuit 
by constructive synthesis using physical information 

However, if we compare half-perimeter wire-length 
(HPWL), which is the sum of half the perimeter of all 
bounding boxes of each net, to estimate the length of all 
interconnects, we notice that HPWL of Figure 3.8 is 428.5 
and HPWL of Figure 3.15 is 395.5, which shows an 
improvement of 8%. 
We apply the same technique to 32-bit and 64-bit parity 
circuits. In Figure 4, HPWL of the 32-bit parity circuit 
placed using logical information is 1282 whereas that 
using physical information is 1016, which has been 
improved by 21%. Moreover, HPWL of the 64-bit circuit 
placed using physical information, shown in Figure 5, has 
been improved by 38% over the result using logical 
information only. 
From this observation, we conjecture that information 
gathered from the physical placement during constructive 
synthesis would be more beneficial to the final placement 
as the circuit size grows bigger. However, logic 
decomposition in the parity case was not a true meaning of 
decomposition, but a simple replacement with XOR gates. 
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Fig. 4. Constructive synthesis of 32-bit parity using logical 

information (above) vs. using physical information (below) 

 
Fig. 5. Constructive synthesis of 64-bit parity using logical 

information (above) vs. using physical information (below)  

3.2 Constructive Logic and Layout Synthesis 
Algorithm 

In order to generalize this idea and test it, we modify the 
constructive logic decomposition algorithm as follows. 
Our objective is to minimize the delay of the critical path 

in the final mapped and placed netlist, including the 
interconnect delay. We assume the Elmore delay model 
[24] for the placed network. Our logic synthesis and 
technology mapping algorithm extends the constructive 
synthesis algorithm M31 [10] with the enhanced features 
of CDM [19] and bi-decomposition [18], a complete 
decomposition template. In our constructive synthesis and 
placement algorithm called ‘COLOSSEUM’, a circuit is 
synthesized incrementally in a single sweep by repeatedly 
applying the following steps: 
 
 

Fig. 6. Constructive logic and layout synthesis flow (Appendix 1) 

1) Node selection: choose an unimplemented logic node 
to decompose ( 1F  in Figure 6(a))  

2) Support selection: choose a set of fanin variables 
from the selected node's support (three input pins 
shown in bold in Figure 6(a))  

3) Decomposition: choose a set of technology-
dependent primitives (library cells) and introduce 
them as gates into the evolving network (NAND and 
XOR logic gates shown in Figure 6(b))  

4) Physical placement: place the primitives chosen in 
step 3 in the layout plane and compute their 
coordinates (Two rectangles NAND and XOR2 in 
Figure 6(b))  

5) Logic re-expression: re-express the forward unimple-
mented logic in terms of the newly-introduced gates 
( 1F  with fanins of logic gates NAND and XOR in 
Figure 6(b))  

The synthesis algorithm terminates when the network does 
not contain any unimplemented nodes. The final mapped 
and placed cells are shown in Figure 6(c). As a 
preprocessing step, we first compute supergates [19] and 
sort them according to the criteria sought, delay in this 
case. Initially, primary input pins are assumed to be 
located on the left border of the layout and primary output 
pins are assumed to be located on the right. Starting from 
an empty network and an empty placement, a node to 
decompose is chosen. Among the inputs of the chosen 
node, a set of inputs is selected for decomposition based 
on heuristics considering layout information. As the 
synthesis proceeds, actual physical information can be 
utilized. Different heuristics can be used in this support 
selection step, such as selecting inputs with minimum 
estimated delay or selecting inputs with the smallest half-
perimeter bounding-box. Once the support is selected, the 
sorted supergate table is incrementally scanned to find a 
support-reducing decomposition. If such decomposition is 
not found, a bi-decomposition solution is attempted. In 
either case, the decomposed node is mapped to library 
cells and the optimal bounding box of each library cell is 
computed. Thereafter the cell location is legalized by using 
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the simple Tetris algorithm [5], i.e., scanning leftmost 
legal site of each row from top to bottom and selecting a 
site with a minimum cost. Once the cells are placed, the 
logic of the chosen node is re-expressed in terms of the 
new nodes and the netlist is updated accordingly. In steps 
1 and 2, physical as well as logical information can be 
used to guide the selection. Those heuristics are discussed 
in Section 3.5. The pseudo-code of the constructive design 
flow is shown in Figure 7. The layout information used is 
shown in bold in the pseudo-code. 
 

 
Colosseum (function F, library { if }) { 

 N = empty network; 
 P = empty placement; 

 while (F∉{ if }){ 

 function f = Select_Node(F, P); 
 X = Select_BoundSet(f, P); 

 { ig } = DecompositionFtn(f, X, { if }); 

 if({ ig } == ∅ ) 

  { ig } = BiDecompose(f, X, { if }); 

 Place_Node({ ig }, P); 

 h = CompositionFtn(f, X, { ig }); 

 AddToNetwork(N, { ig }); 

 f = h; 
 } 
 AddToNetwork(N, f); 
 return N; 

} 

Place_Node({ ig }, P) { 

  { ic }= Add_NewNode({ ig }, P); 

Compute_Optimal_BoundingBox({ ic }, P);  

Legalize_Node({ ic }, P);  

} 

Fig. 7. Constructive logic and layout synthesis algorithm 

3.3 Delay Model 

We model the delay of a path as the sum of the gate delays 
and the sum of the net delays on the path. Gate delays 
account for the “fixed” portion of a gate’s delay, excluding 
the effect of fanout loads. Fanout contribution to delay is 
captured by the net delays using the Elmore delay model 
[24].  
As the actual wiring paths are not known at the time of 
decomposition and placement (the algorithm does not per-
form detailed routing), a net model is needed to model the 
topology of the interconnection nets and to estimate the net 
delays. To estimate the optimal wiring paths for a net, 
rectilinear Steiner trees can be used. Considering the NP-
completeness of the Steiner tree problem, we use, instead, 

the simpler-to-compute half-perimeter wire-length 
(HPWL): 

all nets

( -span -span)HPWL x y= +∑ , where 

 1 1-span max( , , ) min( , , )n nx x x x x= −K K  
HPWL is known to estimate the minimum Steiner tree 
exactly for 2- and 3-pin nets, and is considered a 
reasonable estimate for 4-pin nets. From the net model, a 
corresponding electrical model can be derived and used for 
net delay estimation.  
The electrical model consists of the output resistance of 
the source sR , the output capacitance of the source sC , 

the branch resistance 
kl

R  of the destination sink k, a net 

capacitance netC , a load capacitance 
iLC  of each sink i. 

Let  xl  and yl  denote the lengths of the x-span and y-span, 

and let  
kxl  and 

kyl  be the distances between the source 
and the destination sink in the x- and y- directions, 
respectively. Then the resistance  

kl
R  and capacitance 

kl
C  of the net are computed as follows: 

k k kl x x y yR r l r l= ⋅ + ⋅  

k k kl x x y yC c l c l= ⋅ + ⋅  

where xr , yr , xc , and yc  denote the resistances and 
capacitances per unit length in the x- and y- directions, 
respectively. The net capacitance is defined as  

net x x y yC c l c l= ⋅ + ⋅  
and the Elmore net delay from the source pin to the sink 
pin k is computed from: 

net net all sinks
( ) ( )

i k kS S L k l LD R C C C R C C= ⋅ + + + ⋅ +∑  

During decomposition and placement, we maintain signal 
arrival times at the circuit nodes. An arrival time of zero is 
assigned to all primary inputs and the arrival times of all 
other pins are computed by traversing the network starting 
from the primary inputs towards the primary outputs 
recursively. The network is not complete during synthesis, 
however, and we need to approximate the interconnection 
and node delays of intermediate nodes. During 
constructive decomposition and placement, each node 
generated up to the point is dealt as the final netlist and the 
delay is computed each time in a greedy manner. Although 
this delay might not be accurate in the final netlist, this 
heuristic is chosen as to avoid selecting a critical part as a 
decomposition node or a decomposition support. 
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3.4 Constructive Placement Algorithm 

In the constructive decomposition and placement flow, a 
cell that needs to be placed as a new node is created and a 
corresponding library cell is mapped. Our constructive 
placement algorithm consists of two phases: optimal 
location computation and legalization. 
Optimal Location Computation. After a new node is 
extracted and mapped to a library cell, an optimal location 
of the mapped cell is computed for placement. This 
location may overlap other previously-placed cells and 
must be subsequently legalized during detailed placement. 
We are given a single movable cell which is newly 
mapped and a set of fixed cells connected to the movable 
cell. We seek a placement of the movable cell such that the 
bounding-box half-perimeter of all signal nets is 
minimized. This essentially reduces to two independent 
one-dimensional optimization problems that seek to 
minimize a) the total x-span, and b) the total y-span of all 
nets. All x-coordinates of cells must be placed on integer 
sites and y-coordinates must be placed on integer rows. 
The position of a cell iC  is defined as the x-coordinate of 
the left edge of the cell and the y-coordinate of the bottom 
edge of the cell. Hereafter we will consider x-coordinates 
only. We assume all pin positions to be the same as the 
cell position. We use the following notations: 
• The position of the leftmost (respectively, rightmost) 

fixed pin of net N is denoted by ( )L N  (respectively, 
( )R N ). 

• The position of the movable pin of net N is denoted by 
( )M N . 

The cell cost function cost ( )i x  of a movable cell for a 
given position is 

1 1
cost ( ) max( ( ) ( ),0) max( ( ) ( ),0)m m

i j j j jj j
x M N R N L N M N

= =
= − + −∑ ∑

 
We compute the optimal bounding-box that minimizes the 
cost function as follows. Create a sorted list of ( )L N  and 

( )R N  of all m nets. Since the cell cost function is 
piecewise linear and convex [6], the optimal location is the 
interval of the two middle points in the sorted list. By 
computing the interval for y-coordinates, we obtain an 
optimal bounding-box with minimum cost. This bounding-
box is not always valid, thus need to be legalized. 
Legalization. The global placer described in above 
attempts to improve the quality of the integrated circuit 
design by minimizing the wire lengths between connected 
cells. However, the initial bounding-box location 
computed is not always a legal location. In the actual row-
based physical device, cells must be assigned to locations 
that align within a grid of discrete x (called site) and y 
(called row) coordinates without any cell overlaps. In 

general, the detailed placer slightly degrades wire length in 
an effort to find legal cell placements. We have modified 
Hill's Tetris algorithm [5], known to be simple and fast, for 
the detailed placement. 
Our detailed placer works as follows. Cells have the same 
height but have variable width. When the detailed placer is 
invoked, all cells except one movable cell are already 
placed in legal locations. A movable cell is assigned its 
initial optimal bounding box coordinates. For a given cell, 
placement is performed by scanning through the rows of 
the substrate and selecting the leftmost vacant site of each 
row as a candidate site for placement of the given cell. A 
site that does not contain a previously placed cell is called 
vacant. A group of candidate sites is determined because 
each row returns a candidate site. A site that is used as the 
leftmost x-coordinate of the current cell is called the left 
factor and a penalty will be paid if the leftmost vacant site 
of a row is to the left of the left factor. The rightmost x-
coordinate of the current cell fanins can be used as the cell 
left factor. Some candidate sites have high cost if they are 
located to the left of the cell left factor. Other sites might 
be invalid if they are too far to the left of the optimal 
location. Among the candidate sites, a site with the least 
cost is selected for the cell location. The cost function is 
defined as the Manhattan distance between the optimal 
bounding box and the candidate site in each row, 
augmented by left factor penalty if any. Figure 8 
summarizes the pseudo-code of the legalization algorithm. 
 
Legalize (optimal_BBox, new_Cell){ 
   lowestCost = MAX_POSSIBLE; 
 
   for (row = bottom; row < top; row++){ // scan rows  

    candidate_site = row.leftmost_site();     
      if(candidate_site + new_Cell.width() > 
         row.rightmost_site()) 
         continue;                  // cannot fit here 
      currentCost = optimal_BBox.manhattan_distTo(row,  
              candidate_site) + new_Cell.left_factor(); 
 
      if(currentCost < lowestCost){ 
    lowestCost = currentCost;  
    new_Cell.set_coordinate(row,candidate_Site); 
      }  
   }  
   if(lowestCost == MAX_POSSIBLE) 
      not_enough_space(); 
   return; 
}   

Fig. 8. Legalization algorithm 

3.5 Experimental results   

The algorithm described in previous section has been 
implemented in C++ using the BDD package CUDD [25] 
and sub-modules of the placement package Capo 8.8 [1]. 
We conducted our experiments on a 2.2 GHz 2x AMD 
Opteron™ 248 machine with 8GB of RAM running the 
Linux operating system. We modified the mcnc.genlib 
library with parameters of 0.13 micron technologies 
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similar to the TSMC 0.13 technology library. The 
evaluation was performed on the MCNC benchmarks [27]. 
In all experiments, the right-most cell boundary 
coordinates of the fanins are used as the cell left factor. 
 
Table 1 Node selection heuristics (Appendix 2) 
 
In the first experiment, shown in Table 1, we applied 
different node selection heuristics to a set of MCNC 
benchmarks. The purpose of this experiment was to 
quantify the relative benefits of using physical as well as 
functional information in the node selection heuristics 
during logic decomposition. Among all candidate nodes, 
the node chosen next for decomposition was determined 
according to the following six heuristics: 

 
• Most Complex (“MC”): the node with the largest 

BDD of its forward (unimplemented) logic 
• Least Complex (“LC”): the node with the smallest 

BDD of its forward logic 
• Smallest Bounding Box (“BB”): the node with the 

smallest bounding box of its fanins in the layout 
• Least Delay (“DE”): the node whose fanins have the 

least delay (recall that delay is computed with the 
partial netlist as described in Section 3.4.)  

• Least Logic Level (“LL”): the node with the least 
(lowest) logic level 

• Random (“RD”): the node selected randomly 
Using the “MC” heuristic as a baseline, the columns in 
Table 1 show the ratios of area, delay, and HPWL for each 
of the remaining five heuristics compared to “MC”. Note 
that “MC”, “LC”, and “LL” use logical information only, 
whereas “BB” and “DE” utilize physical information. The 
“RD” heuristic selects a random node among the 
candidates. 
Examination of the average improvement over the “MC” 
heuristic (last row of Table 1) we note no particular 
advantage to the use of physical instead of logical 
information in choosing the next node to decompose. 
Furthermore, we note that a random selection seems to be 
no worse than a selection based on logical or physical 
information. 
 
Table 2  Area using different support selection heuristics (Appendix 2) 
 
In the second experiment, shown in Table 2 through Table 
4, we applied different support selection heuristics to the 
same MCNC benchmarks. In the proposed algorithm, once 
a node is selected  for  decomposition,  a  subset  of  its 
input variables should be selected as the decomposition 
support. This experiment compared the relative benefits of 
using different support selection heuristics utilizing 
physical and/or logical information. The shaded cells in 
these tables indicate that bi-decomposition had to be 
invoked after failing to find a support-reducing 
decomposition. In all tables, the column labeled “baseline” 

computes the symmetry group of the selected node and 
selects as many variables as the support size from the 
largest symmetry group. The column labeled “base+” 
shows the “improvement” over the baseline when the 
support is chosen from closely-located pins within the 
same symmetry group or among many symmetry groups 
of smaller sizes. The “mdv” heuristic selects the minimum 
delay variables from the fanin list without utilizing logical 
information. Those three heuristics take computation time 

( )O n  where n is the number of primary input variables. 
Since we did not find any benefit of utilizing physical 
information over purely logical information from the 
experimental results, we attempted a rather expensive 
computation by trying all possible combinations of sizes 3 
and 4 among fanins. In heuristics D through LGH, we try 
to compute information from all combinations of the fanin 
list and select the combination with the best result. We use 
the following notations for logic or physical information 
used to guide the support selection: 
 
Table 3 Delay using different support selection heuristics (Appendix 2) 
 
• “L”: the smallest logic level of the input combination 
• “B”: the number of broken symmetry groups of the 

fanins. A broken symmetry group is a symmetry 
group from which some members are selected and 
some members are not. For example, suppose the 
symmetry groups computed are 1 1 2 3{ , , }G x x x= , 

2 4 5{ , }G x x= , 3 6{ }G x= , and 4 7{ }G x= . If 

1 2 4 5, , ,x x x x  are selected as the support, 1G  is 

broken, but 2G  is not. In this case, B = 1.  
• “G”: the number of symmetry groups selected. In the 

previous example, G = 2.  
• “D”: delay of the primitive cell to be mapped 
• “H”: bounding box half-perimeter of the input 

combination 
• “T”: ready time of the input signal including 

interconnect delay 
 
Table 4 HPWL using different support selection heuristics (Appendix 2) 
 
Note that the “L”, “B”, “G”, and “D” heuristics are based 
on purely logical information whereas the “H” and “T” 
heuristics are based on physical information. Heuristics 
named with more than one letter use the heuristic 
corresponding to the first letter as their main selection 
criterion, and those of subsequent letters to break ties. In 
the tables, column headings are shaded to indicate that 
physical information is utilized. The last column in each 
table shows the result of selecting the support randomly 
and is much worse than any of the other heuristics.  
In this experiment, we do find some cases in which the 
delay is reduced by utilizing physical information. For 
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example, in the case of benchmark x4 heuristic “BH” 
helped achieve a delay that is 85% of the baseline delay. 
However, heuristic “LB” which is based on purely 
functional information was able to achieve a similar result 
(87% of baseline). We conclude, thus, that the use of 
physical information in choosing the support for 
decomposition is not superior to the use of purely logical 
information in this setting of experiment. 
 

4. Exploring the Search Space of Constructive 
Approach  

In previous section, we observed that our choice of delay 
model and placement algorithm did not guide our 
constructive flow appropriately so as to yield more 
“natural” and “efficient” implementations of the function. 
We explore the search space of our constructive logic and 
layout synthesis approach by applying different delay 
models and different placement methods in this section. 

4.1 Delay Models 

The constructive logic and layout synthesis flow is 
independent of the choice of delay model. The delay 
model described in section 3.3 was simple to compute; 
however, the resulting delay estimations can become quite 
inaccurate for placements where wire delays are dominant 
compared with gate delays and for nets with large numbers 
of pins. In this chapter, we use the Elmore delay based on 
the star model proposed for analytical timing-driven 
placement [23]. The main advantage of this model is that it 
enables the calculation of individual delays between the 
source pin and each sink pin of a net.     
To estimate the circuit’s timing behavior, arrival times of 
all primary inputs are assigned to 0 and those of all other 
pins are computed by traversing the netlist staring from the 
primary inputs towards the primary outputs in a breadth-
first-search manner. Tracing back from the primary 
outputs with the largest arrival times to the primary inputs, 
the critical paths of the circuit are identified. This star 
model is assumed for the experimental work in this section.  

4.2 Placement Algorithms 

Our initial attempt at obtaining a legalized placement uses 
the method patented by Hill [5]. This method is a fast and 
simple greedy approach, but may produce results that are 
far from those produced by state-of-the-art standard cell 
placement algorithms such as simulated annealing, 
analytic methods, or partitioning-based placement. If 

interconnect delays dominate gate delays, slight 
modifications in the arrangement of the cells can cause 
large changes in the overall performance of the resulting 
circuit. In order to test the influence of different placement 
algorithms on logic decompositions in the constructive 
design flow, we employ in this chapter the recent 
placement technique Capo [1] which is based on recursive 
multi-level partitioning. 
Consider the small 13-input circuit generated by extracting 
the output named “v” from the MCNC benchmark 
“cu.blif”. Figure 9 shows five different layouts for this 
circuit obtained as follows: 
 

(a) “Baseline”: a layout generated by our 
constructive flow using the “Tetris” placement 
algorithm without placement information 

(b) “Baseline & Capo”: a re-placed layout generated 
by Capo on the result of “Baseline” 

(c) “Base+”: a layout generated by the constructive 
flow and the “Tetris” placement algorithm with 
placement information 

(d) “Base+ & Capo”: a re-placed layout using Capo 
on the result of “Base+”.  

(e) “each-Capo”: a layout generated by the 
constructive flow utilizing the “base+” heuristic 
and by running Capo after each cell created  

 
Fig. 9 Different layouts obtained with the constructive flow and different 
placement options: (a) Baseline (b) Baseline & Capo (c) Base+ (d) Base+ 

& Capo (e) each-Capo (Appendix 1) 
 
The decomposition support selection heuristic “base+” 
discussed in section 3.5 is used in (c), (d), and (e). This 
heuristic is similar to the Candidate cube divisor selection 
method proposed by Kutzschebauch and Stok [14]. As we 
have seen in the parity circuit example in section 3.1, this 
method selects closely-located pins within the same 
symmetry group or among many symmetry groups of 
smaller sizes.  
Table 5 shows the results of applying the different 
placement methods for circuit “v”. In this table, option (b) 
shows improvements in terms of delay and HPWL 
compared to option (5 to (a) by the utilizing physical 
information during decomposition. Option (d) shows 
improvement compared to (c) in terms of delay, but not in 
HPWL, and option (e) shows the best result in terms of 
area and HPWL; however its delay is worse than that of 
(b). This is due to the fact that we have added more than 
80% of white space for illustration purposes, and (b) 
results in more library cells but shorter  interconnections 
among them. From this example we can see that different 
placement methods might result in different logic 
decompositions which are different in area, delay, and/or 
HPWL.  
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Table 5 Results of applying different placement algorithms for circuit “v” 
 

 #cells area delay HPWL
(a) Baseline 23 180 2.90 666
(b) Baseline & Capo 23 180 1.99 553
(c) Base+ 17 129 2.49 554
(d) Base+ & Capo 17 129 2.61 498
(e) each-Capo 15 124 2.38 496
(e) each-Capo 15 124 2.38 496

4.3 Experimental Results 

We implemented the Elmore delay based on the star model 
within the framework of COLOSSEUM. We also integrated a 
version of Capo with COLOSSEUM for placement. Other 
experimental setups are same as is section 3.  
In this experiment, shown in Table 6, we applied different 
placement algorithms along with different support 
selection heuristics as described in section 4.2. Using 
option (a) as a baseline, the columns in Table 6 show the 
ratios of area, delay, and HPWL for each of the remaining 
four placement options compared to (a). Note that options 
(a) and (b) use logical information only, whereas options 
(c), (d), and (e) utilize physical information (i.e. actual 
locations of already-placed cells). Since options (b) and (d) 
use Capo to re-place the netlists generated by options (a) 
and (c), respectively, the area does not change after the re-
placement. The last row shows the averages of the ratios 
compared to the baseline option (a). Examining these 
ratios, we note that HPWL improved by 14% with the 
application of Capo in options (b), (d), and (e). However, 
there was no improvement in delay when physical 
information was utilized during logic decomposition; the 
small enhancement in the average delay is mostly likely 
due to the improvement in HPWL.  
 
Table 6 Results of applying different placement options (Appendix 2) 

In this experiment we use different delay models and 
different placement options in order to test the 
effectiveness of utilizing physical information in guiding 
logic decomposition. The goal of this investigation was to 
gain a deeper understanding of the constructive logic and 
layout synthesis flow, in order to better explain the 
observed insensitivity of its logic decomposition procedure 
to the physical information created but its layout procedure. 
Based on the experiments reported in this section, we can 
state that; under the constructive synthesis paradigm, the 
choice of node and support is always “local” and “greedy” 
with the expectation that local optimization would guide 
the process towards a global minimum solution. Obviously, 
this is not guaranteed for general combinational 
optimization, and seems to be almost always ineffective 
when layout is interleaved with logic decomposition. A 
plausible explanation for this outcome is that placement is 

an inherently global optimization problem which we 
restrict in the constructive flow to operate more “locally” 
by placing the partial netlist of implemented nodes, 
completely ignoring the possibly huge impact of the cells 
to be extracted form the unimplemented logic. The 
constructive approach, thus poses on inherent mismatch 
between the requirements of constructive decomposition 
and those of global placement. 

5 .  Further Investigation into the Results 

In previous sections, we have examined that physical 
information of the placed library primitives did not 
improve the design quality of logic synthesis under the 
constructive synthesis flow. This outcome is contrary to 
our intuition that adding physical information would 
improve the design quality of constructive synthesis. In 
this section, we inspect reasons of this result more in detail.  

5.1 Possible logic decompositions Experimental 
Results 

In this section, we first raise a question and answer to it in 
the remaining of the section; are there no alternatives in 
logic decomposition of a selected node at all? Before 
answering to this question, we limit the scope of our 
concern to constructive synthesis flow using pre-computed 
and sorted supergates.  
In order to enumerate the number of logic decompositions, 
we analyze the functional symmetry profile for the 
selected node of a circuit at each decomposition step. If 
there are more than one symmetry groups, we examine the 
one with the largest number of fanins only. If the largest 
symmetry group has fanins no more than the fanin limit (a 
fixed number 3 is used), we do not have alternative 
decompositions using the largest symmetry group. 
Otherwise, there are more than one decomposition choices. 
For example, if the largest symmetry group has 5 fanins, 
there exist 5 3 10C = decompositions. Using the same 
fanin limit 3, there are 3nC  different decompositions for 

4n ³ . At each step of logic decompositions, we count 
the number of different decompositions as shown in Table 
7. 
 
Table 7 Number of different decompositions with fanin limit 3 (Appendix 
2) 
 
One exception used in this enumeration is the case that a 
node has exactly 4 fanins regardless of the symmetry 
information. In that case, all 4 fanins are selected for 
support and are replaced with a supergate pre-computed.    
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Using these numbers obtained at each step, we compute 
the average number of decompositions of the MCNC 
benchmark. Table 8 shows an example of the symmetry 
profiles of the selected node at each decomposition step of 
circuits. Column 'Symmetry information' is read as 
follows: fanin names within a bracket represent a group of 
functionally symmetric fanins, and the number within 
parentheses right after a fanin name represents logic depth 
of the fanin. 'Fanins selected' shows the selected support 
using the baseline support selection heuristic. Column '3-
to-t' is checked with 'No' in case we could not find 
support-reducing decomposition with the selected support, 
but have found one with the increased fanin limit 4.  
 
Table 8 Symmetry information of the selected node at each 
decomposition step: 9symml.blif (Appendix 2) 
 
When we could not find support-reducing decomposition 
after increasing the fanin limit to 4, the bi-decomposition 
module was invoked. Be∑nchmark cm151a and cm152a 
are such instances. However, there are cases that we could 
find a supergate for mapping by choosing a different set of 
support. We do not take this situation into account for our 
enumeration.  
In some benchmarks such as cm162a and cm85a, the size 
of the largest symmetry group at each step is less than or 
equals to the fanin limit (in other words, we do not have 
any alternatives using symmetry group only), but could 
find a better decomposition by choosing a different set of 
support. Neither is the case of our consideration.  
 
Table 9. Average number of decompositions and number of 
decomposition steps (Appendix 2) 
 
Table 9 summarizes the average number of 
decompositions and the total number of decomposition 
steps. (*) indicates that the circuit could not find support-
reducing decomposition and have used bi-decomposition 
to finish decomposition. From this table, we notice that 
many circuits do not exhibit highly-symmetric 
functionality and there are only a few alternative 
decompositions in those cases. A few benchmarks such as 
cmb, count, and parity are highly symmetric circuits and 
we have considerable number of decomposition choices. 

5.2 Cases with decomposition choices   

Since we have observed that the benchmarks used for our 
experimentation do not have highly-symmetric 
functionality and there are limited choices of logic 
decompositions, we want to try all possible choices and 
analyze the result for benchmarks which have more than 
one decomposition choices. Even though there are a few 
choices at each step, total number of possible 
decompositions will blow up rapidly, without any 

restriction. For this reason, we limit our decomposition by 
trying different choices at a specific step but selecting 
exactly one branch at all other steps. In this experiment, 
interconnection delay is included for delay estimation 
using star model. 
 

Fig. 10 Example: A search process for a circuit with decomposition 
choices (Appendix 1) 

Figure 10 illustrates the search process of 9symml circuit 
with this restriction. In this example, there is one 
symmetry group, {1, 2, 3, 4, 5, 6, 7, 8, 9}. Since there are 
9 fanins in this group, 9 3 84C =  choices are possible at 
the first step. For 84 possible branches, we perform exactly 
one decomposition each and do not expand their children. 
Similarly, we try 20 choices at the second step, and obtain 
only one decomposition from each branch.  
Based on this assumption, we can plot the result for each 
benchmark. Based on the plotted chart (although we do not 
include in this paper due to page limitation), we were able 
to observe that it is hard to find any specific 
decomposition that has superior quality in any criteria, 
especially in delay.  
We also compute the correlation coefficient between delay 
and HPWL, which is a measure of linear association 
between variables. The formula for the correlation r is: 
 , 

∑ ∑∑ ∑
∑ ∑ ∑

−−

−
=

2222 )()( yyNxxN

yxxyN
r  

where  N = number of pairs of scores 

∑xy =  sum of the products of paired scores 

∑x =  sum of x scores 

∑y = sum of y  scores 

∑x2= sum of squared x scores. 

The correlation coefficient between delay and HPWL are 
shown in Table 10. From this table, it is hard to say that 
there is any correlation between those two criteria. This 
might tell us that HPWL did not help in reducing delay 
overall, because HPWL of the whole circuit is not a direct 
measure of the critical path delay.  
 
Table 10 Correlation coefficient between delay and HPWL 

Benchmark corr. coef. Logarithmic corr. coef. 
9symml 0.052 0.049
c8 0.017 0.022
cc -0.089 -0.091
cm138a 0.147 0.151
cm163a 0.262 0.256
cmb -0.205 -0.214
count 0.163 0.159
cu 0.485 0.482
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decod 0.323 0.325
i1 -0.110 -0.111
lal 0.235 0.232
majority 0.193 0.205
parity 0.120 0.119
pcle -0.183 -0.189
pm1 0.720 0.721
x4 -0.006 -0.006
Avg of 
absolute val. 

0.207 0.208

 

5.3 Summary 

In this section we have analyzed two main reasons of the 
negative result of our experiment. One is that the average 
number of decompositions of circuits for our experiment is 
quite low in most cases. This means that there are not very 
many choices in decomposition and it is hard to improve 
the design quality by utilizing physical location of placed 
cells. The other reason is that the criteria of our interest 
vary relatively small amount and the correlation of the 
targeting delay and HPWL is very low, thus HPWL did 
not guide very well to produce a fast circuit in this design 
flow. This observation would provide an answer to the 
question raised in this work.  

6.   Conclusions and Future Work 

This paper has focused on extending constructive library-
aware logic decomposition approach by including 
incremental physical placement phase and explored 
hypothesis that this extension can only yield further 
improvement in design quality. To test effectiveness of the 
hypothesis, we developed and implemented the 
COLOSSEUM system. The experimental result with 
COLOSSEUM was not able to show any benefit to our 
attempt at simultaneous logic and layout synthesis. 
Although we have explored more possible options to test 
our hypothesis on top of the COLOSSEUM framework, we 
obtained another set of negative results. We also address 
possible reasons of this outcome; mismatch of local and 
greedy nature of constructive paradigm with a need of 
global information in physical layout phase, and lack of 
utilizing physical information in supergate pre-
computation step. We also analyzed two main reasons of 
the negative result of our experiment in section 5.3.  
This work introduces, develops and elaborates constructive 
logic and layout synthesis method in the CAD flow. The 
primary contribution of this work is that we extended the 
original constructive library-aware logic decomposition 
paradigm by adding an incremental physical placement 
phase. This algorithm performs logic decomposition, 

technology mapping, and physical placement as one, 
utilizing physical layout information as well as logical 
information. 
The work presented in this paper does not provide a 
complete answer to whether the constructive paradigm can 
be improved further by its extensions. Some possible 
extensions of this work are listed as follows:  
• Further exploration of physical layout phase: This 

work can be extended further to include physical 
routing phase in the design flow. The final design 
solution might be improved by utilizing routing 
information at the time of logic decomposition. 

• Libraries with flexibilities: In this work, all library 
supergates are pre-computed and sorted according to 
the criteria sought. The supergates computation 
depends largely on library cell properties, such as gate 
delay and area. One possible extension is to develop a 
method that computes a set of library primitives that 
can be mapped into a pattern by utilizing physical 
information. Another possible extension is to consider 
sharing a subset of a supergate when we select the 
support for decomposition.  

• Resynthesis by constructive logic and layout 
synthesis: Instead of starting from scratch, we might 
get a better solution by identifying a critical part of a 
placed netlist and resynthesizing a subset of the 
network using our constructive logic and layout 
framework.  

• Power-driven logic synthesis and physical design: 
One of important optimization goals in DSM 
technologies is power, which is not considered in this 
work. Support selection heuristics, for example, can 
be extended to include power optimization, since 
interconnect power is directly related to wire length.  
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Appendix 1 Large Figures 
 

 
Fig. 6 Constructive logic and layout synthesis flow 

 

 
 

Fig. 9 Different layouts obtained with the constructive flow and different placement options: (a) Baseline (b) Baseline & Capo (c) Base+ (d) Base+ & 
Capo (e) each-Capo 
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Fig. 10 Example: A search process for a circuit with decomposition choices 

 
Appendix 2 Large Tables 
 
Table 1 Node selection heuristics 
 

Area Delay HPWL 
Name #I/#O 

MC LC BB DE LL RD MC LC BB DE LL RD MC LC BB DE LL RD 
9symml 9/1 290.3 100% 100% 100% 100% 100% 1.94 100% 100% 100% 100% 100% 430.6 100% 100% 100% 100% 100% 

b1 3/4 45.8 100% 100% 100% 100% 100% 1.27 100% 100% 100% 100% 100% 110.9 106% 107% 100% 100% 105% 
c8 28/18 646.7 100% 100% 100% 100% 100% 1.88 101% 100% 100% 100% 101% 3629.3 97% 102% 100% 100% 109% 
cc 21/20 324.2 100% 100% 100% 100% 100% 1.65 99% 98% 97% 100% 100% 2126.1 103% 103% 103% 100% 96% 
cht 47/36 947.1 100% 100% 100% 100% 100% 1.98 104% 101% 107% 100% 98% 10111.2 101% 103% 96% 100% 99% 

cm138a 6/8 183.3 100% 100% 100% 100% 100% 1.57 100% 100% 100% 100% 100% 634.6 89% 97% 95% 100% 110% 
cm151a 12/2 414.2 100% 100% 100% 100% 100% 1.86 100% 100% 100% 100% 100% 1009.3 105% 100% 100% 100% 100% 
cm152a 11/1 174.8 100% 100% 100% 100% 100% 1.75 100% 100% 100% 100% 100% 453.1 100% 100% 100% 100% 100% 
cm162a 14/5 312.3 99% 108% 100% 100% 101% 1.91 100% 102% 100% 100% 97% 923.5 103% 102% 95% 100% 109% 
cm163a 16/5 176.5 100% 100% 100% 100% 100% 1.89 100% 100% 99% 100% 100% 792 97% 96% 101% 100% 108% 
cm42a 4/10 105.2 100% 100% 100% 100% 100% 1.28 100% 100% 100% 100% 100% 510.5 94% 100% 100% 100% 106% 
cm82a 5/3 101.8 100% 100% 100% 100% 100% 1.54 100% 100% 100% 100% 100% 172.6 124% 100% 100% 100% 100% 
cm85a 11/3 339.5 100% 100% 100% 100% 100% 2.07 100% 101% 101% 100% 100% 683.4 119% 119% 119% 100% 106% 
cmb 16/4 129 100% 100% 100% 100% 100% 1.47 100% 100% 100% 100% 101% 604.7 98% 99% 99% 100% 103% 
count 35/16 750.3 102% 101% 104% 101% 100% 2.29 103% 102% 103% 92% 102% 5163.7 110% 101% 118% 99% 106% 

cu 14/11 410.8 90% 96% 100% 100% 107% 2.16 89% 87% 99% 100% 99% 1435.9 80% 84% 88% 100% 109% 
decod 5/16 232.5 100% 100% 100% 100% 100% 1.6 101% 100% 100% 100% 100% 1149.2 92% 100% 97% 100% 108% 

i1 25/16 217.3 100% 100% 100% 100% 100% 1.77 100% 100% 98% 100% 99% 1837.4 101% 98% 99% 100% 102% 
lal 26/19 509.2 97% 98% 97% 97% 103% 2.06 97% 98% 102% 100% 101% 2680.8 108% 104% 117% 116% 99% 

majority 5/1 59.4 100% 100% 100% 100% 100% 1.49 100% 100% 100% 100% 100% 140.1 100% 100% 100% 100% 100% 
parity 16/1 208.8 100% 100% 100% 100% 100% 1.76 100% 100% 100% 100% 100% 476.8 100% 100% 100% 100% 100% 
pcle 19/9 337.8 100% 104% 98% 100% 99% 1.91 99% 100% 100% 100% 100% 1529.3 92% 94% 89% 100% 101% 
pm1 16/13 264.8 100% 92% 100% 100% 96% 1.63 100% 98% 99% 100% 100% 1273.9 101% 104% 111% 100% 104% 
sct 19/15 412.5 99% 105% 97% 100% 100% 2.01 95% 110% 95% 100% 100% 1872 97% 102% 93% 100% 99% 

20 choices 

{1, 2, 3, 4, 5, 6, 7, 8, 9}

{4, 5, 6, 7, 8, 9} {Y0} {Y3} {3, 5, 6, 7, 8, 9} {Y0} {Y3}

1, 2, 3 1, 2, 4 

{1, 2, 3, 4, 5, 6} {Y0} {Y3} 

7, 8, 9 

...

...

{7, 8, 9} {Y0} {Y3} {Y4} {Y7} 

4, 5, 6 

{4, 5, 6} {Y0} {Y3} {Y4} 

7, 8, 9 

... 

{Y0} {Y3} {Y4} {Y7} {Y8} 

7, 8, 9 

∅

Y0, Y3, 

. 

. 

Fully-
decomposed 

∅

4, 5, 6 

. 

. 

. 

. 

. 

. 

3, 5, 6 

∅

. 

. 

. 

. 

. 

. 
 

1, 2, 3 

∅ 

. 

. 

. 

. 

. 

. 
 

... ... ...

84 choices 

1 choice 
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t481 16/1 181.6 100% 100% 100% 100% 100% 1.74 100% 100% 100% 100% 100% 451.5 100% 100% 100% 100% 100% 
tcon 17/16 122.2 100% 100% 100% 100% 100% 1.19 100% 100% 100% 100% 100% 1075.2 100% 100% 100% 100% 100% 

unreg 36/16 775.7 100% 100% 99% 99% 100% 1.97 96% 94% 94% 100% 96% 4680.2 95% 97% 98% 100% 98% 
x4 94/71 2627.6 94% 99% 99% 98% 103% 4.33 105% 132% 108% 103% 123% 32926.4 102% 113% 100% 101% 106% 

AVG(%)  99% 100% 100% 100% 100% 100% 101% 100% 100% 101% 100% 101% 101% 101% 103% 

 
Table 2 Area using different support selection heuristics 
 

AREA baseline base+ mdv D LD LB LGD H BH BLH BT GLDT LH LBH LBT LGH Random 
9symml 290 97% 97% 100% 100% 97% 100% 101% 101% 107% 97% 100% 107% 107% 97% 107% 120%

b1 46 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
c8 647 96% 117% 109% 119% 118% 110% 149% 120% 121% 108% 104% 143% 118% 118% 123% 151%
cc 324 94% 100% 98% 104% 87% 92% 141% 94% 93% 87% 92% 141% 93% 87% 103% 181%
cht 947 99% 100% 100% 100% 115% 100% 126% 122% 122% 115% 100% 125% 122% 115% 122% 109%

cm138a 183 100% 100% 83% 83% 91% 83% 91% 91% 91% 91% 83% 91% 91% 91% 91% 90%
cm151a 414 100% 100% 34% 34% 34% 34% 69% 69% 55% 34% 34% 59% 55% 34% 59% 101%
cm152a 175 100% 100% 54% 54% 72% 54% 99% 99% 91% 72% 54% 91% 91% 72% 91% 91%
cm162a 312 108% 102% 75% 107% 92% 103% 140% 96% 90% 75% 85% 114% 90% 75% 104% 143%
cm163a 177 101% 137% 110% 151% 150% 148% 142% 152% 143% 135% 122% 138% 152% 150% 156% 210%
cm42a 105 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
cm82a 102 100% 100% 132% 132% 132% 132% 132% 132% 132% 132% 132% 132% 132% 132% 132% 137%
cm85a 339 83% 103% 71% 113% 75% 85% 78% 78% 78% 85% 85% 78% 78% 85% 72% 129%
cmb 129 100% 100% 72% 72% 72% 72% 72% 72% 72% 72% 72% 72% 72% 72% 72% 155%

count 750 95% 145% 110% 126% 114% 114% 118% 110% 105% 112% 109% 120% 109% 116% 117% 214%
cu 411 95% 104% 82% 90% 107% 91% 126% 107% 122% 114% 91% 132% 122% 114% 105% 148%

decod 233 100% 100% 101% 101% 101% 101% 101% 101% 101% 101% 101% 101% 101% 101% 101% 136%
i1 217 95% 128% 109% 133% 116% 108% 92% 97% 97% 116% 108% 97% 103% 116% 97% 160%
lal 509 96% 139% 100% 146% 112% 98% 118% 98% 101% 112% 98% 116% 106% 114% 103% 205%

majority 59 100% 100% 71% 71% 71% 71% 80% 71% 71% 71% 71% 80% 71% 71% 71% 106%
parity 209 100% 100% 85% 85% 85% 85% 85% 85% 85% 85% 85% 85% 85% 85% 85% 100%
pcle 338 112% 136% 123% 152% 137% 120% 135% 125% 122% 133% 122% 140% 129% 137% 133% 150%
pm1 265 100% 100% 98% 91% 87% 87% 104% 87% 87% 87% 87% 104% 87% 87% 80% 136%
sct 412 105% 130% 99% 130% 117% 120% 128% 115% 114% 100% 107% 117% 127% 117% 116% 173%

t481 182 100% 100% 103% 100% 103% 107% 114% 100% 100% 103% 107% 120% 100% 103% 100% 101%
tcon 122 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

unreg 776 102% 100% 77% 87% 108% 87% 98% 98% 98% 108% 87% 98% 98% 108% 98% 99%
x4 2628 100% 153% 89% 149% 128% 106% 180% 96% 103% 111% 92% 175% 126% 131% 119% 176%

AVG(%)  99% 110% 92% 105% 101% 97% 111% 101% 100% 98% 94% 110% 102% 101% 102% 136%

 
Table 3 Delay using different support selection heuristics 
 

DELAY baseline base+ mdv D LD LB LGD H BH BLH BT GLDT LH LBH LBT LGH Random 
9symml 1.94 99% 99% 100% 100% 99% 100% 113% 113% 110% 99% 100% 110% 110% 99% 110% 117%

b1 1.27 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

c8 1.88 102% 97% 103% 103% 94% 96% 118% 99% 98% 96% 96% 101% 96% 94% 98% 116%

cc 1.65 101% 100% 100% 106% 99% 100% 111% 105% 99% 99% 100% 111% 99% 99% 108% 110%

cht 1.98 96% 100% 100% 100% 97% 100% 101% 103% 95% 97% 100% 96% 95% 97% 95% 103%

cm138a 1.57 100% 100% 97% 97% 97% 97% 97% 97% 97% 97% 97% 97% 97% 97% 97% 99%

cm151a 1.86 100% 100% 89% 89% 97% 89% 163% 163% 105% 97% 89% 105% 105% 97% 105% 116%

cm152a 1.75 100% 100% 87% 87% 103% 87% 122% 122% 107% 103% 87% 107% 107% 103% 107% 100%

cm162a 1.91 98% 94% 101% 94% 102% 94% 111% 103% 91% 90% 91% 97% 91% 90% 91% 115%

cm163a 1.89 97% 87% 104% 93% 87% 85% 99% 97% 95% 98% 95% 87% 86% 87% 86% 142%

cm42a 1.28 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

cm82a 1.54 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 102%

cm85a 2.07 101% 92% 113% 100% 94% 94% 90% 90% 90% 96% 94% 90% 90% 96% 91% 131%

cmb 1.47 100% 100% 105% 105% 105% 105% 105% 105% 105% 105% 105% 105% 105% 105% 105% 132%

count 2.29 96% 95% 130% 90% 85% 85% 109% 94% 81% 84% 84% 96% 82% 82% 93% 126%

cu 2.16 111% 101% 94% 88% 84% 87% 129% 94% 103% 96% 87% 97% 103% 96% 87% 100%

decod 1.6 100% 100% 89% 89% 91% 89% 91% 91% 91% 91% 89% 91% 91% 91% 91% 99%

i1 1.77 100% 110% 106% 107% 98% 98% 102% 95% 95% 98% 98% 98% 98% 98% 98% 133%

lal 2.06 91% 94% 99% 98% 102% 86% 101% 94% 87% 93% 86% 86% 94% 93% 90% 140%

majority 1.49 100% 100% 97% 97% 97% 97% 105% 97% 97% 97% 97% 105% 97% 97% 97% 108%

parity 1.76 98% 100% 102% 89% 89% 89% 89% 89% 89% 89% 89% 89% 89% 89% 89% 116%

pcle 1.91 102% 97% 109% 98% 95% 95% 103% 92% 92% 93% 97% 102% 92% 95% 95% 115%

pm1 1.63 99% 100% 108% 108% 101% 100% 105% 100% 100% 101% 100% 105% 100% 101% 106% 129%

sct 2.01 97% 93% 100% 99% 92% 92% 117% 101% 105% 91% 91% 92% 97% 92% 94% 113%

t481 1.74 100% 100% 123% 100% 108% 94% 120% 100% 100% 108% 94% 110% 100% 108% 100% 107%

tcon 1.19 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

unreg 1.97 108% 100% 97% 100% 107% 100% 100% 100% 100% 107% 100% 100% 100% 107% 100% 100%

x4 4.33 101% 99% 111% 101% 87% 89% 108% 85% 86% 87% 87% 87% 87% 93% 94% 112%
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AVG(%)  100% 99% 102% 98% 97% 95% 107% 101% 97% 97% 95% 99% 97% 97% 97% 114%

 
Table 4 HPWL using different support selection heuristics 
 

HPWL baseline base+ mdv D LD LB LGD H BH BLH BT GLDT LH LBH LBT LGH Random 
9symml 431 99% 90% 100% 99% 89% 99% 107% 107% 108% 89% 99% 108% 108% 89% 108% 114%

b1 111 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
c8 3629 99% 101% 101% 102% 102% 97% 117% 104% 105% 98% 94% 108% 107% 102% 106% 108%
cc 2126 98% 100% 102% 104% 97% 103% 110% 100% 99% 97% 103% 110% 99% 97% 100% 129%
cht 10111 94% 100% 94% 94% 100% 94% 100% 98% 98% 100% 94% 100% 98% 100% 98% 104%

cm138a 635 100% 100% 70% 70% 77% 70% 77% 77% 77% 77% 70% 77% 77% 77% 77% 76%
cm151a 1009 100% 100% 44% 44% 44% 44% 77% 77% 60% 44% 44% 61% 60% 44% 61% 88%
cm152a 453 100% 100% 63% 63% 77% 63% 111% 111% 84% 77% 63% 84% 84% 77% 84% 90%
cm162a 924 93% 105% 91% 89% 103% 84% 150% 90% 99% 96% 81% 101% 99% 96% 95% 137%
cm163a 792 96% 95% 101% 105% 118% 106% 101% 102% 97% 107% 103% 94% 100% 118% 101% 148%
cm42a 511 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
cm82a 173 100% 100% 136% 136% 136% 136% 136% 136% 136% 136% 136% 136% 136% 136% 136% 140%
cm85a 683 102% 117% 95% 115% 104% 121% 92% 92% 92% 110% 121% 92% 92% 110% 83% 126%
cmb 605 98% 100% 94% 94% 94% 94% 94% 94% 94% 94% 94% 94% 94% 94% 94% 139%
count 5164 100% 128% 127% 119% 89% 89% 101% 97% 96% 99% 98% 98% 92% 89% 96% 158%

cu 1436 89% 105% 72% 76% 92% 80% 116% 86% 100% 96% 80% 100% 100% 96% 85% 120%
decod 1149 100% 100% 96% 96% 91% 96% 91% 91% 91% 91% 96% 91% 91% 91% 91% 107%

i1 1837 100% 104% 103% 106% 105% 105% 99% 99% 99% 105% 105% 100% 102% 105% 100% 106%
lal 2681 97% 140% 109% 153% 116% 98% 118% 98% 105% 109% 99% 113% 109% 111% 104% 166%

majority 140 100% 100% 99% 99% 99% 99% 95% 99% 99% 99% 99% 95% 99% 99% 99% 96%
parity 477 88% 100% 89% 80% 80% 80% 80% 80% 80% 80% 80% 80% 80% 80% 80% 142%
pcle 1529 90% 104% 103% 111% 94% 107% 110% 92% 95% 89% 98% 109% 92% 94% 99% 143%
pm1 1274 101% 100% 120% 102% 115% 116% 118% 111% 111% 115% 116% 118% 111% 115% 99% 123%
sct 1872 96% 111% 101% 118% 108% 106% 106% 104% 102% 103% 109% 106% 105% 108% 117% 139%

t481 452 100% 100% 110% 100% 106% 106% 115% 100% 100% 106% 106% 135% 100% 106% 100% 121%
tcon 1075 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

unreg 4680 100% 100% 94% 96% 105% 96% 107% 107% 107% 105% 96% 107% 107% 105% 107% 124%
x4 32926 95% 130% 101% 115% 118% 97% 127% 100% 101% 109% 103% 112% 108% 115% 108% 132%

AVG(%)  98% 105% 97% 100% 99% 96% 106% 98% 98% 98% 96% 101% 98% 98% 97% 121%

 
Table 6. Results of applying different placement options 
 
  Area    Delay     HPWL   
 (a)(b) (c)(d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) 
9symml 282 103% 111% 3.06 93% 113% 139% 161% 415 92% 86% 87% 91%
b1 46 100% 100% 0.51 82% 100% 82% 82% 102 89% 100% 89% 89%
c8 638 98% 100% 2.26 88% 122% 72% 81% 1908 82% 99% 80% 80%
cc 324 93% 93% 1.53 111% 88% 82% 82% 1152 91% 98% 89% 89%
cht 947 101% 101% 2.58 70% 132% 88% 81% 4035 81% 100% 80% 80%
cm152a 175 100% 100% 1.31 95% 100% 95% 95% 321 90% 100% 90% 90%
cm162a 311 104% 117% 1.86 91% 109% 86% 96% 757 85% 96% 84% 92%
cm163a 177 107% 107% 1.56 95% 82% 78% 78% 516 87% 107% 92% 92%
cm42a 105 100% 100% 0.42 99% 100% 99% 99% 313 86% 100% 86% 86%
cm82a 102 100% 100% 0.96 94% 100% 94% 96% 163 97% 100% 97% 97%
cm85a 339 135% 133% 2.52 89% 117% 109% 118% 613 93% 127% 115% 112%
cmb 129 95% 95% 0.72 109% 114% 104% 104% 466 89% 94% 82% 82%
count 750 95% 92% 3.14 86% 113% 98% 99% 2306 85% 95% 80% 81%
cu 394 98% 98% 3.39 69% 94% 78% 88% 1172 71% 93% 75% 72%
decod 233 100% 100% 1.01 102% 100% 95% 95% 657 71% 100% 72% 72%
lal 519 94% 91% 2.65 81% 84% 80% 83% 1654 84% 101% 79% 78%
parity 209 100% 100% 3.00 91% 86% 83% 89% 359 91% 94% 84% 84%
pcle 336 113% 113% 1.78 98% 125% 144% 118% 951 85% 101% 83% 83%
pm1 253 103% 107% 1.06 107% 125% 98% 95% 849 81% 95% 82% 84%
sct 412 113% 113% 2.21 84% 136% 103% 95% 1216 86% 119% 88% 88%
T481 182 100% 100% 1.70 109% 99% 100% 109% 401 85% 103% 84% 85%
tcon 122 100% 100% 0.17 100% 100% 100% 100% 582 93% 100% 93% 93%
unreg 771 103% 103% 2.15 69% 128% 131% 138% 2249 82% 90% 79% 79%
AVG(%)  102% 103% 92% 107% 97% 99% 86% 100% 86% 86%
 
Table 7. Number of different decompositions with fanin limit 3 
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# OF FANINS (n ) 4 5 6 7 8 9 10 11 12 13 14 15 16 
# of decomp. ( 3nC ) 4 10 20 35 56 84 120 165 220 286 364 455 560 

 
Table 8. Symmetry information of the selected node at each decomposition step: 9symml.blif 
 

9SYMML.BLIF 
Step Node Symmetry information Fanins selected 3-to-t #decomp 
1 52 {1(0), 2(0), 3(0), 4(0), 5(0), 6(0), 7(0), 8(0), 9(0)} 1 2 3  84
2 52 {4(0), 5(0), 6(0), 7(0), 8(0), 9(0)} {_Y0(1)} {_Y3(2)} 4 5 6  20
3 52 {7(0), 8(0), 9(0)} {_Y4(1)} {_Y0(1)} {_Y7(2)} {_Y3(2)} 7 8 9  1
4 52 {_Y4(1)} {_Y0(1)} {_Y8(1)} {_Y7(2)} {_Y11(2)} {_Y3(2)} _Y4 _Y0 _Y8  1
5 52 {_Y7(2)} {_Y11(2)} {_Y12(2)} {_Y13(2)} {_Y3(2)} _Y7 _Y11 _Y12 _Y13 No 1
6 52 {_Y3(2), _Y21(4)} {_Y18(4)} _Y3 _Y21 _Y18  1

 
Table 9. Average number of decompositions and number of decomposition steps 

 
BENCHMARK AVERAGE # OF DECOMP. # OF STEPS BENCHMARK AVERAGE # OF DECOMP. # OF STEPS 
9symml 18.0 6 count 53.7 93
b1 1.0 4 cu 7.0 30
c8 5.4 52 decod 5.5 32
cc 1.3 33 I1 9.8 24
cht 1.0 46 lal 2.1 60
cm138a 10.5 16 majority 2.5 2
cm151a 1.0 (*) 2 parity 191.6 7
cm152a 1.0 (*) 1 pcle 10.4 39
cm162a 1.0 25 pm1 3.7 27
cm163a 1.8 16 sct 2.7 49
cm42a 1.0 10 t481 1.0 13
cm82a 1.0 5 tcon 1.0 16
cm85a 1.0 16 unreg 1.0 47
cmb 83.4 20 x4 2.0 310
 


