
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

202

Manuscript received October 5, 2007

Manuscript revised October 20, 2007

Constructive Logic and Layout Synthesis:
A Novel Incremental Approach

Yoonna Oh† and Yuncheol Baek††,

CAE Team, Semiconductor R&D Center, Samsung Electronics, Hwasung 445-701, Korea†
Division of Computer Software, Sangmyung University, Seoul 110-743, Korea††

Summary
This paper examines the extension of constructive library-
aware logic synthesis to the physical placement stage of
integrated circuit design. Constructive logic synthesis
differs from traditional synthesis approaches in that it
builds a circuit netlist incrementally starting from the
primary inputs and proceeding towards the primary
outputs. In each iteration of this procedure, the semantic
structure of the unsynthesized logic functions is utilized to
identify and extract a small subcircuit that consists of
library primitives reflecting that structure. The algorithm
interleaves the steps of technology-independent
decomposition and technology-dependent mapping into
library cells in a way that mitigates its greedy nature.
Conjecturing that adding a placement step to this
methodology would further improve synthesis quality we
developed a system which synthesizes circuits by
incremental decomposition, mapping, and placement. We
describe the algorithms used in this system and analyze the
quality of the designs it generates under a variety of
options for decomposition and placement. The empirical
results we obtained, however, suggest that adding a
placement step to constructive synthesis produces no
noticeable improvement in design quality. This strongly
suggests that our original conjecture is false, and we
examine possible reasons for such a negative result.

Key words:
Logic synthesis, integrated circuit design, constructive library-
aware logic decomposition

1. Introduction

In the traditional design flow of Very Large Scale
Integration (VLSI) chips, the design process is serialized
into a sequence of manageable steps of high level
synthesis, logic synthesis, technology mapping, physical
placement, global routing, and detailed routing. Over the
past decade, the amount of integration onto a single chip,
especially with the need for interconnecting sub-circuits to
support networking infrastructure, has rapidly increased.
Although Deep Submicron (DSM) technologies enable

greater degrees of semiconductor integration, such
integration makes the design, verification, and test more
challenging. While gates are getting smaller and faster,
designs are more constrained by the delays of the wires
interconnecting the gates. The routability of a circuit after
physical placement is another increasing concern. These
issues often cause each design step to be iterated many
times before all constraints are met.
Each design step involves optimizing some objective
subject to certain constraints such as area, delay, and
power consumption. In a serialized design flow,
constraints imposed in earlier steps are often hard to
satisfy in later steps. Repetition of the design steps does
not necessarily guarantee that the constraints will be met,
and there are often very limited chances to fix the problem
in the later steps of a design in the serialized design
paradigm.
In the 1990s, the increasing need for synthesizing larger
blocks posed new challenges with the designs more
constrained by the delays of the wires interconnecting the
gates. There have been several related attempts to
overcome these challenges by combining logic and layout
synthesis. These efforts can be broadly divided into local
netlist transformation, pre-layout prediction, and layout-
driven optimization.
Local netlist transformation. In [15] [7] [17], local
transformation approach is applied to a placed netlist after
initial placement. Critical factors such as critical paths or
congested regions of the circuit based on the initial
placement are identified, then re-synthesized and re-placed.
Liu et al. [15] proposed a technique that combines logic re-
synthesis and linear placement in order to alleviate routing
congestion in the most congested region of the routing area
in order to reduce routing density, and accordingly shrink
the chip height. Kannan et al. [7] begin with a synthesized
netlist after initial placement and make incremental
modifications to generate a final netlist and placement that
meets the timing constraints after place-and-route. This is
done by applying fanout buffering and gate resizing. The
gate and wiring delays based on the initial placement are
computed and used for selecting the most useful
transformations. Lou et al. [17] iterate grouping cells along
the critical paths, re-synthesizing and re-placing those cells
until timing closure is achieved. These approaches work

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

203

on accurate net length or congestion estimates and apply
local transformations to preserve the initial placement as
much as possible; this, however, tends to restrict the
optimization potential.
Pre-layout prediction. Pre-layout prediction approaches
such as [9] [12] [16] [26] do not employ an initial
placement solution. Rather, logic optimizations are guided
by heuristics such as distance [9], adhesion [12], mutual
contraction [16], and fanout range [26], which are used to
capture the routability of designs. These heuristics are
applied during logic decomposition to obtain more
routable designs with no knowledge about actual
placement.
Layout-driven optimization. The majority of combining
logic and layout synthesis is layout-driven optimization as
appeared in [2] [4] [3] [13] [14] [20] [21] [22]. In these,
they first create a companion placement of the technology-
independent netlist for a given logic circuit and then use
physical coordinate information to guide the logic syn-
thesis process. This companion placement can be
incrementally updated during logic synthesis. This method
was initiated by Pedram and Bhat in their papers [20] [21]
on improving timing closure by taking interconnect delays
into account. Their approach is based on a point placement
of a Boolean network. The placement solution is
incrementally updated as intermediate Boolean nodes are
extracted or eliminated during the decomposition and
elimination procedures. Kutzschebauch and Stok [14]
proposed congestion aware algorithms for layout driven
decomposition and technology mapping to decrease wire
length and improve congestion. In the decomposition
algorithm, they include wiring delays based on estimated
net lengths and geographical locations of the input signals
in the companion placement. In their technology mapping
step, the final implementation is chosen by identifying the
fastest driver pin of each net. They choose the technology-
dependent implementation as the minimum cost function
subject to a timing constraint, thus they can reduce total
wire length resulting in less global congestion. Another
variation of this approach by Gosti [3] observes that the
wire-load models in conventional logic synthesis
underestimate the wire length of many nets, especially nets
connecting a few pins. To address the timing closure
problem, the technology decomposition and global
placement steps are performed repeatedly. Placement is
done using a quadratic programming placement tool,
which places nets incrementally and spreads overlapping
cells apart from the center of the placement area. However,
the final placement of the layout-driven methods ends up
being considerably different from the initial one, casting
doubt on the accuracy of wire length estimates based on it.
Indeed, these approaches did not exhibit much

improvement in implementation quality beyond that
achievable by logic synthesis followed by layout synthesis.
Against these drawbacks, we embarked on yet another
attempt to combine logic and layout synthesis. The
Constructive synthesis approach, pioneered in [10] [8] [11],
interleaves the technology-independent logic
decomposition and technology mapping steps to more
directly relate functional structure of a logic specification
to the ultimate physical structure of its implementations.
The method employs full Boolean decomposition and
takes functional symmetries into account decomposition to
tackle the problem of serialization in the circuit design
process. For small synthesis problems, this approach
produced superior netlist implementations with acceptable
run times. More recently, Mishchenko et al. [19] proposed
a new enhanced constructive algorithm which pre-
computes the gate library in the form of supergates, and
considers all support-reducing decompositions for a set of
variables.
Noting the success of constructive library-aware logic
synthesis in significantly improving the quality of netlist
implementations, we conjecture that adding an incremental
placement phase can only yield further improvement. The
principal difference between our approach and previous
approaches is that our synthesis flow is constructive and
incremental. By interleaving functional decomposition and
technology mapping, the constructive synthesis algorithm
is able to uncover the natural “structure” of the logic
functions being synthesized yielding much better netlist
implementations than is possible by serializing these two
phases. We reason that incrementally placing the gates as
they are extracted from the yet-to-be decomposed logic
would provide more accurate area and delay estimates that
can inform future decomposition choices. Intuitively, we
hypothesize such an enhancement can improve imple-
mentation quality further.
Figure 1 shows the design flow of the traditional approach
and our constructive approach. Compared to Gosti’s work
[3], our design flow achieves a much tighter coupling
between the logic synthesis and placement steps, and is
aware of the technology library at the decomposition step.
However, the implementation quality by this approach did
not surpass that of traditional approach. This paper, thus,
describes our attempt for testing this conjecture, and
discusses the experimental results we obtained.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

204

Fig. 1. Traditional design flow (left) vs. constructive design flow (right)

The remainder of this paper is organized as follows.
Section 2 describes notations used in this paper. Section 3
describes the concept of the constructive logic and layout
synthesis design approach, which extends the idea of
constructive logic synthesis to the physical layout phase.
This section describes a prototype implementation of this
approach with a simple placement algorithm and delay
model. In section 4, we explore the search space of the
constructive logic and layout synthesis approach by trying
another placement algorithm and delay model. In section 5,
we examine possible reasons for the negative result and
section 6 concludes this paper with its contributions and
new directions for future work.

2. Notation and Preliminaries

An n -input Boolean function 1(, ,)nf x xK or ()f X is

defined as a mapping : nf B B→ where B is commonly
restricted to the two-element set {0,1}B = . Each element
in the domain nB is a minterm of f . Support, whose size
is denoted by X or n, is the set of variables to the
function f . A multiple-output function is defined as a
vector of functions : n mF B B→ .
Multilevel synthesis can be viewed as a process of
successive decompositions. Any Boolean function f can
be expressed by the following decomposition template:

()f X = 1((), , ())kh g X g XK

where 1, , kg gK and h are referred to the decomposition
functions, and the composition function, respectively. This
decomposition template encompasses all types of function
decomposition. In particular, the Ashenhurst

decomposition expresses the function f by the following
template:

()f X = 1 1 1 2((), , (),)kh g X g X XK

where 1X and 2X are called the bound set and free set,
respectively.
In particular, support-reducing decomposition [8] requires
the composition function h to depend on fewer variables
than the original function ()f X . Support-reducing
decomposition is based on the decomposition template
along with the restriction k s< where 1s X= . Support-
reducing decomposition is not necessarily a disjoint
decomposition in which the two subsets of the support 1X

and 2X are disjoint. This is because iy , where 1 i k≤ ≤ ,
can be an identity function. In this paper, our scope is
restricted to finding a support-reducing decomposition
among many choices.

3. Constructive Logic and Layout Synthesis
Approach

This section describes the constructive logic and layout
synthesis algorithm and shows the experimental results of
designs synthesized by this algorithm.

3.1 Motivating Example

Consider a small circuit of 12-bit parity to illustrate the
idea of constructive logic and layout synthesis. The circuit
is incrementally synthesized by repeatedly applying the
steps of logic synthesis, technology mapping, and physical
placement in a single step with 3-bit XOR and 2-bit XOR
library primitives as its building blocks. When the circuit
is decomposed in the constructive design flow, two types
of information are available; logical and physical. Logical
or non-physical type indicates information available
without physical layout. This type of information includes
functional symmetry, BDD size, logic level, area, and gate
delay. Physical type information is provided from the
physical placement, which includes wire-length,
interconnection delay, I/O pin location, and cell
coordinates.
Figure 2 shows the result of constructive synthesis of this
circuit only using logical information. In this case,
functional symmetry and logic level are used to select the
support in performing support-reducing decomposition.
Note that all variables are functionally symmetric in the
parity circuit, and that any three variables chosen as

High-level behavioral

Register-transfer level

Logic synthesis

Technology mapping

Floorplanning

Global placement

Detailed placement

Global routing

Detailed routing

Extraction & timing

High-level behavioral

Register-transfer level

Constructive

decomposition &
placement

Global routing

Detailed routing

Extraction & timing

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

205

decomposition support are mapped to a 3-bit XOR gate. If
there are more than one candidates evaluated as the highest
in logical information, a “random” choice will be made. In
the final circuit placed, there are 20 cells including
primary input/output pins, and 19 nets.

_Y0

a

b

c

d

e

f

g

h

i

j

k

l

_Y1

_Y2

_Y3

_Y4

_Y5

q q_output

Fig. 2. Mapped (above) and placed netlist (below) of 12-bit parity circuit
by constructive synthesis using logical information

In contrast to Figure 2, Figure 3 shows the result of
constructive synthesis of the same circuit using physical
information as well as logical information to select the
support in decomposition. When a set of variables is to be
selected for the support and there exist more than one
candidate evaluated the highest in the logical information,
cell coordinates are used to break the ties. Among the
candidates, we select a group of cells that are the most
closely located, assuming that origins of each cell are used
for pin locations and cell coordinates as well. Initially, all
inputs are functionally symmetric and have the same
number of logic levels. Among those inputs, four groups
of inputs are the most closely located to each other within
the group; {a, b, c}, {d, e, f}, {g, h, i}, and {j, k, l}. By
utilizing cell coordinates at each selection, we obtain the
final circuit having 20 cells and 19 nets, which are the
same numbers as in Figure 2.

Fig. 3. Mapped (above) and placed netlist (below) of 12-bit parity circuit
by constructive synthesis using physical information

However, if we compare half-perimeter wire-length
(HPWL), which is the sum of half the perimeter of all
bounding boxes of each net, to estimate the length of all
interconnects, we notice that HPWL of Figure 3.8 is 428.5
and HPWL of Figure 3.15 is 395.5, which shows an
improvement of 8%.
We apply the same technique to 32-bit and 64-bit parity
circuits. In Figure 4, HPWL of the 32-bit parity circuit
placed using logical information is 1282 whereas that
using physical information is 1016, which has been
improved by 21%. Moreover, HPWL of the 64-bit circuit
placed using physical information, shown in Figure 5, has
been improved by 38% over the result using logical
information only.
From this observation, we conjecture that information
gathered from the physical placement during constructive
synthesis would be more beneficial to the final placement
as the circuit size grows bigger. However, logic
decomposition in the parity case was not a true meaning of
decomposition, but a simple replacement with XOR gates.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

206

Fig. 4. Constructive synthesis of 32-bit parity using logical

information (above) vs. using physical information (below)

Fig. 5. Constructive synthesis of 64-bit parity using logical

information (above) vs. using physical information (below)

3.2 Constructive Logic and Layout Synthesis
Algorithm

In order to generalize this idea and test it, we modify the
constructive logic decomposition algorithm as follows.
Our objective is to minimize the delay of the critical path

in the final mapped and placed netlist, including the
interconnect delay. We assume the Elmore delay model
[24] for the placed network. Our logic synthesis and
technology mapping algorithm extends the constructive
synthesis algorithm M31 [10] with the enhanced features
of CDM [19] and bi-decomposition [18], a complete
decomposition template. In our constructive synthesis and
placement algorithm called ‘COLOSSEUM’, a circuit is
synthesized incrementally in a single sweep by repeatedly
applying the following steps:

Fig. 6. Constructive logic and layout synthesis flow (Appendix 1)

1) Node selection: choose an unimplemented logic node
to decompose (1F in Figure 6(a))

2) Support selection: choose a set of fanin variables
from the selected node's support (three input pins
shown in bold in Figure 6(a))

3) Decomposition: choose a set of technology-
dependent primitives (library cells) and introduce
them as gates into the evolving network (NAND and
XOR logic gates shown in Figure 6(b))

4) Physical placement: place the primitives chosen in
step 3 in the layout plane and compute their
coordinates (Two rectangles NAND and XOR2 in
Figure 6(b))

5) Logic re-expression: re-express the forward unimple-
mented logic in terms of the newly-introduced gates
(1F with fanins of logic gates NAND and XOR in
Figure 6(b))

The synthesis algorithm terminates when the network does
not contain any unimplemented nodes. The final mapped
and placed cells are shown in Figure 6(c). As a
preprocessing step, we first compute supergates [19] and
sort them according to the criteria sought, delay in this
case. Initially, primary input pins are assumed to be
located on the left border of the layout and primary output
pins are assumed to be located on the right. Starting from
an empty network and an empty placement, a node to
decompose is chosen. Among the inputs of the chosen
node, a set of inputs is selected for decomposition based
on heuristics considering layout information. As the
synthesis proceeds, actual physical information can be
utilized. Different heuristics can be used in this support
selection step, such as selecting inputs with minimum
estimated delay or selecting inputs with the smallest half-
perimeter bounding-box. Once the support is selected, the
sorted supergate table is incrementally scanned to find a
support-reducing decomposition. If such decomposition is
not found, a bi-decomposition solution is attempted. In
either case, the decomposed node is mapped to library
cells and the optimal bounding box of each library cell is
computed. Thereafter the cell location is legalized by using

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

207

the simple Tetris algorithm [5], i.e., scanning leftmost
legal site of each row from top to bottom and selecting a
site with a minimum cost. Once the cells are placed, the
logic of the chosen node is re-expressed in terms of the
new nodes and the netlist is updated accordingly. In steps
1 and 2, physical as well as logical information can be
used to guide the selection. Those heuristics are discussed
in Section 3.5. The pseudo-code of the constructive design
flow is shown in Figure 7. The layout information used is
shown in bold in the pseudo-code.

Colosseum (function F, library { if }) {

 N = empty network;
 P = empty placement;

 while (F∉{ if }){

 function f = Select_Node(F, P);
 X = Select_BoundSet(f, P);

 { ig } = DecompositionFtn(f, X, { if });

 if({ ig } == ∅)

 { ig } = BiDecompose(f, X, { if });

 Place_Node({ ig }, P);

 h = CompositionFtn(f, X, { ig });

 AddToNetwork(N, { ig });

 f = h;
 }
 AddToNetwork(N, f);
 return N;

}

Place_Node({ ig }, P) {

 { ic }= Add_NewNode({ ig }, P);

Compute_Optimal_BoundingBox({ ic }, P);

Legalize_Node({ ic }, P);

}

Fig. 7. Constructive logic and layout synthesis algorithm

3.3 Delay Model

We model the delay of a path as the sum of the gate delays
and the sum of the net delays on the path. Gate delays
account for the “fixed” portion of a gate’s delay, excluding
the effect of fanout loads. Fanout contribution to delay is
captured by the net delays using the Elmore delay model
[24].
As the actual wiring paths are not known at the time of
decomposition and placement (the algorithm does not per-
form detailed routing), a net model is needed to model the
topology of the interconnection nets and to estimate the net
delays. To estimate the optimal wiring paths for a net,
rectilinear Steiner trees can be used. Considering the NP-
completeness of the Steiner tree problem, we use, instead,

the simpler-to-compute half-perimeter wire-length
(HPWL):

all nets

(-span -span)HPWL x y= +∑ , where

 1 1-span max(, ,) min(, ,)n nx x x x x= −K K
HPWL is known to estimate the minimum Steiner tree
exactly for 2- and 3-pin nets, and is considered a
reasonable estimate for 4-pin nets. From the net model, a
corresponding electrical model can be derived and used for
net delay estimation.
The electrical model consists of the output resistance of
the source sR , the output capacitance of the source sC ,

the branch resistance
kl

R of the destination sink k, a net

capacitance netC , a load capacitance
iLC of each sink i.

Let xl and yl denote the lengths of the x-span and y-span,

and let
kxl and

kyl be the distances between the source
and the destination sink in the x- and y- directions,
respectively. Then the resistance

kl
R and capacitance

kl
C of the net are computed as follows:

k k kl x x y yR r l r l= ⋅ + ⋅

k k kl x x y yC c l c l= ⋅ + ⋅

where xr , yr , xc , and yc denote the resistances and
capacitances per unit length in the x- and y- directions,
respectively. The net capacitance is defined as

net x x y yC c l c l= ⋅ + ⋅
and the Elmore net delay from the source pin to the sink
pin k is computed from:

net net all sinks
() ()

i k kS S L k l LD R C C C R C C= ⋅ + + + ⋅ +∑

During decomposition and placement, we maintain signal
arrival times at the circuit nodes. An arrival time of zero is
assigned to all primary inputs and the arrival times of all
other pins are computed by traversing the network starting
from the primary inputs towards the primary outputs
recursively. The network is not complete during synthesis,
however, and we need to approximate the interconnection
and node delays of intermediate nodes. During
constructive decomposition and placement, each node
generated up to the point is dealt as the final netlist and the
delay is computed each time in a greedy manner. Although
this delay might not be accurate in the final netlist, this
heuristic is chosen as to avoid selecting a critical part as a
decomposition node or a decomposition support.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

208

3.4 Constructive Placement Algorithm

In the constructive decomposition and placement flow, a
cell that needs to be placed as a new node is created and a
corresponding library cell is mapped. Our constructive
placement algorithm consists of two phases: optimal
location computation and legalization.
Optimal Location Computation. After a new node is
extracted and mapped to a library cell, an optimal location
of the mapped cell is computed for placement. This
location may overlap other previously-placed cells and
must be subsequently legalized during detailed placement.
We are given a single movable cell which is newly
mapped and a set of fixed cells connected to the movable
cell. We seek a placement of the movable cell such that the
bounding-box half-perimeter of all signal nets is
minimized. This essentially reduces to two independent
one-dimensional optimization problems that seek to
minimize a) the total x-span, and b) the total y-span of all
nets. All x-coordinates of cells must be placed on integer
sites and y-coordinates must be placed on integer rows.
The position of a cell iC is defined as the x-coordinate of
the left edge of the cell and the y-coordinate of the bottom
edge of the cell. Hereafter we will consider x-coordinates
only. We assume all pin positions to be the same as the
cell position. We use the following notations:
• The position of the leftmost (respectively, rightmost)

fixed pin of net N is denoted by ()L N (respectively,
()R N).

• The position of the movable pin of net N is denoted by
()M N .

The cell cost function cost ()i x of a movable cell for a
given position is

1 1
cost () max(() (),0) max(() (),0)m m

i j j j jj j
x M N R N L N M N

= =
= − + −∑ ∑

We compute the optimal bounding-box that minimizes the
cost function as follows. Create a sorted list of ()L N and

()R N of all m nets. Since the cell cost function is
piecewise linear and convex [6], the optimal location is the
interval of the two middle points in the sorted list. By
computing the interval for y-coordinates, we obtain an
optimal bounding-box with minimum cost. This bounding-
box is not always valid, thus need to be legalized.
Legalization. The global placer described in above
attempts to improve the quality of the integrated circuit
design by minimizing the wire lengths between connected
cells. However, the initial bounding-box location
computed is not always a legal location. In the actual row-
based physical device, cells must be assigned to locations
that align within a grid of discrete x (called site) and y
(called row) coordinates without any cell overlaps. In

general, the detailed placer slightly degrades wire length in
an effort to find legal cell placements. We have modified
Hill's Tetris algorithm [5], known to be simple and fast, for
the detailed placement.
Our detailed placer works as follows. Cells have the same
height but have variable width. When the detailed placer is
invoked, all cells except one movable cell are already
placed in legal locations. A movable cell is assigned its
initial optimal bounding box coordinates. For a given cell,
placement is performed by scanning through the rows of
the substrate and selecting the leftmost vacant site of each
row as a candidate site for placement of the given cell. A
site that does not contain a previously placed cell is called
vacant. A group of candidate sites is determined because
each row returns a candidate site. A site that is used as the
leftmost x-coordinate of the current cell is called the left
factor and a penalty will be paid if the leftmost vacant site
of a row is to the left of the left factor. The rightmost x-
coordinate of the current cell fanins can be used as the cell
left factor. Some candidate sites have high cost if they are
located to the left of the cell left factor. Other sites might
be invalid if they are too far to the left of the optimal
location. Among the candidate sites, a site with the least
cost is selected for the cell location. The cost function is
defined as the Manhattan distance between the optimal
bounding box and the candidate site in each row,
augmented by left factor penalty if any. Figure 8
summarizes the pseudo-code of the legalization algorithm.

Legalize (optimal_BBox, new_Cell){
 lowestCost = MAX_POSSIBLE;

 for (row = bottom; row < top; row++){ // scan rows

 candidate_site = row.leftmost_site();
 if(candidate_site + new_Cell.width() >
 row.rightmost_site())
 continue; // cannot fit here
 currentCost = optimal_BBox.manhattan_distTo(row,
 candidate_site) + new_Cell.left_factor();

 if(currentCost < lowestCost){
 lowestCost = currentCost;
 new_Cell.set_coordinate(row,candidate_Site);
 }
 }
 if(lowestCost == MAX_POSSIBLE)
 not_enough_space();
 return;
}

Fig. 8. Legalization algorithm

3.5 Experimental results

The algorithm described in previous section has been
implemented in C++ using the BDD package CUDD [25]
and sub-modules of the placement package Capo 8.8 [1].
We conducted our experiments on a 2.2 GHz 2x AMD
Opteron™ 248 machine with 8GB of RAM running the
Linux operating system. We modified the mcnc.genlib
library with parameters of 0.13 micron technologies

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

209

similar to the TSMC 0.13 technology library. The
evaluation was performed on the MCNC benchmarks [27].
In all experiments, the right-most cell boundary
coordinates of the fanins are used as the cell left factor.

Table 1 Node selection heuristics (Appendix 2)

In the first experiment, shown in Table 1, we applied
different node selection heuristics to a set of MCNC
benchmarks. The purpose of this experiment was to
quantify the relative benefits of using physical as well as
functional information in the node selection heuristics
during logic decomposition. Among all candidate nodes,
the node chosen next for decomposition was determined
according to the following six heuristics:

• Most Complex (“MC”): the node with the largest

BDD of its forward (unimplemented) logic
• Least Complex (“LC”): the node with the smallest

BDD of its forward logic
• Smallest Bounding Box (“BB”): the node with the

smallest bounding box of its fanins in the layout
• Least Delay (“DE”): the node whose fanins have the

least delay (recall that delay is computed with the
partial netlist as described in Section 3.4.)

• Least Logic Level (“LL”): the node with the least
(lowest) logic level

• Random (“RD”): the node selected randomly
Using the “MC” heuristic as a baseline, the columns in
Table 1 show the ratios of area, delay, and HPWL for each
of the remaining five heuristics compared to “MC”. Note
that “MC”, “LC”, and “LL” use logical information only,
whereas “BB” and “DE” utilize physical information. The
“RD” heuristic selects a random node among the
candidates.
Examination of the average improvement over the “MC”
heuristic (last row of Table 1) we note no particular
advantage to the use of physical instead of logical
information in choosing the next node to decompose.
Furthermore, we note that a random selection seems to be
no worse than a selection based on logical or physical
information.

Table 2 Area using different support selection heuristics (Appendix 2)

In the second experiment, shown in Table 2 through Table
4, we applied different support selection heuristics to the
same MCNC benchmarks. In the proposed algorithm, once
a node is selected for decomposition, a subset of its
input variables should be selected as the decomposition
support. This experiment compared the relative benefits of
using different support selection heuristics utilizing
physical and/or logical information. The shaded cells in
these tables indicate that bi-decomposition had to be
invoked after failing to find a support-reducing
decomposition. In all tables, the column labeled “baseline”

computes the symmetry group of the selected node and
selects as many variables as the support size from the
largest symmetry group. The column labeled “base+”
shows the “improvement” over the baseline when the
support is chosen from closely-located pins within the
same symmetry group or among many symmetry groups
of smaller sizes. The “mdv” heuristic selects the minimum
delay variables from the fanin list without utilizing logical
information. Those three heuristics take computation time

()O n where n is the number of primary input variables.
Since we did not find any benefit of utilizing physical
information over purely logical information from the
experimental results, we attempted a rather expensive
computation by trying all possible combinations of sizes 3
and 4 among fanins. In heuristics D through LGH, we try
to compute information from all combinations of the fanin
list and select the combination with the best result. We use
the following notations for logic or physical information
used to guide the support selection:

Table 3 Delay using different support selection heuristics (Appendix 2)

• “L”: the smallest logic level of the input combination
• “B”: the number of broken symmetry groups of the

fanins. A broken symmetry group is a symmetry
group from which some members are selected and
some members are not. For example, suppose the
symmetry groups computed are 1 1 2 3{ , , }G x x x= ,

2 4 5{ , }G x x= , 3 6{ }G x= , and 4 7{ }G x= . If

1 2 4 5, , ,x x x x are selected as the support, 1G is

broken, but 2G is not. In this case, B = 1.
• “G”: the number of symmetry groups selected. In the

previous example, G = 2.
• “D”: delay of the primitive cell to be mapped
• “H”: bounding box half-perimeter of the input

combination
• “T”: ready time of the input signal including

interconnect delay

Table 4 HPWL using different support selection heuristics (Appendix 2)

Note that the “L”, “B”, “G”, and “D” heuristics are based
on purely logical information whereas the “H” and “T”
heuristics are based on physical information. Heuristics
named with more than one letter use the heuristic
corresponding to the first letter as their main selection
criterion, and those of subsequent letters to break ties. In
the tables, column headings are shaded to indicate that
physical information is utilized. The last column in each
table shows the result of selecting the support randomly
and is much worse than any of the other heuristics.
In this experiment, we do find some cases in which the
delay is reduced by utilizing physical information. For

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

210

example, in the case of benchmark x4 heuristic “BH”
helped achieve a delay that is 85% of the baseline delay.
However, heuristic “LB” which is based on purely
functional information was able to achieve a similar result
(87% of baseline). We conclude, thus, that the use of
physical information in choosing the support for
decomposition is not superior to the use of purely logical
information in this setting of experiment.

4. Exploring the Search Space of Constructive
Approach

In previous section, we observed that our choice of delay
model and placement algorithm did not guide our
constructive flow appropriately so as to yield more
“natural” and “efficient” implementations of the function.
We explore the search space of our constructive logic and
layout synthesis approach by applying different delay
models and different placement methods in this section.

4.1 Delay Models

The constructive logic and layout synthesis flow is
independent of the choice of delay model. The delay
model described in section 3.3 was simple to compute;
however, the resulting delay estimations can become quite
inaccurate for placements where wire delays are dominant
compared with gate delays and for nets with large numbers
of pins. In this chapter, we use the Elmore delay based on
the star model proposed for analytical timing-driven
placement [23]. The main advantage of this model is that it
enables the calculation of individual delays between the
source pin and each sink pin of a net.
To estimate the circuit’s timing behavior, arrival times of
all primary inputs are assigned to 0 and those of all other
pins are computed by traversing the netlist staring from the
primary inputs towards the primary outputs in a breadth-
first-search manner. Tracing back from the primary
outputs with the largest arrival times to the primary inputs,
the critical paths of the circuit are identified. This star
model is assumed for the experimental work in this section.

4.2 Placement Algorithms

Our initial attempt at obtaining a legalized placement uses
the method patented by Hill [5]. This method is a fast and
simple greedy approach, but may produce results that are
far from those produced by state-of-the-art standard cell
placement algorithms such as simulated annealing,
analytic methods, or partitioning-based placement. If

interconnect delays dominate gate delays, slight
modifications in the arrangement of the cells can cause
large changes in the overall performance of the resulting
circuit. In order to test the influence of different placement
algorithms on logic decompositions in the constructive
design flow, we employ in this chapter the recent
placement technique Capo [1] which is based on recursive
multi-level partitioning.
Consider the small 13-input circuit generated by extracting
the output named “v” from the MCNC benchmark
“cu.blif”. Figure 9 shows five different layouts for this
circuit obtained as follows:

(a) “Baseline”: a layout generated by our
constructive flow using the “Tetris” placement
algorithm without placement information

(b) “Baseline & Capo”: a re-placed layout generated
by Capo on the result of “Baseline”

(c) “Base+”: a layout generated by the constructive
flow and the “Tetris” placement algorithm with
placement information

(d) “Base+ & Capo”: a re-placed layout using Capo
on the result of “Base+”.

(e) “each-Capo”: a layout generated by the
constructive flow utilizing the “base+” heuristic
and by running Capo after each cell created

Fig. 9 Different layouts obtained with the constructive flow and different
placement options: (a) Baseline (b) Baseline & Capo (c) Base+ (d) Base+

& Capo (e) each-Capo (Appendix 1)

The decomposition support selection heuristic “base+”
discussed in section 3.5 is used in (c), (d), and (e). This
heuristic is similar to the Candidate cube divisor selection
method proposed by Kutzschebauch and Stok [14]. As we
have seen in the parity circuit example in section 3.1, this
method selects closely-located pins within the same
symmetry group or among many symmetry groups of
smaller sizes.
Table 5 shows the results of applying the different
placement methods for circuit “v”. In this table, option (b)
shows improvements in terms of delay and HPWL
compared to option (5 to (a) by the utilizing physical
information during decomposition. Option (d) shows
improvement compared to (c) in terms of delay, but not in
HPWL, and option (e) shows the best result in terms of
area and HPWL; however its delay is worse than that of
(b). This is due to the fact that we have added more than
80% of white space for illustration purposes, and (b)
results in more library cells but shorter interconnections
among them. From this example we can see that different
placement methods might result in different logic
decompositions which are different in area, delay, and/or
HPWL.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

211

Table 5 Results of applying different placement algorithms for circuit “v”

 #cells area delay HPWL
(a) Baseline 23 180 2.90 666
(b) Baseline & Capo 23 180 1.99 553
(c) Base+ 17 129 2.49 554
(d) Base+ & Capo 17 129 2.61 498
(e) each-Capo 15 124 2.38 496
(e) each-Capo 15 124 2.38 496

4.3 Experimental Results

We implemented the Elmore delay based on the star model
within the framework of COLOSSEUM. We also integrated a
version of Capo with COLOSSEUM for placement. Other
experimental setups are same as is section 3.
In this experiment, shown in Table 6, we applied different
placement algorithms along with different support
selection heuristics as described in section 4.2. Using
option (a) as a baseline, the columns in Table 6 show the
ratios of area, delay, and HPWL for each of the remaining
four placement options compared to (a). Note that options
(a) and (b) use logical information only, whereas options
(c), (d), and (e) utilize physical information (i.e. actual
locations of already-placed cells). Since options (b) and (d)
use Capo to re-place the netlists generated by options (a)
and (c), respectively, the area does not change after the re-
placement. The last row shows the averages of the ratios
compared to the baseline option (a). Examining these
ratios, we note that HPWL improved by 14% with the
application of Capo in options (b), (d), and (e). However,
there was no improvement in delay when physical
information was utilized during logic decomposition; the
small enhancement in the average delay is mostly likely
due to the improvement in HPWL.

Table 6 Results of applying different placement options (Appendix 2)

In this experiment we use different delay models and
different placement options in order to test the
effectiveness of utilizing physical information in guiding
logic decomposition. The goal of this investigation was to
gain a deeper understanding of the constructive logic and
layout synthesis flow, in order to better explain the
observed insensitivity of its logic decomposition procedure
to the physical information created but its layout procedure.
Based on the experiments reported in this section, we can
state that; under the constructive synthesis paradigm, the
choice of node and support is always “local” and “greedy”
with the expectation that local optimization would guide
the process towards a global minimum solution. Obviously,
this is not guaranteed for general combinational
optimization, and seems to be almost always ineffective
when layout is interleaved with logic decomposition. A
plausible explanation for this outcome is that placement is

an inherently global optimization problem which we
restrict in the constructive flow to operate more “locally”
by placing the partial netlist of implemented nodes,
completely ignoring the possibly huge impact of the cells
to be extracted form the unimplemented logic. The
constructive approach, thus poses on inherent mismatch
between the requirements of constructive decomposition
and those of global placement.

5 . Further Investigation into the Results

In previous sections, we have examined that physical
information of the placed library primitives did not
improve the design quality of logic synthesis under the
constructive synthesis flow. This outcome is contrary to
our intuition that adding physical information would
improve the design quality of constructive synthesis. In
this section, we inspect reasons of this result more in detail.

5.1 Possible logic decompositions Experimental
Results

In this section, we first raise a question and answer to it in
the remaining of the section; are there no alternatives in
logic decomposition of a selected node at all? Before
answering to this question, we limit the scope of our
concern to constructive synthesis flow using pre-computed
and sorted supergates.
In order to enumerate the number of logic decompositions,
we analyze the functional symmetry profile for the
selected node of a circuit at each decomposition step. If
there are more than one symmetry groups, we examine the
one with the largest number of fanins only. If the largest
symmetry group has fanins no more than the fanin limit (a
fixed number 3 is used), we do not have alternative
decompositions using the largest symmetry group.
Otherwise, there are more than one decomposition choices.
For example, if the largest symmetry group has 5 fanins,
there exist 5 3 10C = decompositions. Using the same
fanin limit 3, there are 3nC different decompositions for

4n ³ . At each step of logic decompositions, we count
the number of different decompositions as shown in Table
7.

Table 7 Number of different decompositions with fanin limit 3 (Appendix
2)

One exception used in this enumeration is the case that a
node has exactly 4 fanins regardless of the symmetry
information. In that case, all 4 fanins are selected for
support and are replaced with a supergate pre-computed.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

212

Using these numbers obtained at each step, we compute
the average number of decompositions of the MCNC
benchmark. Table 8 shows an example of the symmetry
profiles of the selected node at each decomposition step of
circuits. Column 'Symmetry information' is read as
follows: fanin names within a bracket represent a group of
functionally symmetric fanins, and the number within
parentheses right after a fanin name represents logic depth
of the fanin. 'Fanins selected' shows the selected support
using the baseline support selection heuristic. Column '3-
to-t' is checked with 'No' in case we could not find
support-reducing decomposition with the selected support,
but have found one with the increased fanin limit 4.

Table 8 Symmetry information of the selected node at each
decomposition step: 9symml.blif (Appendix 2)

When we could not find support-reducing decomposition
after increasing the fanin limit to 4, the bi-decomposition
module was invoked. Be∑nchmark cm151a and cm152a
are such instances. However, there are cases that we could
find a supergate for mapping by choosing a different set of
support. We do not take this situation into account for our
enumeration.
In some benchmarks such as cm162a and cm85a, the size
of the largest symmetry group at each step is less than or
equals to the fanin limit (in other words, we do not have
any alternatives using symmetry group only), but could
find a better decomposition by choosing a different set of
support. Neither is the case of our consideration.

Table 9. Average number of decompositions and number of
decomposition steps (Appendix 2)

Table 9 summarizes the average number of
decompositions and the total number of decomposition
steps. (*) indicates that the circuit could not find support-
reducing decomposition and have used bi-decomposition
to finish decomposition. From this table, we notice that
many circuits do not exhibit highly-symmetric
functionality and there are only a few alternative
decompositions in those cases. A few benchmarks such as
cmb, count, and parity are highly symmetric circuits and
we have considerable number of decomposition choices.

5.2 Cases with decomposition choices

Since we have observed that the benchmarks used for our
experimentation do not have highly-symmetric
functionality and there are limited choices of logic
decompositions, we want to try all possible choices and
analyze the result for benchmarks which have more than
one decomposition choices. Even though there are a few
choices at each step, total number of possible
decompositions will blow up rapidly, without any

restriction. For this reason, we limit our decomposition by
trying different choices at a specific step but selecting
exactly one branch at all other steps. In this experiment,
interconnection delay is included for delay estimation
using star model.

Fig. 10 Example: A search process for a circuit with decomposition
choices (Appendix 1)

Figure 10 illustrates the search process of 9symml circuit
with this restriction. In this example, there is one
symmetry group, {1, 2, 3, 4, 5, 6, 7, 8, 9}. Since there are
9 fanins in this group, 9 3 84C = choices are possible at
the first step. For 84 possible branches, we perform exactly
one decomposition each and do not expand their children.
Similarly, we try 20 choices at the second step, and obtain
only one decomposition from each branch.
Based on this assumption, we can plot the result for each
benchmark. Based on the plotted chart (although we do not
include in this paper due to page limitation), we were able
to observe that it is hard to find any specific
decomposition that has superior quality in any criteria,
especially in delay.
We also compute the correlation coefficient between delay
and HPWL, which is a measure of linear association
between variables. The formula for the correlation r is:
 ,

∑ ∑∑ ∑
∑ ∑ ∑

−−

−
=

2222)()(yyNxxN

yxxyN
r

where N = number of pairs of scores

∑xy = sum of the products of paired scores

∑x = sum of x scores

∑y = sum of y scores

∑x2= sum of squared x scores.

The correlation coefficient between delay and HPWL are
shown in Table 10. From this table, it is hard to say that
there is any correlation between those two criteria. This
might tell us that HPWL did not help in reducing delay
overall, because HPWL of the whole circuit is not a direct
measure of the critical path delay.

Table 10 Correlation coefficient between delay and HPWL

Benchmark corr. coef. Logarithmic corr. coef.
9symml 0.052 0.049
c8 0.017 0.022
cc -0.089 -0.091
cm138a 0.147 0.151
cm163a 0.262 0.256
cmb -0.205 -0.214
count 0.163 0.159
cu 0.485 0.482

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

213

decod 0.323 0.325
i1 -0.110 -0.111
lal 0.235 0.232
majority 0.193 0.205
parity 0.120 0.119
pcle -0.183 -0.189
pm1 0.720 0.721
x4 -0.006 -0.006
Avg of
absolute val.

0.207 0.208

5.3 Summary

In this section we have analyzed two main reasons of the
negative result of our experiment. One is that the average
number of decompositions of circuits for our experiment is
quite low in most cases. This means that there are not very
many choices in decomposition and it is hard to improve
the design quality by utilizing physical location of placed
cells. The other reason is that the criteria of our interest
vary relatively small amount and the correlation of the
targeting delay and HPWL is very low, thus HPWL did
not guide very well to produce a fast circuit in this design
flow. This observation would provide an answer to the
question raised in this work.

6. Conclusions and Future Work

This paper has focused on extending constructive library-
aware logic decomposition approach by including
incremental physical placement phase and explored
hypothesis that this extension can only yield further
improvement in design quality. To test effectiveness of the
hypothesis, we developed and implemented the
COLOSSEUM system. The experimental result with
COLOSSEUM was not able to show any benefit to our
attempt at simultaneous logic and layout synthesis.
Although we have explored more possible options to test
our hypothesis on top of the COLOSSEUM framework, we
obtained another set of negative results. We also address
possible reasons of this outcome; mismatch of local and
greedy nature of constructive paradigm with a need of
global information in physical layout phase, and lack of
utilizing physical information in supergate pre-
computation step. We also analyzed two main reasons of
the negative result of our experiment in section 5.3.
This work introduces, develops and elaborates constructive
logic and layout synthesis method in the CAD flow. The
primary contribution of this work is that we extended the
original constructive library-aware logic decomposition
paradigm by adding an incremental physical placement
phase. This algorithm performs logic decomposition,

technology mapping, and physical placement as one,
utilizing physical layout information as well as logical
information.
The work presented in this paper does not provide a
complete answer to whether the constructive paradigm can
be improved further by its extensions. Some possible
extensions of this work are listed as follows:
• Further exploration of physical layout phase: This

work can be extended further to include physical
routing phase in the design flow. The final design
solution might be improved by utilizing routing
information at the time of logic decomposition.

• Libraries with flexibilities: In this work, all library
supergates are pre-computed and sorted according to
the criteria sought. The supergates computation
depends largely on library cell properties, such as gate
delay and area. One possible extension is to develop a
method that computes a set of library primitives that
can be mapped into a pattern by utilizing physical
information. Another possible extension is to consider
sharing a subset of a supergate when we select the
support for decomposition.

• Resynthesis by constructive logic and layout
synthesis: Instead of starting from scratch, we might
get a better solution by identifying a critical part of a
placed netlist and resynthesizing a subset of the
network using our constructive logic and layout
framework.

• Power-driven logic synthesis and physical design:
One of important optimization goals in DSM
technologies is power, which is not considered in this
work. Support selection heuristics, for example, can
be extended to include power optimization, since
interconnect power is directly related to wire length.

References
[1] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can

Recursive Bisection Alone Produce Routable Placements?”
Proc. of DAC, pp. 477 – 482, 2000. Software available at
http://vlsicad.eecs.umich.edu/BK/PDtools/

[2] S. Chatterjee and R. Brayton, “A New Incremental
Placement Algorithm and its Application to Congestion-
Aware Divisor Extraction,” Proc. of ICCAD, pp. 541-548,
2004.

[3] W. Gosti, Layout Aware Synthesis, Ph. D. Thesis, Univ. of
California, Berkeley, 2000.

[4] W. Gosti, S. Khatri, and A. Sangiovanni-Vincentelli,
“Addressing the Timing Closure Problem by Integrating
Logic Optimization and Placement,” Proc. of ICCAD, pp.
224-231, 2001.

[5] D. Hill, “Method and Systems for High Speed Detailed
Placement of Cells within an Integrated Circuit Design,” US
Patent 6370673, April 2002.

[6] A. B. Kahng, P. Tucker, and A. Zelikovsky, “Optimization
of Linear Placements for Wirelength Minimization with
Free Sites,” Proc. of ASPDAC, pp. 241-244, 1999

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

214

[7] L. N. Kannan, P. R. Suaris, and H.-G. Fang, “A Meth-
odology and Algorithms for Post-placement Delay Opti-
mization,” Proc. of DAC, pp. 327-332, 1994.

[8] V. Kravets, Constructive Multi-level Synthesis by Way of
Functional Properties, Ph. D. Thesis, Univ. of Michigan,
2001.

[9] V. Kravets and P. Kudva, “Understanding Metrics in Logic
Synthesis for Routability Enhancement,” Proc. of SLIP, pp.
3-6, 2003.

[10] V. Kravets and K. Sakallah, “Constructive Library-Aware
Synthesis Using Symmetries,” Proc. of DATE, pp. 208-216,
2000.

[11] V. Kravets and K. Sakallah, “Resynthesis of Multi-level
Circuits Under Tight Constraints Using Symbolic
Optimization,” Proc. of ICCAD, pp. 687-693, 2002.

[12] P. Kudva, A. Sullivan, and W. Bougherty, “Metrics for
Structural Logic Synthesis,” Proc. of ICCAD, pp. 551-556,
2002.

[13] T. Kutzschebauch and L. Stok, “Congestion Aware Layout
Driven Logic Synthesis,” Proc. of ICCAD, pp. 216-223,
2001.

[14] T. Kutzschebauch, and L. Stok, “Layout Driven Decom-
position with Congestion Consideration,” Proc. of DATE,
pp. 672-676, 2002.

[15] S. Liu, K. Pan, and M. Pedram, “Alleviating Routing
Congestion by Combining Logic Resynthesis and Linear
Placement,” Proc. of EuroDAC, pp. 578-582, 1993.

[16] Q. Liu and M. Marek-Sadowska, “Technology Mapping
with Pre-layout Wire Length Prediction,” IWLS, 2004.

[17] J. Lou, W. Chen, and M. Pedram, “Concurrent Logic
Restructuring and Placement for Timing Closure,” Proc. of
ICCAD, pp. 31-36, 1999.

[18] A. Mishchenko, B. Steinbach, and M. Perkowski, “An
Algorithm for Bi-Decomposition of Logic Functions,” Proc.
of DAC, pp. 103-108, 2001.

[19] A. Mishchenko, X. Wang, and T. Kam, “A New Enhanced
Constructive Decomposition and Mapping Algorithm,” Proc.
of DAC, pp. 143 – 148, 2003.

[20] M. Pedram and N. Bhat, “Layout Driven Technology
Mapping,” Proc. of DAC, pp. 99-105, 1991.

[21] M. Pedram and N. Bhat, “Layout Driven Logic Restruc-
turing/Decomposition,” Proc. of ICCAD, pp. 134-137, 1991.

[22] D. Pandini, L. Pileggi, and A. Strojwas, “Congestion-Aware
Logic Synthesis,” Proc. of DATE, pp. 664-671, 2002.

[23] B. M. Riess and G. G. Ettelt, “Speed: Fast and Efficient
Timing Driven Placement,” IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 377 – 380, 1995.

[24] J. Rubinstein, P. Penfield, and M. A. Horowitz, “Signal
Delay in RC Tree Networks,” IEEE Trans. on CAD, 2(3),
pp. 202-211, 1983.

[25] F. Somenzi, “CUDD: CU Decision Diagram Package,”
1997, http://vlsi.colorado.edu/~fabio/CUDD

[26] H. Vaishnav and M. Pedram, “Minimizing the Routing Cost
During Logic Extraction,” Proc. of DAC, pp. 70-75, 1995.

[27] S. Yang, “Logic Synthesis and Optimization Benchmarks,
Version 3.0,” Tech. Report, Microelectronics Center of
North Carolina (MCNC), 1991.

Dr. Yoonna Oh received the B.S.
and M.S. degree in Computer
Science from Seoul National
University and Ilinois Institute of
Technology in 1992, and 1999,
respectively, and Ph.D. degree in
Computer Science and
Engineering from the Univerisity
of Michigan, Ann Arbor, in 2007.
She is now working with

Semiconductor R&D Center, Samsung Electronics.

Dr. Yuncheol Baek received the
B.S., M.S. and Ph.D. degree in
Computer Science from Seoul
National University. During
2005-2007, he stayed at the
Department of Electrical
Engineering in Princeton
University, New Jersey, USA, as
a research fellow. He is an
Associate Professor at the

Division of Computer Software, Sangmyung University,
Seoul, Korea.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

215

Appendix 1 Large Figures

Fig. 6 Constructive logic and layout synthesis flow

Fig. 9 Different layouts obtained with the constructive flow and different placement options: (a) Baseline (b) Baseline & Capo (c) Base+ (d) Base+ &
Capo (e) each-Capo

(c) (d)

(e)

 F1

XOR2

(a)

(b)

(c)
 F2

F3

F1

F2

F3

XOR2

NAND NAND NAND

NAND

XOR2

(a) (b)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

216

Fig. 10 Example: A search process for a circuit with decomposition choices

Appendix 2 Large Tables

Table 1 Node selection heuristics

Area Delay HPWL
Name #I/#O

MC LC BB DE LL RD MC LC BB DE LL RD MC LC BB DE LL RD
9symml 9/1 290.3 100% 100% 100% 100% 100% 1.94 100% 100% 100% 100% 100% 430.6 100% 100% 100% 100% 100%

b1 3/4 45.8 100% 100% 100% 100% 100% 1.27 100% 100% 100% 100% 100% 110.9 106% 107% 100% 100% 105%
c8 28/18 646.7 100% 100% 100% 100% 100% 1.88 101% 100% 100% 100% 101% 3629.3 97% 102% 100% 100% 109%
cc 21/20 324.2 100% 100% 100% 100% 100% 1.65 99% 98% 97% 100% 100% 2126.1 103% 103% 103% 100% 96%
cht 47/36 947.1 100% 100% 100% 100% 100% 1.98 104% 101% 107% 100% 98% 10111.2 101% 103% 96% 100% 99%

cm138a 6/8 183.3 100% 100% 100% 100% 100% 1.57 100% 100% 100% 100% 100% 634.6 89% 97% 95% 100% 110%
cm151a 12/2 414.2 100% 100% 100% 100% 100% 1.86 100% 100% 100% 100% 100% 1009.3 105% 100% 100% 100% 100%
cm152a 11/1 174.8 100% 100% 100% 100% 100% 1.75 100% 100% 100% 100% 100% 453.1 100% 100% 100% 100% 100%
cm162a 14/5 312.3 99% 108% 100% 100% 101% 1.91 100% 102% 100% 100% 97% 923.5 103% 102% 95% 100% 109%
cm163a 16/5 176.5 100% 100% 100% 100% 100% 1.89 100% 100% 99% 100% 100% 792 97% 96% 101% 100% 108%
cm42a 4/10 105.2 100% 100% 100% 100% 100% 1.28 100% 100% 100% 100% 100% 510.5 94% 100% 100% 100% 106%
cm82a 5/3 101.8 100% 100% 100% 100% 100% 1.54 100% 100% 100% 100% 100% 172.6 124% 100% 100% 100% 100%
cm85a 11/3 339.5 100% 100% 100% 100% 100% 2.07 100% 101% 101% 100% 100% 683.4 119% 119% 119% 100% 106%
cmb 16/4 129 100% 100% 100% 100% 100% 1.47 100% 100% 100% 100% 101% 604.7 98% 99% 99% 100% 103%
count 35/16 750.3 102% 101% 104% 101% 100% 2.29 103% 102% 103% 92% 102% 5163.7 110% 101% 118% 99% 106%

cu 14/11 410.8 90% 96% 100% 100% 107% 2.16 89% 87% 99% 100% 99% 1435.9 80% 84% 88% 100% 109%
decod 5/16 232.5 100% 100% 100% 100% 100% 1.6 101% 100% 100% 100% 100% 1149.2 92% 100% 97% 100% 108%

i1 25/16 217.3 100% 100% 100% 100% 100% 1.77 100% 100% 98% 100% 99% 1837.4 101% 98% 99% 100% 102%
lal 26/19 509.2 97% 98% 97% 97% 103% 2.06 97% 98% 102% 100% 101% 2680.8 108% 104% 117% 116% 99%

majority 5/1 59.4 100% 100% 100% 100% 100% 1.49 100% 100% 100% 100% 100% 140.1 100% 100% 100% 100% 100%
parity 16/1 208.8 100% 100% 100% 100% 100% 1.76 100% 100% 100% 100% 100% 476.8 100% 100% 100% 100% 100%
pcle 19/9 337.8 100% 104% 98% 100% 99% 1.91 99% 100% 100% 100% 100% 1529.3 92% 94% 89% 100% 101%
pm1 16/13 264.8 100% 92% 100% 100% 96% 1.63 100% 98% 99% 100% 100% 1273.9 101% 104% 111% 100% 104%
sct 19/15 412.5 99% 105% 97% 100% 100% 2.01 95% 110% 95% 100% 100% 1872 97% 102% 93% 100% 99%

20 choices

{1, 2, 3, 4, 5, 6, 7, 8, 9}

{4, 5, 6, 7, 8, 9} {Y0} {Y3} {3, 5, 6, 7, 8, 9} {Y0} {Y3}

1, 2, 3 1, 2, 4

{1, 2, 3, 4, 5, 6} {Y0} {Y3}

7, 8, 9

...

...

{7, 8, 9} {Y0} {Y3} {Y4} {Y7}

4, 5, 6

{4, 5, 6} {Y0} {Y3} {Y4}

7, 8, 9

...

{Y0} {Y3} {Y4} {Y7} {Y8}

7, 8, 9

∅

Y0, Y3,

.

.

Fully-
decomposed

∅

4, 5, 6

.

.

.

.

.

.

3, 5, 6

∅

.

.

.

.

.

.

1, 2, 3

∅

.

.

.

.

.

.

...

84 choices

1 choice

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

217

t481 16/1 181.6 100% 100% 100% 100% 100% 1.74 100% 100% 100% 100% 100% 451.5 100% 100% 100% 100% 100%
tcon 17/16 122.2 100% 100% 100% 100% 100% 1.19 100% 100% 100% 100% 100% 1075.2 100% 100% 100% 100% 100%

unreg 36/16 775.7 100% 100% 99% 99% 100% 1.97 96% 94% 94% 100% 96% 4680.2 95% 97% 98% 100% 98%
x4 94/71 2627.6 94% 99% 99% 98% 103% 4.33 105% 132% 108% 103% 123% 32926.4 102% 113% 100% 101% 106%

AVG(%) 99% 100% 100% 100% 100% 100% 101% 100% 100% 101% 100% 101% 101% 101% 103%

Table 2 Area using different support selection heuristics

AREA baseline base+ mdv D LD LB LGD H BH BLH BT GLDT LH LBH LBT LGH Random
9symml 290 97% 97% 100% 100% 97% 100% 101% 101% 107% 97% 100% 107% 107% 97% 107% 120%

b1 46 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
c8 647 96% 117% 109% 119% 118% 110% 149% 120% 121% 108% 104% 143% 118% 118% 123% 151%
cc 324 94% 100% 98% 104% 87% 92% 141% 94% 93% 87% 92% 141% 93% 87% 103% 181%
cht 947 99% 100% 100% 100% 115% 100% 126% 122% 122% 115% 100% 125% 122% 115% 122% 109%

cm138a 183 100% 100% 83% 83% 91% 83% 91% 91% 91% 91% 83% 91% 91% 91% 91% 90%
cm151a 414 100% 100% 34% 34% 34% 34% 69% 69% 55% 34% 34% 59% 55% 34% 59% 101%
cm152a 175 100% 100% 54% 54% 72% 54% 99% 99% 91% 72% 54% 91% 91% 72% 91% 91%
cm162a 312 108% 102% 75% 107% 92% 103% 140% 96% 90% 75% 85% 114% 90% 75% 104% 143%
cm163a 177 101% 137% 110% 151% 150% 148% 142% 152% 143% 135% 122% 138% 152% 150% 156% 210%
cm42a 105 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
cm82a 102 100% 100% 132% 132% 132% 132% 132% 132% 132% 132% 132% 132% 132% 132% 132% 137%
cm85a 339 83% 103% 71% 113% 75% 85% 78% 78% 78% 85% 85% 78% 78% 85% 72% 129%
cmb 129 100% 100% 72% 72% 72% 72% 72% 72% 72% 72% 72% 72% 72% 72% 72% 155%

count 750 95% 145% 110% 126% 114% 114% 118% 110% 105% 112% 109% 120% 109% 116% 117% 214%
cu 411 95% 104% 82% 90% 107% 91% 126% 107% 122% 114% 91% 132% 122% 114% 105% 148%

decod 233 100% 100% 101% 101% 101% 101% 101% 101% 101% 101% 101% 101% 101% 101% 101% 136%
i1 217 95% 128% 109% 133% 116% 108% 92% 97% 97% 116% 108% 97% 103% 116% 97% 160%
lal 509 96% 139% 100% 146% 112% 98% 118% 98% 101% 112% 98% 116% 106% 114% 103% 205%

majority 59 100% 100% 71% 71% 71% 71% 80% 71% 71% 71% 71% 80% 71% 71% 71% 106%
parity 209 100% 100% 85% 85% 85% 85% 85% 85% 85% 85% 85% 85% 85% 85% 85% 100%
pcle 338 112% 136% 123% 152% 137% 120% 135% 125% 122% 133% 122% 140% 129% 137% 133% 150%
pm1 265 100% 100% 98% 91% 87% 87% 104% 87% 87% 87% 87% 104% 87% 87% 80% 136%
sct 412 105% 130% 99% 130% 117% 120% 128% 115% 114% 100% 107% 117% 127% 117% 116% 173%

t481 182 100% 100% 103% 100% 103% 107% 114% 100% 100% 103% 107% 120% 100% 103% 100% 101%
tcon 122 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

unreg 776 102% 100% 77% 87% 108% 87% 98% 98% 98% 108% 87% 98% 98% 108% 98% 99%
x4 2628 100% 153% 89% 149% 128% 106% 180% 96% 103% 111% 92% 175% 126% 131% 119% 176%

AVG(%) 99% 110% 92% 105% 101% 97% 111% 101% 100% 98% 94% 110% 102% 101% 102% 136%

Table 3 Delay using different support selection heuristics

DELAY baseline base+ mdv D LD LB LGD H BH BLH BT GLDT LH LBH LBT LGH Random
9symml 1.94 99% 99% 100% 100% 99% 100% 113% 113% 110% 99% 100% 110% 110% 99% 110% 117%

b1 1.27 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

c8 1.88 102% 97% 103% 103% 94% 96% 118% 99% 98% 96% 96% 101% 96% 94% 98% 116%

cc 1.65 101% 100% 100% 106% 99% 100% 111% 105% 99% 99% 100% 111% 99% 99% 108% 110%

cht 1.98 96% 100% 100% 100% 97% 100% 101% 103% 95% 97% 100% 96% 95% 97% 95% 103%

cm138a 1.57 100% 100% 97% 97% 97% 97% 97% 97% 97% 97% 97% 97% 97% 97% 97% 99%

cm151a 1.86 100% 100% 89% 89% 97% 89% 163% 163% 105% 97% 89% 105% 105% 97% 105% 116%

cm152a 1.75 100% 100% 87% 87% 103% 87% 122% 122% 107% 103% 87% 107% 107% 103% 107% 100%

cm162a 1.91 98% 94% 101% 94% 102% 94% 111% 103% 91% 90% 91% 97% 91% 90% 91% 115%

cm163a 1.89 97% 87% 104% 93% 87% 85% 99% 97% 95% 98% 95% 87% 86% 87% 86% 142%

cm42a 1.28 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

cm82a 1.54 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 102%

cm85a 2.07 101% 92% 113% 100% 94% 94% 90% 90% 90% 96% 94% 90% 90% 96% 91% 131%

cmb 1.47 100% 100% 105% 105% 105% 105% 105% 105% 105% 105% 105% 105% 105% 105% 105% 132%

count 2.29 96% 95% 130% 90% 85% 85% 109% 94% 81% 84% 84% 96% 82% 82% 93% 126%

cu 2.16 111% 101% 94% 88% 84% 87% 129% 94% 103% 96% 87% 97% 103% 96% 87% 100%

decod 1.6 100% 100% 89% 89% 91% 89% 91% 91% 91% 91% 89% 91% 91% 91% 91% 99%

i1 1.77 100% 110% 106% 107% 98% 98% 102% 95% 95% 98% 98% 98% 98% 98% 98% 133%

lal 2.06 91% 94% 99% 98% 102% 86% 101% 94% 87% 93% 86% 86% 94% 93% 90% 140%

majority 1.49 100% 100% 97% 97% 97% 97% 105% 97% 97% 97% 97% 105% 97% 97% 97% 108%

parity 1.76 98% 100% 102% 89% 89% 89% 89% 89% 89% 89% 89% 89% 89% 89% 89% 116%

pcle 1.91 102% 97% 109% 98% 95% 95% 103% 92% 92% 93% 97% 102% 92% 95% 95% 115%

pm1 1.63 99% 100% 108% 108% 101% 100% 105% 100% 100% 101% 100% 105% 100% 101% 106% 129%

sct 2.01 97% 93% 100% 99% 92% 92% 117% 101% 105% 91% 91% 92% 97% 92% 94% 113%

t481 1.74 100% 100% 123% 100% 108% 94% 120% 100% 100% 108% 94% 110% 100% 108% 100% 107%

tcon 1.19 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

unreg 1.97 108% 100% 97% 100% 107% 100% 100% 100% 100% 107% 100% 100% 100% 107% 100% 100%

x4 4.33 101% 99% 111% 101% 87% 89% 108% 85% 86% 87% 87% 87% 87% 93% 94% 112%

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

218

AVG(%) 100% 99% 102% 98% 97% 95% 107% 101% 97% 97% 95% 99% 97% 97% 97% 114%

Table 4 HPWL using different support selection heuristics

HPWL baseline base+ mdv D LD LB LGD H BH BLH BT GLDT LH LBH LBT LGH Random
9symml 431 99% 90% 100% 99% 89% 99% 107% 107% 108% 89% 99% 108% 108% 89% 108% 114%

b1 111 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
c8 3629 99% 101% 101% 102% 102% 97% 117% 104% 105% 98% 94% 108% 107% 102% 106% 108%
cc 2126 98% 100% 102% 104% 97% 103% 110% 100% 99% 97% 103% 110% 99% 97% 100% 129%
cht 10111 94% 100% 94% 94% 100% 94% 100% 98% 98% 100% 94% 100% 98% 100% 98% 104%

cm138a 635 100% 100% 70% 70% 77% 70% 77% 77% 77% 77% 70% 77% 77% 77% 77% 76%
cm151a 1009 100% 100% 44% 44% 44% 44% 77% 77% 60% 44% 44% 61% 60% 44% 61% 88%
cm152a 453 100% 100% 63% 63% 77% 63% 111% 111% 84% 77% 63% 84% 84% 77% 84% 90%
cm162a 924 93% 105% 91% 89% 103% 84% 150% 90% 99% 96% 81% 101% 99% 96% 95% 137%
cm163a 792 96% 95% 101% 105% 118% 106% 101% 102% 97% 107% 103% 94% 100% 118% 101% 148%
cm42a 511 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
cm82a 173 100% 100% 136% 136% 136% 136% 136% 136% 136% 136% 136% 136% 136% 136% 136% 140%
cm85a 683 102% 117% 95% 115% 104% 121% 92% 92% 92% 110% 121% 92% 92% 110% 83% 126%
cmb 605 98% 100% 94% 94% 94% 94% 94% 94% 94% 94% 94% 94% 94% 94% 94% 139%
count 5164 100% 128% 127% 119% 89% 89% 101% 97% 96% 99% 98% 98% 92% 89% 96% 158%

cu 1436 89% 105% 72% 76% 92% 80% 116% 86% 100% 96% 80% 100% 100% 96% 85% 120%
decod 1149 100% 100% 96% 96% 91% 96% 91% 91% 91% 91% 96% 91% 91% 91% 91% 107%

i1 1837 100% 104% 103% 106% 105% 105% 99% 99% 99% 105% 105% 100% 102% 105% 100% 106%
lal 2681 97% 140% 109% 153% 116% 98% 118% 98% 105% 109% 99% 113% 109% 111% 104% 166%

majority 140 100% 100% 99% 99% 99% 99% 95% 99% 99% 99% 99% 95% 99% 99% 99% 96%
parity 477 88% 100% 89% 80% 80% 80% 80% 80% 80% 80% 80% 80% 80% 80% 80% 142%
pcle 1529 90% 104% 103% 111% 94% 107% 110% 92% 95% 89% 98% 109% 92% 94% 99% 143%
pm1 1274 101% 100% 120% 102% 115% 116% 118% 111% 111% 115% 116% 118% 111% 115% 99% 123%
sct 1872 96% 111% 101% 118% 108% 106% 106% 104% 102% 103% 109% 106% 105% 108% 117% 139%

t481 452 100% 100% 110% 100% 106% 106% 115% 100% 100% 106% 106% 135% 100% 106% 100% 121%
tcon 1075 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

unreg 4680 100% 100% 94% 96% 105% 96% 107% 107% 107% 105% 96% 107% 107% 105% 107% 124%
x4 32926 95% 130% 101% 115% 118% 97% 127% 100% 101% 109% 103% 112% 108% 115% 108% 132%

AVG(%) 98% 105% 97% 100% 99% 96% 106% 98% 98% 98% 96% 101% 98% 98% 97% 121%

Table 6. Results of applying different placement options

 Area Delay HPWL
 (a)(b) (c)(d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)
9symml 282 103% 111% 3.06 93% 113% 139% 161% 415 92% 86% 87% 91%
b1 46 100% 100% 0.51 82% 100% 82% 82% 102 89% 100% 89% 89%
c8 638 98% 100% 2.26 88% 122% 72% 81% 1908 82% 99% 80% 80%
cc 324 93% 93% 1.53 111% 88% 82% 82% 1152 91% 98% 89% 89%
cht 947 101% 101% 2.58 70% 132% 88% 81% 4035 81% 100% 80% 80%
cm152a 175 100% 100% 1.31 95% 100% 95% 95% 321 90% 100% 90% 90%
cm162a 311 104% 117% 1.86 91% 109% 86% 96% 757 85% 96% 84% 92%
cm163a 177 107% 107% 1.56 95% 82% 78% 78% 516 87% 107% 92% 92%
cm42a 105 100% 100% 0.42 99% 100% 99% 99% 313 86% 100% 86% 86%
cm82a 102 100% 100% 0.96 94% 100% 94% 96% 163 97% 100% 97% 97%
cm85a 339 135% 133% 2.52 89% 117% 109% 118% 613 93% 127% 115% 112%
cmb 129 95% 95% 0.72 109% 114% 104% 104% 466 89% 94% 82% 82%
count 750 95% 92% 3.14 86% 113% 98% 99% 2306 85% 95% 80% 81%
cu 394 98% 98% 3.39 69% 94% 78% 88% 1172 71% 93% 75% 72%
decod 233 100% 100% 1.01 102% 100% 95% 95% 657 71% 100% 72% 72%
lal 519 94% 91% 2.65 81% 84% 80% 83% 1654 84% 101% 79% 78%
parity 209 100% 100% 3.00 91% 86% 83% 89% 359 91% 94% 84% 84%
pcle 336 113% 113% 1.78 98% 125% 144% 118% 951 85% 101% 83% 83%
pm1 253 103% 107% 1.06 107% 125% 98% 95% 849 81% 95% 82% 84%
sct 412 113% 113% 2.21 84% 136% 103% 95% 1216 86% 119% 88% 88%
T481 182 100% 100% 1.70 109% 99% 100% 109% 401 85% 103% 84% 85%
tcon 122 100% 100% 0.17 100% 100% 100% 100% 582 93% 100% 93% 93%
unreg 771 103% 103% 2.15 69% 128% 131% 138% 2249 82% 90% 79% 79%
AVG(%) 102% 103% 92% 107% 97% 99% 86% 100% 86% 86%

Table 7. Number of different decompositions with fanin limit 3

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

219

OF FANINS (n) 4 5 6 7 8 9 10 11 12 13 14 15 16
of decomp. (3nC) 4 10 20 35 56 84 120 165 220 286 364 455 560

Table 8. Symmetry information of the selected node at each decomposition step: 9symml.blif

9SYMML.BLIF
Step Node Symmetry information Fanins selected 3-to-t #decomp
1 52 {1(0), 2(0), 3(0), 4(0), 5(0), 6(0), 7(0), 8(0), 9(0)} 1 2 3 84
2 52 {4(0), 5(0), 6(0), 7(0), 8(0), 9(0)} {_Y0(1)} {_Y3(2)} 4 5 6 20
3 52 {7(0), 8(0), 9(0)} {_Y4(1)} {_Y0(1)} {_Y7(2)} {_Y3(2)} 7 8 9 1
4 52 {_Y4(1)} {_Y0(1)} {_Y8(1)} {_Y7(2)} {_Y11(2)} {_Y3(2)} _Y4 _Y0 _Y8 1
5 52 {_Y7(2)} {_Y11(2)} {_Y12(2)} {_Y13(2)} {_Y3(2)} _Y7 _Y11 _Y12 _Y13 No 1
6 52 {_Y3(2), _Y21(4)} {_Y18(4)} _Y3 _Y21 _Y18 1

Table 9. Average number of decompositions and number of decomposition steps

BENCHMARK AVERAGE # OF DECOMP. # OF STEPS BENCHMARK AVERAGE # OF DECOMP. # OF STEPS
9symml 18.0 6 count 53.7 93
b1 1.0 4 cu 7.0 30
c8 5.4 52 decod 5.5 32
cc 1.3 33 I1 9.8 24
cht 1.0 46 lal 2.1 60
cm138a 10.5 16 majority 2.5 2
cm151a 1.0 (*) 2 parity 191.6 7
cm152a 1.0 (*) 1 pcle 10.4 39
cm162a 1.0 25 pm1 3.7 27
cm163a 1.8 16 sct 2.7 49
cm42a 1.0 10 t481 1.0 13
cm82a 1.0 5 tcon 1.0 16
cm85a 1.0 16 unreg 1.0 47
cmb 83.4 20 x4 2.0 310

