
 IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

220

Manuscript received October 5, 2007.
Manuscript revised October 20, 2007.

Information Security Component Framework and Interfaces
for Implementation of SSL

Jong-Whoi Shin
jshin@kisa.or.kr

Korea Information Security Agency, Seoul, Korea

Summary
Various security APIs such as IETF GCS-API and GSS-API,
RSA Cryptoki, Microsoft CryptoAPI, and Intel CDSA are being
used in a variety of application areas requiring the information
security function. However, these proprietary standards are not
compatible, and the developer must use those APIs selectively
depending on the application environment or the programming
language. To resolve this problem, we propose the information
security component framework, while SSL (Secure Sockets
Layer) using the confidentiality and integrity component
interfaces has been implemented to verify validity of the
framework. The implemented SSL uses the lower-level SSL
component when establishing the RMI (Remote Method
Invocation) communication between components, as if the
security algorithm had been implemented by adding one more
layer on the TCP/IP.
Key words:
 Component Based Design, Application Programming Interface,
Secure Socket Layer, Remote Method Invocation.

1. Introduction

A Various APIs such as IETF GCS-API and GSS-API,
RSA Cryptoki, Microsoft CryptoAPI, and Intel CDSA are
being used in a variety of application areas requiring the
information security function [1-4]. Each proprietary
standard was developed to fit the application area of each
vendor, as integrating security APIs that were designed for
different purposes and usages was out of the question. In
other words, various security APIs were all developed
separately, have experienced some difficulty in adopting
the application in the distributed environment due to a lack
of compatibility. To resolve this problem, we introduced a
component design technique because: 1) the component
ensures the enhanced timeliness and productivity of
development by preparing the software for the various
requirements, and also 2) it encourages standardization
between various products.

This paper proposes the information security component
framework and interfaces in order to bring about the
compatibility of the information security functions, and
efforts are being made to standardize the interface of the
information security components. To verify the validity
and stability of the framework development, the SSL

(Secure Sockets Layer) was implemented using SSL v3.0
specification in the J2EE environment. Finally, we
confirmed the validity of our proposal through
demonstrating the book shopping service. This paper is
organized as follows: in section 2, the information security
service component interface has been described, while in
section 3 the design and implementation of the SSL
component have been outlined. The conclusions drawn are
detailed in section 4.

2. Information Security Service Component
Interface

2.1 Information Security Component

The information security component is an independent
software component with more than one function to
support the information security service at each IT
application area. It is designed to provide the core
information security functions of the current security API
such as confidentiality, integrity, authentication, access
control, and non-repudiation [5, 6].

 Confidentiality service component
Confidentiality is necessary to conceal important
information that is saved or transmitted in online and
offline environments from an unauthorized or unidentified
party. This component provides encryption and decryption
functions based on the conventional encryption algorithm
and the public key encryption algorithm.

 Integrity service component
Integrity is required to protect information content
transmitted via the network from being illegally created,
modified, or deleted. This component provides a hash
algorithm and a MAC (Message Authentication Code)
generation function.

 Authentication service component
Authentication is required to clearly identify an entity
through information exchange. This component provides a
digital signature algorithm and an integrity service
function.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

221

Table 1 : Descriptions of Component Layers

Layers Sub-layers Descriptions

Domain
Specific

Components for application
areas (Manufacturing, Financing
etc.)

Domain
Layer

Domain
Common

Components used for the
specific domains commonly

Business
Management

Components used for e-biz,
XML/EDI domains etc. with
business logic

Common
Layer

Business
Common

Components used for several
domains commonly without
business logic

Platform
Layer

None Component Architecture such as
EJB, COM+, CCM

 Access control service component

This component provides the authentication service
function and prevents unauthorized usage of the resources
by controlling access based on access rights.

 Non-repudiation service component
This component is used to prevent the repudiation of a
transmission and its content between the sender and
receiver. It provides the authentication service function.

The component should be used with reliability, by
ensuring the stability of the information security
component itself, when using the information security
function based on the component. While the component
has scalability and universality by nature, the component
itself may contain security vulnerability, which may also
be caused at the component composition stage. To secure
component security, and to use it as the information
security component, the vulnerability possibility should be
removed. Currently, many studies are being carried out on
this subject. The framework proposed by this study
stresses the need to minimize this problem when creating
the component, by using the interface. To this end, the
pre-conditions and post-conditions are clearly presented
for the I/O stage of each interface.

2.2 The Information Security Component Framework

Since general users are flooded with many security APIs,
there is some confusion about the layer location of the
information security component and the location of the
developed component for the interface. Fig. 1 shows the
information security component framework that was
designed with a 3 tier layer (basic distributed environment
structure) and the hierarchical structure of the component
area. To provide the information security service to every
component area in this hierarchical structure, the
information security component is included in the general

Fig. 1 Information Security Component Framework

business layer. Various component-based information
security products that belong to the upper layer have been
implemented with the basic information security
components provided by the information security
component framework, such as confidentiality, integrity,
authentication, non-repudiation, and the access control
components. Information security components located at
the general business layer in the information security
component framework provide the information security
service function for the components at another layer.

2.3 The Confidentiality and Integrity Service
Component Interfaces

The confidentiality and integrity service component
interfaces, which are located at the low level business
common layer, provide a service that encrypts/decrypts or
digest the message to provide the confidentiality and
integrity functions. Design is based on the IDL (Interface
Definition Language) interface to secure universality on
the different platform. Several methods can be used to
define the interface. IDL is not needed if Visibroker
Caffein is used, or the interface can be defined without
knowing the IDL if Java RMI or RMI-IIOP is used.
However, in order to secure availability, which is one of
the requirements with which the information security
component should be equipped, the easy to learn standard
interface definition language as defined by the OMG
(Object Management Group) [7]. The IDL was used to
specify IConfidentiality and IIntegrity– the confidentiality
and integrity service components. These interface
algorithms are represented in Table 2 and 3.

In these algorithms, SetAlgorithm operation sets the name
or the identifier of the encryption/description or digest

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

222

Table 2 : Algorithm of the Confidentiality Service Component Interface (IConfidentiality)
exception UnSupport {string why};

 exception IllegalState {string why};

 exception InvalidState {string why};

 exception InternalState {string why};

void setAlgorithm(in string cipherAlgorithm)

out string[] getAvailableAlgorithms()

out string getAlgorithm()

void initialize(in string opMode, in byte[] key, in

byte[] iv)

out byte[] update(in byte[] message)

out byte[] finalize(in byte[] message)

out int getLength(in int inputLength)

void setEncodingType(in string codingType)

out string getEncodingType()

void setNameType(in string IDType)

out string getNameType()

algorithm to be used as the confidentiality and integrity
functions, with the pre-condition that the value of the
cipherAlgorithm and digestAlgorithm should be OID,
general name or NULL, and that the components should
be initialized before calling operation. The post-condition
is that proper exception handling should be performed –
IllegalState if the component is not initialized, UnSupport
if the supporting algorithm is not available, or
InternalState if the internal problem occurs inside the
component. Fig. 2 and 3 show the sequence diagram of the
confidentiality and integrity components.

3. Designing and Implementing the SSL
Component

3.1 SSL Provided by Current Components

As more components are used, the demand for security
concerning component usage increases, and the platform
development companies begin to support the security
solutions at the server level to accommodate those
requirements. Authentication, authorization, and usage of
the SSL (Secure Sockets Layer) constitute the security
issues in the component platform. The SSL component is
located at the high level business common layer according
to our definition. The following methods can be used to
set the security in the component platform [8].

Table 3 : Algorithm of the Integrity Service Component Interface (IIntegrity)
exception UnSupport {string why};

 exception IllegalState {string why};

 exception InvalidState {string why};

 exception InternalState {string why};

void setAlgorithm(in string digestAlgorithm)

out string[] getAvailableAlgorithms()

out string getAlgorithm()

void initialize(in byte[] macKey)

void update(in byte[] message)

out byte[] finalize(in byte[] message)

out int getLength()

void setEncodingType(in string codingType)

out string getEncodingType()

void setNameType(in string IDType)

out string getNameType()

 Declarative method

When the security requirement is set by the deploy tool,
the container handles the security requirements properly in
the manner of a transaction handling, without affecting the
code.

 Programming method

Setting the security requirements by programming requires
application of the security requirements at the code level.
Each time the code is modified, compilation and execution
should be performed again. A fine-grained security setting
is possible. Selecting one of two methodologies is a matter
of maintaining the balance of convenience and control.
SSL is a security communication protocol developed by
Netscape to provide confidentiality and integrity through
mutual authentication and encryption in the TCP/IP.

Generally, SSL is included in the browser and web server,
and used for various web communication protocols with
the HTTPS format. If the new SSL component is
implemented, fine-grained security can be set: discovery
and interface in the business component are easy to use,
and various encryption mechanisms including the local
encryption algorithm can be set according to the security
policy of the platform.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

223

Fig. 2 Sequence Diagram of the Confidentiality Component

3.2 SSL based on the Confidentiality and Integrity
Service Components

In this structure (Fig. 4), the SSL components at the lower
level are used when establishing the RMI communication
between components, as the security algorithm is
implemented in SSL by adding one more step to the
TCP/IP. When the Caller component requests the security
connection to the Callee component and uses the SSL, the
Callee requests the creation of the SSLServer component,
and the Caller creates the SSLClient component, and
exchanges the encryption algorithm and session key that
will be used by the client and server via the SSL
handshake protocol. When the handshaking process is
complete, RMI parameters and the actual message equal to
the result value are encrypted/decrypted using the
encryption algorithm that was exchanged, and the security
of the exchanged message is provided by
creating/verifying the MAC.

Fig. 4 Transmission of the RMI-based SSL Message

 Fig. 3 Sequence Diagram of the Integrity Component

The execution methods are as follows :
1) The caller requests SSL connection (secure connection) to
callee.
2) Callee creates the SSLServer component object.
3) Caller creates the SSLClient component.
4) Execute the handshaking protocol between SSLClient
and SSLServer.
5) Encrypts the RMI transmission message, using the
handshaking result.

When execution of the SSL handshaking protocol is
complete, the messages are encrypted or transferred as the
parameter by calculating the MAC using IConfidentiality
and IIntegrity based on the SSLClient component
algorithm, which was decided when calling by the
methods of the Callee component and Caller component.

Likewise, Caller verifies the MAC using the defined
algorithm to ensure integrity, and decrypts the received
message using the defined encryption algorithm. The same
method is used when sending the processing result of the
callee to the caller. This implementation method is not
limited by the specific component platform environment,
since the lower TCP/IP socket is not directly used.

This approach has two advantages: 1) it is possible to
implement the security communication only using RMI of
EJB, and 2) it does not limited to EJB environment due to
using TCP/IP socket indirectly. Fig. 5 shows the sequence
diagram of SSL and Fig. 6 shows the deployment of
IConfidentiality and IIntegrity Components.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

224

Fig. 5. Sequence Diagram of SSL

In the result of testing for correctness, the implemented
SSL using our component interfaces carried out correctly
the confidentiality and integrity functions without errors.
Fig. 7 shows the result of financial transaction using SSL
component in book shopping service. Consequently, the
number of orders and payment was accurately fulfilled.
The implementation environments are shown in the Table 4.

Fig. 6. Deployment of IConfidentiality and IIntegrity Components

a) Ordering Process b) Payment Process

Fig. 7. Book Shopping Service using SSL component

Table 4. Implementation Environments

Types Tools

Test Server Window 2000

Programming Language J2SDK 1.4

Web and EJB server J2EE

Encryption Library J/LOCK (Proprietary)

DBMS Oracle 9i

4. Conclusion

This paper proposed the information security component
framework for compatibility of security APIs by
introducing the component design technique. To verify the
validity of the proposed framework, the method for
implementing SSL v3.0 using the EJB component in the
J2EE environment has been described. By introducing a
component design technique that is more advanced than
the current security APIs, the quality of the software
requiring the security service should be ensured. Finally,
we expect that the proposed framework is to enhance
system development productivity and compatibility.

References
[1] S J. kabat, M. Upadhyay, "Generic Security Service API

Version 2 : Java Bindings", IETF RFC2853, June 2000.
[2] RSA Lab., "PKCS #11: Cryptographic Token Interface

Standard", RSA, August 28, 2002
[3] V. Smyslov, "Simple Cryptographic Program Interface

(Crypto API).", IETF RFC 2628, June 1999.
[4] TOG, "Common Security: CDSA and CSSM, Version 2",

Open Group, May 2000.
[5] ISO 7498-2, “Information processing systems - Open

Systems Interconnection - Basic Reference Model - Part 2:
Security Architecture", 1989.

[6] S. A. Hissam, D. Carney, D. Plakosh, DoD Security Needs
and COTS-Based Systems, Carnegie Mellon SEI, Sept.
1998.

[7] OMG Laboratories, "OMG IDL Syntax and Semantics",
OMG, July 2002.

[8] SUN, http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Security.html

Jong-Whoi Shin received M.S. and Ph.D
degrees in Computer Science and
Technology from Korea University, South
Korea, in 2001 and 2007, respectively. He is
working for the Korea Information Security
Agency as a principal researcher. His
research interests include security for mobile
ad hoc wireless networks, ubiquitous sensor
networks, security APIs and intrusion

tolerant systems.

