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Summary 
 
In this paper, we present a mathematical model that 

describes the problem of parallel download from 
multiple mirror sites. Based on the model, we present 
algorithms for selecting the best subset of mirror sites for 
parallel download. The versions of brutal force 
algorithms and genetic algorithms are implemented. 
Performance of these algorithms on the simulated 
network topology as well as a real-world network 
topology is presented. 
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1. Introduction 
With the recent development of internet, we are able 

to retrieve documents from multiple server sites, like the 
mirror sites, to increase the downloading speed, make 
better use of available network bandwidth and parallel 
processing speed of servers.  

Recent work by Rodriguez, Kirpal, and Biersack [[1] 
studied how to use the existing HTTP protocol for 
retrieving documents from mirror sites in parallel to 
reduce the download time and to improve the 
reliability.  The proposed approach utilizes the HTTP 1.1 
byte range header to retrieve specific data in a mirror 
server site, which requires no changes on existing server 
and client settings.  

However, choosing the best mirror sites is not a 
trivial task and a bad choice will give a poor 
performance. Testing data [[1, 2] shows that the 
performance of a bad choice might be 10 times slower 
than the best choice.  

The document delivery speed between a server and a 
client depends on the server load, the file retrieving 
speed at the server, the available bandwidth between the 
server and the client, and the client load.  Given a client, 

the document delivery speed from a particular server can 
be estimated by downloading a common short document 
existing on all mirror servers. Application layer anycast 
was proposed for selecting one of the replicated web 
server [9]. 

By using networking measurement tools, like 
pathchar, cprobe, we can estimate the network bottleneck 
and available bandwidth [3].  Kevin Lai and Mary Baker 
of Stanford University improve accuracy of 
the bottleneck bandwidth estimation by using better 
filtering technique in dynamic environment [4]. However, 
the accuracy of current network measurement methods 
still needed to be improved. 

In this paper, we investigate two problems: one deals 
with finding the maximum parallel download speed 
without restricting the number of mirror servers. We call 
it pds problem. The other deals with finding the best 
group of k servers for parallel download. We called it k-
pds problem. It is assumed that the network topology, the 
path bandwidth and server performance are known and 
static. Two versions of brutal force algorithm, as well as 
two versions of genetic algorithm, were implemented.  

GT-ITM (Georgia Tech Internetwork Topology 
Models), which is one of the most commonly used 
internet topology models [6], is used to generate network 
topologies of varying sizes for evaluating their impact on 
the performance of the algorithms.  

This paper is structured as follows. Section 2 defines 
the problems.  Section 3 presents the algorithms for 
selecting multiple mirror servers for parallel download. 
Section 4 discusses the performance results. Section 5 is 
the conclusion. 

 

2. Selecting Multiple Mirror Sites for 
Parallel Download 

Assume that the network topology, the path 
bandwidth and server performance are static, the path 
between two end nodes will be fixed. The routing path 
map between a client and a set of mirror servers can then 
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be modeled as a tree. We also assume that the documents 
to be retrieved are available on all mirror sites.  

2.1. Network Model 
Let G=(V, E) be a graph models the network 

topology, where V represents the set of nodes including 
those of the mirror server nodes, the clients, and the 
routers between the clients and the mirror server nodes; 
E represents the set of edges or link segments that 
connect the nodes in the network.  Let M be the set of 
mirror servers. For a mirror server m, speed(m) 
represents the document retrieval and transfer speed of m. 
For an edge e, speed(e) represents the available 
bandwidth on edge e.  

Given a client c and a set of mirror server M in G, 
there exists a set of shortest paths, P, from each of the 
mirror servers to the client c. Let path(c,m) be the path 
from mirror server m to the client c. Each path p in P, 
consists of a set of edges, e1,…,en. where n is the number 
of edges, or link segments in p.  Without other traffic, the 
transfer speed over a path p in P, speed(p), is decided by 
the link segment with the smallest available bandwidth: 

 Speed(p)=min{speed(e1),…,speed(en)}.  
Without other traffic, the end-to-end download speed for 
selecting a mirror server, m, can be defined as 
endSpeed(c, m) and  

endSpeed(c,m)=min{speed(m),speed(path(c,m))}. 
Let S be the subset of mirror servers selected for 

parallel download and n be the number of mirror servers 
in S. S={S1, S2,…,Sn}. Let pds(c, S) be the parallel 
download speed of using mirror server set S to client c. 
Note that if all paths from the mirror server in S to client 
c do not share any link segment. Then  

pds(c, S)=∑
=

n

i

iScendSpeed
1

),( .  

 Unfortunately, some of these mirror servers may 
share some link segments to the client c. The actual 
download speed from a set of mirror servers may then be 
limited by the available bandwidth of the shared link 
segments.  

 Note that the set of link segments of path set  P forms 
a tree. See Figure 1. The leaf nodes of the tree, S1, S2, S3, 
and S4, are mirror server nodes with 30, 25, 20, 9 as their 
document retrieval and transfer speed. R1, R2, and R3 are 
the router nodes and root node of the tree is the client c. 
The edge label represents the available bandwidth of the 
edge. For the non-leaf node r, let mds(r, S) be the 
maximum download speed at node r using mirror server 
set S. 

 mds(r,S)= ∑
=

)(

1
)),(),(min(

rntree

i
ii Srmdsespeed   (1) 

where ntree(r) is the number of subtrees underneath r, 
and ei is the edge that connects r to the subtree ri. It is a 

recursive function. mds(m,S)=speed(m) if m is a mirror 
server node in S.  mds(r, S)=pds(c, S) if r is the client 
node. 

2.2. Problems to be solved: 
There are several problems related to parallel 

download from a set of mirror servers. The first problem 
is the pds problem: given a network topology G, a client 
c, a set of mirror servers S, find the maximum download 
speed pds(c, S). The related question is how many mirror 
sites are needed to achieve the global max speed and 
how to choose the mirror sites? We can solve these 
problems with formula (1) above. 

We have implemented a parallel download program 
similar to that in reference [1], and observed that the 
performance peaks typically at 5 or 6 Redhat mirror 
servers for a Linux machine at UCCS. Part of the reason 
is the re-assembly overhead. Therefore if we only want 
to choose a certain number of mirror sites, say 5 sites, 
what is the maximum download speed for 5 mirror sites? 
And a related question is which 5 sites to choose for 
achieving this speed?  This is referred to as k-pds 
problem. 

Let k-pds(c,S) be the maximum parallel download 
speed for the client c to use k of the mirror server set S, 
and k-pdsSubset(c, S) be the optimal subset of k servers 
with the maximum parallel download speed.   

 
k-pds(c,S)=max{mds(c, S’)|S’∈S, S’ has k nodes}     

mds(c, S’)= ∑
=

)(

1
))',(),(min(

rntree

i
ii Srmdsespeed    

(2) 
In Figure 1, we give an example using formula (1) 

and (2). 
mds(R2,S)=min(mds(S1,S),5)+min(mds(S2,S),8)=mi

n(30,5)+min(25,8)=13, similarly, mds(R3, S)=16, 
mds(R1,S)=min(mds(R2,S),40)+min(mds(R3,S),30)=

min(13,40)+min(16,30)=29, 
pds(c, S)=mds(c, S)=mds(R1, S), 
3-

pds(c,S)=max{mds(c,{S1,S2,S3}),mds(c,{S1,S2,S4}) 
,mds(c,{S1,S3,S4}),mds(c,{S2,S3,S4})}=max{20,22,21,
24}=24, and the subset of mirror servers to use 3-
pdsSubset(c,S)={S2,S3,S4}. Similarly, 2-pds(c,S)=17 
and 2-pdsSubset(c, S)={S2,S4}.  
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S={S1,S2,S3,S4}
mds(R2,S)=13
mds(R3,S)=16
mds(R1,S)=29

pds(c,S)=mds(c,S)=29
3-pds(c,S)=3-pds(c,{S2,S3,S4})=24

2-pds(c,S)=2-pds(c,{S2,S4})=17
1-pds(c,S)=1-pds(c,{S4})=9

Figure 1. Parallel Download Tree and
related download speed values.

 

3. Algorithm Implementation 
Versions of brutal force algorithms and genetic 

algorithms were developed to solve the problem. 
 

a) Brutal Force Algorithm for pds: 
We use the algorithm to find the maximum parallel 

download speed pds(c, S). We refer to it as BF-pds 
algorithm. It implements formula (1) in Section 2.1. The 
complexity of this algorithm in worst case scenario is 
O(n), where n is the number of nodes in the network 
topology. 

This algorithm is quick, but we have no control over 
how many mirror sites and which mirror sites to be 
chosen. In practice, we use it to find the upper bound of 
the maximum parallel download speed in network 
topology. 
 
b) Brutal Force Algorithm for k-pds: 

We use the algorithm to find the maximum download 
speed for the client c to use k of the mirror server set S, 
which is k-pds(c, S). We refer to it as BF-k-pds 
algorithm. It implements formula (2) in Section 2.2. The 
complexity of this algorithm in worse case scenario is 
O(nk), where n is the number of nodes, and k is the 
number of servers we want to choose.  
 
c) Genetic Algorithm 

We implement a fix-length genetic algorithm and a 
variable-length genetic algorithm.  

The fix-length algorithm is used to find the k-
pds(c,S) speed, the length of chromosomes is k and fixed. 
We refer to it as GA-k-pds algorithm. 

The variable-length algorithm is used to find the 
pds(c, S), the length of chromosomes is smaller than a 
given number, and can be changed. We refer to it as GA-
pds algorithm. 

Formula (1) and (2) in Section 2 are recursive 
functions, therefore it is difficult to implement them in 
genetic algorithm. We used a revised version in genetic 
algorithm by scanning through all the server nodes to 
client node.  

The variable-length genetic algorithm works as 
follow: 

1) Assign the sequential server number, node number and 
path number to denote each server, node and path. 
Assign the initial bandwidth and server speed. 

2) Initialize the first generation of chromosomes with 
random length by filling server number in chromosome. 

3) Crossover and mutation at certain probability.  
Make sure no duplicated server in chromosome, and the 
length of chromosome is less than the given number. 
Several different crossover and mutation methods have 
been combined together for better performance [8]. 

4) Fitness function. For a given chromosome S’, use the 
max download speed mds(c, S’) as fitness function.  

5) Run certain generations, and output the result. 
 
Genetic algorithm provides more control and 

flexibility over the server selection. For example, if there 
are multiple selections of mirror servers, and all 
selections achieve the max download speed pds(c, S) or 
k-pds(c, S), how to choose the best one from all these 
selections? We can easily implement the selection 
criteria in genetic algorithm.  

4. Testing Results 
We tested the algorithms on simulated network 

topologies as well as a real-world network topology  
Figure 2 is a sample routing tree with 20 nodes and 

10 mirror sites [1]. Below is the testing result: 
 

20 nodes, 10 mirror sites 
BF-pds 0.6 s 
BF-k-pds 10 s 
GA-k-pds 1.5 s 
GA-pds 1.5 s 

  (s: second) 
Figure 4 is a sample routing tree with 114 nodes and 

11 mirror sites, starting from a machine in UCCS, to the 
mirror sites of Redhat  [5]. Below is the testing result 

 
114 nodes, 11 mirror sites 
BF-pds 0.7 s 
BF-k-pds 2 m 
GA-k-pds 2 s 
GA-pds 2 s 

  (s: second, m: minute) 
Figure 3 is a sample transit-stub hierarchical network 

topology derived from GT-ITM [7], we can derive 
routing tree structure from the network topology, by 
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assuming the route from node to node is always the 
shortest route in terms of network bandwidth. Below is 
the test result on GT-ITM simulated network: 

 

 
BF-

pds 
BF-

k-pds 
GA-

k-pds 
GA-

pds 
150 nodes, 

20 mirror sites 0.8 s 2 m 2 s 2 s 

200 n, 20 m 0.8 s 2.5 
m 2 s 2 s 

300 n, 30 m 0.9 s 3 m 2 s 2 s 

500 n, 50 m 0.9s 7 m 5 s 5 s 

800 n, 100 m 1 s 12 m 6 s 6 s 
1000 n, 100 

m 1 s 20 m 7 s 7 s 
1000 n, 200 

m 1 s 30 m 8 s 8 s 
  (s: second, m: minute) 
Figure 5 is a chart of algorithm execution time vs. 

simulated network size. BF-k-pds algorithm execution 
time uses primary y axis (on the left), and is measured by 
minutes. BF-pds, GA-pds and GA-k-pds algorithm 
execution time use secondary y axis (on the right), and 
are measured by seconds. 

 
 

5. Conclusion 
We discuss the related problems of selecting subset 

of mirror servers for parallel download. Given a network 
topology, a client and a set of mirror servers, we 
presented brutal force algorithms and genetic algorithms 
for finding the maximum parallel download speed pds(c, 
S) and for finding the subset of mirror server with 
maximum parallel download speeding  k-pds(c, S), given 
the size of the subset as k.  

Further work is needed to investigate how effective 
are the above algorithms in selecting the right subset of 
mirror servers for parallel download. 
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Figure 2. A sample routing tree with 20 nodes and 10 
mirror sites [1]. 

 
 

 
Figure 3. A sample transit-stub hierarchical network 

topology generate in GIT-ITM [6]. 
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Figure 4. Network Topology of a UCCS client to a subset of Redhat mirror servers. 
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