
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

273

Manuscript received October 5, 2007

Manuscript revised October 20, 2007

Algorithms for Selecting Multiple Mirror Sites for Parallel
Download

Yu Cai C. Edward Chow

 Michigan Technological University University of Colorado at Colorado Springs
 Houghton, MI 49931, USA Colorado Springs, CO 80933, USA

Summary

In this paper, we present a mathematical model that

describes the problem of parallel download from
multiple mirror sites. Based on the model, we present
algorithms for selecting the best subset of mirror sites for
parallel download. The versions of brutal force
algorithms and genetic algorithms are implemented.
Performance of these algorithms on the simulated
network topology as well as a real-world network
topology is presented.

Key words:

 Server selection, Parallel download, Genetic
algorithms.

1. Introduction
With the recent development of internet, we are able

to retrieve documents from multiple server sites, like the
mirror sites, to increase the downloading speed, make
better use of available network bandwidth and parallel
processing speed of servers.

Recent work by Rodriguez, Kirpal, and Biersack [[1]
studied how to use the existing HTTP protocol for
retrieving documents from mirror sites in parallel to
reduce the download time and to improve the
reliability. The proposed approach utilizes the HTTP 1.1
byte range header to retrieve specific data in a mirror
server site, which requires no changes on existing server
and client settings.

However, choosing the best mirror sites is not a
trivial task and a bad choice will give a poor
performance. Testing data [[1, 2] shows that the
performance of a bad choice might be 10 times slower
than the best choice.

The document delivery speed between a server and a
client depends on the server load, the file retrieving
speed at the server, the available bandwidth between the
server and the client, and the client load. Given a client,

the document delivery speed from a particular server can
be estimated by downloading a common short document
existing on all mirror servers. Application layer anycast
was proposed for selecting one of the replicated web
server [9].

By using networking measurement tools, like
pathchar, cprobe, we can estimate the network bottleneck
and available bandwidth [3]. Kevin Lai and Mary Baker
of Stanford University improve accuracy of
the bottleneck bandwidth estimation by using better
filtering technique in dynamic environment [4]. However,
the accuracy of current network measurement methods
still needed to be improved.

In this paper, we investigate two problems: one deals
with finding the maximum parallel download speed
without restricting the number of mirror servers. We call
it pds problem. The other deals with finding the best
group of k servers for parallel download. We called it k-
pds problem. It is assumed that the network topology, the
path bandwidth and server performance are known and
static. Two versions of brutal force algorithm, as well as
two versions of genetic algorithm, were implemented.

GT-ITM (Georgia Tech Internetwork Topology
Models), which is one of the most commonly used
internet topology models [6], is used to generate network
topologies of varying sizes for evaluating their impact on
the performance of the algorithms.

This paper is structured as follows. Section 2 defines
the problems. Section 3 presents the algorithms for
selecting multiple mirror servers for parallel download.
Section 4 discusses the performance results. Section 5 is
the conclusion.

2. Selecting Multiple Mirror Sites for
Parallel Download

Assume that the network topology, the path
bandwidth and server performance are static, the path
between two end nodes will be fixed. The routing path
map between a client and a set of mirror servers can then

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

274

{

be modeled as a tree. We also assume that the documents
to be retrieved are available on all mirror sites.

2.1. Network Model
Let G=(V, E) be a graph models the network

topology, where V represents the set of nodes including
those of the mirror server nodes, the clients, and the
routers between the clients and the mirror server nodes;
E represents the set of edges or link segments that
connect the nodes in the network. Let M be the set of
mirror servers. For a mirror server m, speed(m)
represents the document retrieval and transfer speed of m.
For an edge e, speed(e) represents the available
bandwidth on edge e.

Given a client c and a set of mirror server M in G,
there exists a set of shortest paths, P, from each of the
mirror servers to the client c. Let path(c,m) be the path
from mirror server m to the client c. Each path p in P,
consists of a set of edges, e1,…,en. where n is the number
of edges, or link segments in p. Without other traffic, the
transfer speed over a path p in P, speed(p), is decided by
the link segment with the smallest available bandwidth:

 Speed(p)=min{speed(e1),…,speed(en)}.
Without other traffic, the end-to-end download speed for
selecting a mirror server, m, can be defined as
endSpeed(c, m) and

endSpeed(c,m)=min{speed(m),speed(path(c,m))}.
Let S be the subset of mirror servers selected for

parallel download and n be the number of mirror servers
in S. S={S1, S2,…,Sn}. Let pds(c, S) be the parallel
download speed of using mirror server set S to client c.
Note that if all paths from the mirror server in S to client
c do not share any link segment. Then

pds(c, S)=∑
=

n

i

iScendSpeed
1

),(.

 Unfortunately, some of these mirror servers may
share some link segments to the client c. The actual
download speed from a set of mirror servers may then be
limited by the available bandwidth of the shared link
segments.

 Note that the set of link segments of path set P forms
a tree. See Figure 1. The leaf nodes of the tree, S1, S2, S3,
and S4, are mirror server nodes with 30, 25, 20, 9 as their
document retrieval and transfer speed. R1, R2, and R3 are
the router nodes and root node of the tree is the client c.
The edge label represents the available bandwidth of the
edge. For the non-leaf node r, let mds(r, S) be the
maximum download speed at node r using mirror server
set S.

 mds(r,S)= ∑
=

)(

1
)),(),(min(

rntree

i
ii Srmdsespeed (1)

where ntree(r) is the number of subtrees underneath r,
and ei is the edge that connects r to the subtree ri. It is a

recursive function. mds(m,S)=speed(m) if m is a mirror
server node in S. mds(r, S)=pds(c, S) if r is the client
node.

2.2. Problems to be solved:
There are several problems related to parallel

download from a set of mirror servers. The first problem
is the pds problem: given a network topology G, a client
c, a set of mirror servers S, find the maximum download
speed pds(c, S). The related question is how many mirror
sites are needed to achieve the global max speed and
how to choose the mirror sites? We can solve these
problems with formula (1) above.

We have implemented a parallel download program
similar to that in reference [1], and observed that the
performance peaks typically at 5 or 6 Redhat mirror
servers for a Linux machine at UCCS. Part of the reason
is the re-assembly overhead. Therefore if we only want
to choose a certain number of mirror sites, say 5 sites,
what is the maximum download speed for 5 mirror sites?
And a related question is which 5 sites to choose for
achieving this speed? This is referred to as k-pds
problem.

Let k-pds(c,S) be the maximum parallel download
speed for the client c to use k of the mirror server set S,
and k-pdsSubset(c, S) be the optimal subset of k servers
with the maximum parallel download speed.

k-pds(c,S)=max{mds(c, S’)|S’∈S, S’ has k nodes}

mds(c, S’)= ∑
=

)(

1
))',(),(min(

rntree

i
ii Srmdsespeed

(2)
In Figure 1, we give an example using formula (1)

and (2).
mds(R2,S)=min(mds(S1,S),5)+min(mds(S2,S),8)=mi

n(30,5)+min(25,8)=13, similarly, mds(R3, S)=16,
mds(R1,S)=min(mds(R2,S),40)+min(mds(R3,S),30)=

min(13,40)+min(16,30)=29,
pds(c, S)=mds(c, S)=mds(R1, S),
3-

pds(c,S)=max{mds(c,{S1,S2,S3}),mds(c,{S1,S2,S4})
,mds(c,{S1,S3,S4}),mds(c,{S2,S3,S4})}=max{20,22,21,
24}=24, and the subset of mirror servers to use 3-
pdsSubset(c,S)={S2,S3,S4}. Similarly, 2-pds(c,S)=17
and 2-pdsSubset(c, S)={S2,S4}.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

275

S1 S2 S3 S4

R2
R3

R1

c

30 25 20 9

5 8 7 10

40 30

100

S={S1,S2,S3,S4}
mds(R2,S)=13
mds(R3,S)=16
mds(R1,S)=29

pds(c,S)=mds(c,S)=29
3-pds(c,S)=3-pds(c,{S2,S3,S4})=24

2-pds(c,S)=2-pds(c,{S2,S4})=17
1-pds(c,S)=1-pds(c,{S4})=9

Figure 1. Parallel Download Tree and
related download speed values.

3. Algorithm Implementation
Versions of brutal force algorithms and genetic

algorithms were developed to solve the problem.

a) Brutal Force Algorithm for pds:
We use the algorithm to find the maximum parallel

download speed pds(c, S). We refer to it as BF-pds
algorithm. It implements formula (1) in Section 2.1. The
complexity of this algorithm in worst case scenario is
O(n), where n is the number of nodes in the network
topology.

This algorithm is quick, but we have no control over
how many mirror sites and which mirror sites to be
chosen. In practice, we use it to find the upper bound of
the maximum parallel download speed in network
topology.

b) Brutal Force Algorithm for k-pds:

We use the algorithm to find the maximum download
speed for the client c to use k of the mirror server set S,
which is k-pds(c, S). We refer to it as BF-k-pds
algorithm. It implements formula (2) in Section 2.2. The
complexity of this algorithm in worse case scenario is
O(nk), where n is the number of nodes, and k is the
number of servers we want to choose.

c) Genetic Algorithm

We implement a fix-length genetic algorithm and a
variable-length genetic algorithm.

The fix-length algorithm is used to find the k-
pds(c,S) speed, the length of chromosomes is k and fixed.
We refer to it as GA-k-pds algorithm.

The variable-length algorithm is used to find the
pds(c, S), the length of chromosomes is smaller than a
given number, and can be changed. We refer to it as GA-
pds algorithm.

Formula (1) and (2) in Section 2 are recursive
functions, therefore it is difficult to implement them in
genetic algorithm. We used a revised version in genetic
algorithm by scanning through all the server nodes to
client node.

The variable-length genetic algorithm works as
follow:

1) Assign the sequential server number, node number and
path number to denote each server, node and path.
Assign the initial bandwidth and server speed.

2) Initialize the first generation of chromosomes with
random length by filling server number in chromosome.

3) Crossover and mutation at certain probability.
Make sure no duplicated server in chromosome, and the
length of chromosome is less than the given number.
Several different crossover and mutation methods have
been combined together for better performance [8].

4) Fitness function. For a given chromosome S’, use the
max download speed mds(c, S’) as fitness function.

5) Run certain generations, and output the result.

Genetic algorithm provides more control and

flexibility over the server selection. For example, if there
are multiple selections of mirror servers, and all
selections achieve the max download speed pds(c, S) or
k-pds(c, S), how to choose the best one from all these
selections? We can easily implement the selection
criteria in genetic algorithm.

4. Testing Results
We tested the algorithms on simulated network

topologies as well as a real-world network topology
Figure 2 is a sample routing tree with 20 nodes and

10 mirror sites [1]. Below is the testing result:

20 nodes, 10 mirror sites
BF-pds 0.6 s
BF-k-pds 10 s
GA-k-pds 1.5 s
GA-pds 1.5 s

 (s: second)
Figure 4 is a sample routing tree with 114 nodes and

11 mirror sites, starting from a machine in UCCS, to the
mirror sites of Redhat [5]. Below is the testing result

114 nodes, 11 mirror sites
BF-pds 0.7 s
BF-k-pds 2 m
GA-k-pds 2 s
GA-pds 2 s

 (s: second, m: minute)
Figure 3 is a sample transit-stub hierarchical network

topology derived from GT-ITM [7], we can derive
routing tree structure from the network topology, by

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

276

assuming the route from node to node is always the
shortest route in terms of network bandwidth. Below is
the test result on GT-ITM simulated network:

BF-

pds
BF-

k-pds
GA-

k-pds
GA-

pds
150 nodes,

20 mirror sites 0.8 s 2 m 2 s 2 s

200 n, 20 m 0.8 s 2.5
m 2 s 2 s

300 n, 30 m 0.9 s 3 m 2 s 2 s

500 n, 50 m 0.9s 7 m 5 s 5 s

800 n, 100 m 1 s 12 m 6 s 6 s
1000 n, 100

m 1 s 20 m 7 s 7 s
1000 n, 200

m 1 s 30 m 8 s 8 s
 (s: second, m: minute)
Figure 5 is a chart of algorithm execution time vs.

simulated network size. BF-k-pds algorithm execution
time uses primary y axis (on the left), and is measured by
minutes. BF-pds, GA-pds and GA-k-pds algorithm
execution time use secondary y axis (on the right), and
are measured by seconds.

5. Conclusion
We discuss the related problems of selecting subset

of mirror servers for parallel download. Given a network
topology, a client and a set of mirror servers, we
presented brutal force algorithms and genetic algorithms
for finding the maximum parallel download speed pds(c,
S) and for finding the subset of mirror server with
maximum parallel download speeding k-pds(c, S), given
the size of the subset as k.

Further work is needed to investigate how effective
are the above algorithms in selecting the right subset of
mirror servers for parallel download.

6. Reference
[1] Pablo Rodriguez Andreas Kirpal Ernst W. Biersack,

“Parallel-Access for Mirror Sites in the Internet”,
Proceeding of Infocom, 2000.
http://www.ieee-infocom.org/2000/papers/65.ps

[2] Ratul Mahajan, “Aggregate Based Congestion:
Detection and Control”, April 2001. University of
Washington.

[3] Vern Paxson, “Measurements and Analysis of End-
to-End Internet Dynamics ”, Ph.D. dissertation at UC
Berkley.

[4] Kevin Lai and Mary Baker, "Nettimer: A Tool for
Measuring Bottleneck Link Bandwidth", Proceedings
of the USENIX Symposium on Internet Technologies
and Systems, March 2001.

[5] Jing Yang and Zhong Li, “Selecting best Redhat
Mirror Sites for parallel download”,
http://cs.uccs.edu/~cs522/proj2001/jyang.ppt

[6] Ellen W. Zegura, “GT-ITM: Georgia Tech
Internetwork Topology Models”,
http://www.cc.gatech.edu/projects/gtitm/

[7] Thierry Ernst, “Existing NS-2 Presentation: GT-ITM.
Topologies”,http://www.inrialpes.fr/planete/pub/mob
iwan/Documents/ernst-ns-mobiwan-0501.ppt

[8] John R. Koza, “Genetic Programming”, MIT Press,
1992.

[9] Ellen W. Zegura, Mostafa H. Ammar, Zongming Fei,
and Samrat Bhattacharjee, “Application-Layer
Anycasting: A Server Selection Architecture and Use
in a Replicated Web Service,” IEEE/ACM
TRANSACTIONS ON NETWORKING, VOL. 8,
NO. 4, AUGUST 2000, pp. 455-466.

Figure 2. A sample routing tree with 20 nodes and 10
mirror sites [1].

Figure 3. A sample transit-stub hierarchical network

topology generate in GIT-ITM [6].

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

277

 Dr. Yu Cai is an
assistant professor at School
of Technology in Michigan
Technological University.
His research interests
include network protocols,
distributed systems and

cyber security. He received his Ph.D. in
Computer Science from University of Colorado.
He is a member of IEEE and ACM.

Dr. C. Edward Chow is a
professor in Department of
Computer Science at University
of Colorado at Colorado
Springs. He received his Ph.D.
in Computer Science from
University of Texas at Austin.
His research interests include
distributed systems and

network security.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

278

Figure 4. Network Topology of a UCCS client to a subset of Redhat mirror servers.

algorithm execution time vs. simulated network size

0

5

10

15

20

25

30

35

20(10) 114(11) 150(20) 200(20) 300(30) 500(50) 800(100) 1000(100) 1000(200)

number of simulated network nodes

BF
 a

lg
or

ith
m

 e
xe

cu
tio

n
tim

e
(m

in
ut

e)

0

5

10

15

20

25

30

35

40

45

50

G
A

 a
lg

or
ith

m
 e

xe
cu

tio
n

tim
e

(s
ec

on
d)

BF-pds BF-k-pds GA-k-pds GA-pds
Figure 5: Algorithm execution time vs. simulated network size.

BF-k-pds algorithm execution time is measured by minutes.
BF-pds, GA-pds and GA-k-pds algorithm execution time are measured by seconds.

W ait

C S

u ccsedg e

u ccs

u car

gb r1-p 60

gb r3-p 70

gb r4-p 80 s

g grl-p 37 0s

att-g w

0.so-2 -x1 2

0 .so-3-t1 2s

 0 .so-3 -t12 l

 so -1-0 -x1 2

po s5-0

19 4 .a tm 8

cy bertra ils

cyb-r2-a tm 0

nin .cy be r

gbr2-p 100

gr1-p 310 0

p acbell

 g ige2 -1

atl

g w 2 -n etra il

13 0

cc-rsto ne

trillian

gbr2-p 60

gb r3-p 80
gb r4-p 70 d

gb r4-p 80 d

 sl-b b2 2-s j

 s l-bb 20 -an a

 sl-bb 23 -an a

 s l-bb 21 -fw

 sl-g w 40 -fw

 208 .3 0

 16 4 .5 8 .1

 ilgw -o kc

 164 .5 8 .1 0

 a tlas

gb r3-p60 d

gb r4-p 40 a

gb r4-p 30 w

gb r3-p 60 w

gb r3-p20 n

gb r5-p60 n

gb r3-p 36 0n

12 .12 5 .50

true- love .r

 acr2 -so net2

 ac r2-lo ok s

co reo ute r2

xco re2 .san

ow en-n ero

co rv-car1 -g

o rstb rd r-g w

ors tsw 1-g w

ub u.n w s

o arne t.c le

o eb c2 -atm 6

1 99 .18 .11 5

krc5-a tm 1

tc4 -a tm 3

se1 -atm 3

con cre te l

16 4 .1 07 .1 26

c is .o h io

a tm 2 -0

15 7 .a t-6 -0

0 .so-0 -1 -0

0 .so-3 -0 -0

0 .so-7 -0 -0

0 .so-0 -1 -0

1 86 .a tm 9-0

C isco0 .xm

c65 09-core

m irro r.p a

2 6

10 8

12 8

1 41

48 4

3 31

99 84 (31 4)

27 5

36

1 23 7

1 48

1 83

5 7

3 3

4 2

15

48

8 0

51 2

1 28

3 60

33

54

1 856

4 05

3 61

30 5

25 6

2 10

1 21 6

42

35

54

43

32 3

2 96

71 7

1 14

33 28

10 9

52

9 81

64

65

361
36

45

39

41

55

20 8

2 9

5 7

90

2 8

5 5

53

57

15 7

19

7 8

U n it: M b/s

 acr2 -loo kc

597

35

120

 acr1 -loo kc

iar1- lo ok c

m erit-its

a tm 1 -0-0

cc -rtr

ad m -r tr

kedzie -rtr

p a-rtr

84

20 3

1 77

17

m irro r.p a

19 2 .20 5 .3 2

c1 -po s6-0

c1-p os1 -c

c1 -po s3-0

c1 -po s2-0

c1 -po s1-n

w b b1 -po s2

10 .2 52 .0

m irro r-no

59 1

56 32

33 3

6 75

1 .5

3 .3

2 13 3

427

nr1 -p3 60

m es1 .m ae

1 28 .16 1 .3

 n2 33 -15 0c

n2 33 -15 0n

n 23 3-1 50 a

m irro r.arc

35

34

15

0 .so -2-x 11

0 .so-3 -t11

 0 .so -6-t1 1

 0 .so-1 -x1 1

0 .os-7-x r1

1 93 .a tm 6

1 91 .a tm 6

ih ets-g w

fillm o re

29

44 5

16 9

2 5

56

1 94

6 7
< 20

20 - 100
100 - 500
500 - 1000
> 1000

