
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

294

Manuscript received October 5, 2007

Manuscript revised October 20, 2007

PACT: A new approach to self healing mechanism
(Autonomic Computing)

Prof. V.K. Pachghare

Lecturer, Computer Engineering & IT Department,
College of Engineering, Pune, (An autonomous Institute of Government of Maharashtra, India)

Summary
Self managing and autonomic computing are emerging as
new significant trend in design of computer systems. As
we try to make the systems as autonomous as possible,
new problems and new solutions emerge. The purpose of
this paper is to consider the problem of self healing
system and to suggest some solutions. We need systems
which can detect their failure and could not only recover
from it but also should be able to resume their work from
the point of failure. This paper will talk about one such
new approach towards this problem. It talks about an
experimental framework created to build such
applications. The programs written using this framework
will be able to save their states and could start working
after restart from the point it was stuck.

1. Introduction

Computer systems are becoming more demanding,
complex and challenging. The data to be processed is
moving from more to huge. The world of Internet has
given a programmer to do more complex and demanding
software solutions.

Organizations that develop complex computer systems
are facing additional market conditions such as demands
for more functionality, ever decreasing time-to-market,
high employment costs, leading to a requirement to utilize
only semi-skilled employees. The other factor that needs
to be considered is that the performance of these systems
can never be compromised and they are never expected to
fail. But what happens if those systems go down for some
reason and the processing ever done is lost. This may
result in big loss to an organization. (e.g. A banking
software reading data from mainframe and calculating
total deposit, interest and loss or profit of the bank. And at
crucial point of time, program goes down and needs to be
restarted. The cost involved in reacquiring the data will be
huge.)

2. Need of autonomic computing

Simply stated from above, managing complex systems
has grown too costly and prone to error. People under
such pressure make mistakes, increasing the potential of

system outages with a concurrent impact on business. The
following points will reveal more about need of
autonomic computing.
It is now estimated that one-third to one-half of a
company’s total IT budget is spent preventing or
recovering from crashes.

● Nick Tabellion, CTO of Fujitsu Softek, said: “The
commonly used number is: For every dollar to purchase
storage, you spend $9 to have someone manage it.”
● Aberdeen Group studies show that administrative cost
can account for 60 to 75 percent of the overall cost of
database ownership (this includes administrative tools,
installation, upgrade and deployment, training,
administrator salaries, and service and support from
database suppliers).
● When you examine data on the root cause of computer
system outages, you find that about 40 percent are caused
by operator error, and the reason is not because operators
are not well-trained or do not have the right capabilities.
Rather, it is because the complexities of today’s computer
systems are too difficult to understand, and IT operators
and managers are under pressure to make decisions about
problems in seconds.
● A Yankee Group report estimated that downtime caused
by security incidents cost as much as $4,500,000 per hour
for brokerages and $2,600,000 for banking firms.
● David J. Clancy, chief of the Computational Sciences
Division at the NASA Ames Research Center,
underscored the problem of the increasing systems
complexity issues: “Forty percent of the group’s software
work is devoted to test,” he said, and added, “As the range
of behavior of a system grows, the test problem grows
exponentially.”

In a survey made on causes of outrages in four areas, most
frequently found outrages are:
For systems: operational error, user error, third party
software error, internally developed software problem,
inadequate change control, lack of automated processes.
● For networks: performance overload, peak load
problems, insufficient bandwidth.
● For database: out of disk space, log file full,
performance overload.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

295

● For applications: application error, inadequate change
control, operational error, non automated application
exceptions.
This results in the need for self-managing systems and
new development approaches that can deal with real-life
complexity and uncertainty. The challenge is to produce
practical methodologies and techniques for the
development of such self-managing systems, so that they
may be leveraged to deal with failure and recover easily.

3. What is autonomic computing?

Autonomic computing can be seen as a holistic vision that
enables a computing system to “deliver much more
automation than the sum of its individually self-managed
parts”. A system is considered a collection of computing
resources working together to perform a specific set of
functions.

While the definition of autonomic computing will
likely transform as contributing technologies mature, the
following list suggests eight defining characteristics of an
autonomic system.

● To be autonomic, a system needs to “know itself”—and
consist of components that also possess a system identity.
● An autonomic system must configure and reconfigure
itself under varying and unpredictable conditions.
● An autonomic system never settles for the status quo—
it always looks for ways to optimize its workings.
● An autonomic system must perform something akin to
healing—it must be able to recover from routine and
extraordinary events that might cause some parts to
malfunction.
● A virtual world is no less dangerous than the physical
one, so an autonomic computing system must be an expert
in self-protection.
● An autonomic computing system knows its
environment and the context surrounding its activity, and
acts accordingly.
● An autonomic system cannot exist in a hermetic
environment (and must adhere to open standards).
● Perhaps most critical for the user, an autonomic
computing system will anticipate the optimized resources
needed to meet a user’s information needs while keeping
its complexity hidden.

Fig. 1 Autonomic Computing Tree

The standard PACT is designed by considering almost

all these characteristics. But before the PACT gets
explained, there are some fundamentals about autonomic
computing those should be overlooked and understand the
category of the standard.

Self configuring: The system environment keeps
changing regularly, so it is required that it should be able
to adjust itself to the particular conditions and act
“wisely”. When software and hardware systems have the
ability to define themselves “on the fly”, they are self
configuring. This aspect allows system to install new
feature as requirement with no disruption of services.
Systems must be designed to provide this aspect at a
feature level with capabilities such as plug and play
devices, configuration setup wizards, and wireless server
management. And all this should be done without or
minimum human intervention. The goal of autonomic
computing is to provide self-configuration capabilities for
the entire IT infrastructure, not just individual servers,
software, and storage devices.

Self healing: This is the focus of discussion in this paper.
PACT is basically self healing mechanism dealing with
processes. Systems discover, diagnose, and react to
disruptions. For a system to be self-healing, it must be
able to recover from a failed component by first detecting
and isolating the failed component, taking it off line,
fixing or isolating the failed component, and
reintroducing the fixed or replacement component into
service without any apparent application disruption.
Systems will need to predict problems and take actions to
prevent the failure from having an impact on applications.
The self-healing objective must be to minimize all
outages in order to keep enterprise applications up and
available at all times. Developers of system components
need to focus on maximizing the reliability and
availability design of each hardware and software product

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

296

toward continuous availability. The fig.1 represents all
fundamental self properties of autonomic system.

Self optimizing: Systems monitor and tune resources
automatically. Self-optimization requires hardware and
software systems to efficiently maximize resource
utilization to meet end-user needs without human
intervention. The systems may include industry leading
technologies such as logical partitioning, dynamic
workload management, and dynamic server clustering.
These kinds of capabilities should be extended across
multiple heterogeneous systems to provide a single
collection of computing resources that could be managed
by a “logical” workload manager across the enterprise.
Resource allocation and workload management must
allow dynamic redistribution of workloads to systems that
have the necessary resources to meet workload
requirements.
Similarly, storage, databases, networks, and other
resources must be continually tuned to enable efficient
operations even in unpredictable environments. Features
must be introduced to allow the enterprise to optimize
resource usage across the collection of systems within
their infrastructure, while also maintaining their flexibility
to meet the ever-changing needs of the enterprise.

Fig.2.Four fundamental “self” of autonomic computing

Self protecting: Systems anticipate, detect, identify, and
protect themselves from attacks from anywhere. Self-
protecting systems must have the ability to define and
manage user access to all computing resources within the
enterprise, to protect against unauthorized resource access,
to detect intrusions and report and prevent these activities
as they occur, and to provide backup and recovery
capabilities that are as secure as the original resource
management systems. Systems will need to build on top
of a number of core security technologies already
available today, including LDAP (Lightweight Directory

Access Protocol), Kerberos, hardware encryption, and
SSL (Secure Socket Layer). Capabilities must be provided
to more easily understand and handle user identities in
various contexts, removing the burden from
administrators.

4. Need of industry standard

Most IT infrastructures are composed of components
supplied by different vendors. Open industry standards
are the key to the construction of autonomic computing
systems. Systems will need more standardization to
introduce a uniform approach to instrumentation and data
collection, dynamic configuration, and operation.
Uniformity will allow the intersystem exchange of
instrumentation and control information to create the
basis for collaboration and autonomic behavior among
heterogeneous systems.
For example, in storage systems, a standard that has been
proposed for specifying data collection items is the
Bluefin specification. Bluefin defines a language and
schema that allow users to reliably identify, classify,
monitor, and control the physical and logical devices in
storage area networking. The Storage
Networking Industry Association (SNIA) has taken this
standard to the Distributed Management Task Force
(DMTF). SNIA is using Bluefin as the basis for its
storage management initiative, the intent of which is to
become the SNIA standard for management.

5. PACT

The standard provides user with APIs to keep track of
state of program and data being used in the program. It is
basically dependant on client server architecture and uses
RPC for communication. The client is the program using
the functions provided and server is the program keeping
track of all requested processes. Server also does work of
housekeeping the critical data of program requested by
user. User is allowed to save his data to server so in case
of failure and restarting the work, his process won’t be
required to beg for the same data again to the source.

A new concept of heartbeat is introduced here and is
used for tracking status of application. As a human is said
to alive if his heart is working i.e. heartbeats can be
listened. The programmer can decide what should be the
period between two heartbeats. The server listens to the
heartbeat sent by the program. In this way server can
predict which process is alive or working correctly and
which one is dead or hanged or its complete system is
down. The work of server in this situation is very clear, it
should make process to recover from the trauma. The
obvious way is to restart the process. But this won’t be a
good solution if everything (calculation and acquisition of

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

297

data) that has been done by process need to be done again.
But fortunately the PACT system is capable of storing the
data of process along with its versions. So after restart, the
program can just check whether it was registered and
could regain the data and version. It is up to process now
what to do with data and version. If programmer uses this
wisely, the program will be able to start executing from
the point of latest version i.e. the point which sent the data
with that version number for saving.
The restarting of process on remote machine is achieved
using restart server on that machine. It’s a small RPC
server program which is contacted by PACT server. A
command is sent by PACT server to this restart server and
this command is executed by this server.

5.1 Functions Explained

Let’s look into more detail from the programmer’s
perspective towards this standard. First of all the program
should be registered for the service. This can be done
using the function provided. The arguments required for
this are command line arguments, server name and the
number of versions you want to save. This is because; it
may be expensive to save all data. This will look like:

int pact_register(int argc,char *argv[],int states, char *
savior);
Description : This is the main api of the whole pact
structure the pact_register is the main register call which
asks pact to check if the application data actually present
at the server daemon. if it is then the application can
actually begin processing from respective state.
Return value :

pact_register returns the version number of the latest
version of data available. Else it returns -1 for first time
registration and the application gets registered at the
server daemon.
int pact_deregister();
Description : pact_deregister removes any registry at the
PACT as the client has finished with its work and can
leave the service the PACT has offered to it.
Return value :
1 returned on successful deregistration
-1 if any error occurred while performing deregistration
int pact_senddata(char * pact_data , int version);
Description : pact_senddata is basically used as a wrapper
which collects the whole data user wants to send to the
pact server. And do the processing of saving the data with
latest version present as accordingly. The user just needs
to bind all the data which he/she wants to send as in a
pact_data string and perform the send operation.
Send data is mainly used when application covers certain
amount of processing and having a safe stage in mean
time.
Return value :
returns -1 if some error occurs else

returns 1 on success.
char * pact_receivedata();
Description : pact_receivedata grabs the latest version of
the data available at the server daemon and pass it to the
application running return value it returns the latest
version data in terms of a character string and application
can then collect the data out of that string.
Return value :

Pact_receivedata() returns the latest version of data in
terms of raw string. Else returns -1 on error.

int pact_startmonitor(int wait);
Description :pact_startmonitor starts the monitoring
performed by PACT on the client program over the
particular time period specified as a wait argument. the
API should be called before the start of processing with
approximate time that it could take to finish.
Return value :
-1 returned on error otherwise returns 1 on success.
int pact_sendbeat()
description : pact_sendbeat checks the successful
processing and informs PACT to stop the watch made. i.e.
it notifies the PACT that the client done with the
processing in specified time without any occurrence of
error.
Return value :
Returns 1 on success otherwise -1 if any error occurred
during call made

5.2 Ideal approach of use

It is always great to have useful services. But it is up to
the programmer’s ability and creativity to use those. The
same thing applies here also.

The first thing that should be done ideally is to register
in the early stage of process. It is highly recommended
that programmer make a kind of checkpoint in their
programs. And at those points, the important data can be
saved. It is also very critical to decide how much
checkpoints are needed and where to create those
checkpoints.

When process is restarted, it will receive the version
number at the point of registration. Now it is very
necessary to decide the next strategy from this point. Does
program need to go to last saved state or to some other
stage and carry on the work. The other option will be to
get the data and create a log of processing that may have
led to failure. This will be helpful to figure out the
mistakes done by programmers.

When the program is at a stage where it may wait for a
long while may be waiting for user to feed something
through console, monitoring should be stopped.
Otherwise there is possibility that it will be restarted.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

298

5.3 Applying 8 characteristics

As stated above, there are 8 characteristics of autonomous
system. Those can be applied to application built using
PACT.

According to 1st property, PACT knows itself by
keeping eye on its environment and takes decision based
on it.

The second property i.e. Self configuring holds here.
The system monitors the CPU usage at time of restart on
client machine. If it is too high, the process should be
given another chance. So restarting is delayed by some
time.

Third property also holds true. As the system is
continuously monitoring client, it does not just accept the
fact of failure.

As explained above, the project is about self healing.
So forth property is also valid.

The communication can be carried out in secured
manner if user wants. So it solves problem of security.

The fifth property is similar to 2nd. It keeps an eye of
resource usage and modifies its behavior.

The system uses RPC calls internally. So it adheres to
open standard satisfying 7th characteristic.

5.4 Process migration

Another one interesting aspect that we should consider
here is the process migration capabilities of system. There
can be a case when the host machine fails due to some
reasons like power failure. But we have the data saved
with us. So it would be great if the process is shifted to
some other machine(say savior machine) which has exact
same copy of application. We can configure the system by
providing savior’s address at the time of registration and
could actually migrate the process if host machine is dead.
So when the PACT server knows about the failure of the
host machine, it will contact with savior machine and the
process could be started from the point where host
machine was crashed. This will make the system immune
to even power failures.

6. Systems evolving towards autonomic
behavior

There can be many applications of the explained PACT
standard. Here we are considering some areas where
industries can apply those standards and create autonomic
systems.
1. Database systems: The autonomous database

software will use statistics, analyze it and learn from
historical system performance. The tools will help to
automatically detect potential bottlenecks and avoid

them before they come or overcome those faults
without having to start everything again.

2. Web servers and software: Once improved
instrumentation is available, autonomic functions can
be introduced that enable the Web server
infrastructure to automatically monitor, analyze, and
fix performance problems. As an example, suppose
an application server is freezing-up intermittently,
and no customer transactions are being processed for
several seconds, thus losing thousands of dollars in
business, as well as customer confidence and loyalty.
Various techniques like real time monitoring, auto
tuning can be used to anticipate the freeze-up is
before it happens. The interesting feature of saving
data in PACT can be used to save data about the
connections. So even if server goes down and
restarted, sessions can be restored without any loss.

3. Servers: Computers can be built that need less human
supervision. Computers can try to fix themselves in
the event of a failure, protect themselves from hacker
attacks, and configure themselves when adding new
features. The fact that there is facility to monitor
those and save their states is very useful. Servers are
critical points in any modern systems. PACT can
provide that critical operation to keep the servers up.
The server program can be designed with the
standards and some other machine can monitor it.
The other use can be interpreted as to keep the log
record and check those after recovery. Servers can
use software algorithms that learn patterns in Internet
traffic or application usage, and provision resources
in a way that gives the shortest response time to the
task with the highest business priority. Server support
for heterogeneous and enterprise workload
management, dynamic clustering, dynamic
partitioning, improved setup wizards, improved user
authentication, directory integration, and other tools
to protect access to network resources are all steps
toward more autonomic functioning.

7. Conclusion

Autonomic computing is emerging approach towards
future systems and software. These systems will be able
to imply all 4 “self” factors and will minimize the human
interaction for very ordinary decisions. The characteristics
of autonomic computing were discussed.

The need of standards in software development to
support self healing was focused and a standard PACT
was discussed under this category. It provides various
facilities to programmers to make their programs
autonomic and which could recover from the failure. This
also helps to move to some particular stage of program
after restart saving the time and cost.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

299

The applications of autonomic computing are many and
will emerge a few more in future. Database systems,
servers, web are some of few examples. And ultimately it
seems a great thought to make systems take their own
care.

References
[1] Roy Sterritt, Mike Hinchey “Autonomicity- A

antidote for complexity?”
[2] A. G. Ganek, T. A. Corbi, “The dawning of

autonomic computing era” IBM systems journal, vol
42, no 1, 2003.

[3] White Paper
Predictive Self-Healing in the Solaris™ 10 Operating
System.

[4] “Autonomic Computing. Powering your business for
success” IBM white paper on autonomic computing
2005.

[5] Jana Koehler, Chris Giblin, Dieter Gantenbein,
Rainer Hauser, IBM Zurich Research Laboratory “On
Autonomic computing architecture”

[6] Autonomic computing Overview from
http://www.research.ibm.com/autonomic/overview

