
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

26

Manuscript received November 5, 2007

Manuscript revised November 20, 2007

A Genetically based Evolutionary Computing Technique based
on Cellular Automata

Dr. G. Sahoo* and Tapas kumar**

* Department of Computer Science & Engineering
Birla Institute of Technology, Mesra, Ranchi, India

** Department of Computer Science & Information Tech.
Lingaya’s Institute of Mgt & Technology, Faridbad, India

Summary
Evolutionary Computing techniques use an explicit fitness
function or simulated to derive a solution to a problem from a
population of individuals, over a number of generations. The
general approach which allows such techniques to be used on
problems in which evaluations are so costly, which cannot be
expressed formally, or which are difficult to simulate, is
examined [1]. Much work has been done on combining different
evolutionary computing techniques particularly the genetic
algorithm and neural networks. Our motivation here is to discuss
how cellular automata techniques can be involved on
evolutionary computation. A study of cellular automata based
evolutionary computation in genetic analysis is an inherent
problem. But the key problems of genetic analysis are very
sensitive in the detection of fitness cells. Evolutionary algorithms
use crossover operation to combine information from pairs of
solutions and selection operation to retain the best solution. Here,
we consider an interactive step so as to get a maximum amount of
information that can be shared for the best evaluation of
individual fitness cell [7].

Key words: Fitness analysis, Genetic algorithm, CABEC
Model, Cellular automata.

1. Introduction

In the various fields of science and engineering
evolutionary computing is usually introduced to integrate
different approaches where something is unconventional or
the problem to be solved is unorthodox. Evolutionary
computing is a collective name for a range of problem-
solving involving natural selection and genetic inheritance
properties based on principles of biological evolution.
These techniques are widely applied to a variety of
problems, ranging quantum computing, DNA computing,
membrane computing, fuzzy computing. Three types of
evolutionary computing techniques are increasingly
reported in the literature recently. Further, the
Evolutionary Algorithms can be divided into Evolutionary
Strategies (ES) and Evolutionary Programming (EP). All
of these algorithms in some way are modelled after the
evolutionary processes occurring in nature. Recently,

researchers have begun exploring alternative
computational systems based on entirely different
principles. Evolutionary computing includes a number of
computing algorithms which form a class of random search
algorithms in which principles of natural evolution are
regarded as the rules for optimization [7, 13]. The basic
concepts of evolutionary computation and how these have
been adopted in various ways to simulate within an
artificial system and natural computing are discussed. In
continuation the main components of any evolutionary
algorithm namely representation and fitness analysis,
mutation, recombination, and selection have also been
discussed. The objective to use an evolutionary cellular
automaton in genetic algorithm is to research and review
the techniques encompassed within gain thorough
understanding of the principles involved in evolutionary
computation and their use. A new Evolutionary computing
method called Cellular Automata Based Evolutionary
Computing (CABEC) model has been introduced. The aim
is here to discover how evolutionary computation and
cellular computing processing can be combined together
for better performance. This model also can be efficiently
and successfully used in specific applications of image
processing.

2. Cellular Automata

The computer science field has increased expectation on
technologies of computations based on the theory of
Cellular Automata. In recent years there are many
researchers have shown interest to analysis and design
techniques for complex systems. Cellular automata (CA)
are one of the effective methods. Although Cellular
Automata (CA) was proposed firstly by Von Neumann
and Ulam, from theoretical point of view, in the late
1940’s. John Horton Conway’s “game of life” ensures the
new idea of its application in the computing field [1]. CA
are henceforth considered as powerful modeling approach
for complex systems in which global behavior arises from
the collective effect of many locally interacting simple

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

27

components. Subsequently several tools based on CA are
proposed to provide meaningful results for real world
applications. Cellular automata consist of a set of cells
normally arranged in a grid shape, each of which can be in
a number of states. Each cell then updates itself by a rule
known as state transition rule according to its own state
and the states inscribed in a prescribed neighborhood.
Generally, the local connecting pattern between cells
distinguishes cellular automation. During an interaction,
which takes place on a purely local basis, all cells are
updated by the use of local transition rule synchronously
by assigning numerical values to them. The values are in
ascending order and depend only on the neighborhoods
considered. A cellular automaton can also be viewed as
consisting of a line sites where each site depends on a
finite set of possible values for updating, which takes
place in discrete time steps [8]. We can define cellular
automata (Fig. 1) as:

 CA= (Cells, Cells Space, Cell state, Neighborhoods,
Rules) and satisfy the following [11].

• CA is an ideal mathematical model
• CA is generally performed in space and time.
• CA is nothing but a discrete simulation technique.
• Elements of CA are known as Cells, which

consist of a finite number of states and they are
arranged to form a Lattice of some dimension.

• The future state of each cell depends on the
current state of that cell and the states of its
neighborhood cells [8, 14].

 Fig 1. Block diagram of Cellular Automata

3. Genetic Algorithm

Genetic algorithms are based on evolutionary principles
wherein a particular function or definition that fits the
constraints of an environment survives to the next
generation, and the other functions are eliminated. Genetic
algorithm (GA) was developed by John Holland in the
year of 1960’s. GA is a method for moving from one
population “chromosomes” to a new population by using a
natural selection procedure. GA maintains a population of
candidate solutions and this population is evolved until a
competitive or near optimum solution is obtained. The
idea is to efficiently find a solution to a problem in a large
space of candidate solution. Standard GA is implemented

where the initial position of individual is generated at
random. The main advantage of a genetic algorithm is that
it is able to process numerous binary strings parallel,
where each binary string represents a different optimal
solution to the given problem [5, 8]
A basic genetic algorithm comprises three genetic

operators.
• Selection,
• Crossover
• Mutation

Genetic algorithm proceeds with an initial population of
individuals which is generated either random or created
as a result of some heuristic process. For every
evolutionary step, known as a generation, the individuals
in the current population are decoded and evaluated
according to some predefined quality criterion, referred to
as fitness, or fitness function. The above said procedure
can be stated as [2]:
BEGIN
 INITIALIZE population P (f) with randomly
COMPUTE fitness value P (f) among population
REPEAT UNTILL (TERMINATION CONDITION is
satisfied)
SELECT P (f);
RECOMBINE pairs of parents;
MUTATE the resulting offspring;
EVALUATE new P (f);
 DO
END GA.

3.1 Fitness computation on genetic algorithm

Generally in fitness computation, individuals are selected
to create a new population according to their individual
correspondence fitness. Currently many selection
procedures are in use, but Holland's original fitness-
proportionate selection is one of the simplest techniques
where individuals are selected with a probability
proportional to their analogous fitness for every
evolutionary step, known as a generation. Further, the
individuals in the current population are decoded and
elevated according to some predefined quality basis,
referred to as the fitness, or fitness function. This ensures
that the expected number of times an individual is chosen
is relativity reciprocal to its respective performance in the
population. Thus, high-fitness individuals stand a better
chance of reproduction while low fitness ones are more
likely to disperse [6].The roll of evaluation based function
is to represent the requirements to adopt it. It forms the
basis for selection and thereby quality improvement. In the
problem solving approach, it represents the task to solve in
the evolutionary context .Technically it is a function or
procedure that assigns a quality measures to genotypes.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

28

3.2. Existing Fitness -proportionate selection
method

Genetic algorithms have enjoyed much success in a wide
range of practical applications. In this application fitness
computation is extremely simple since neither complex
decoding nor evaluation is necessary. The method due to
Holland is especially effective because he not only
considered the role of mutation but also utilized genetic
recombination, crossover technique. It is worth to mention
here that the crossover of partial solutions greatly
improves the capability of the algorithm and eventually it
finds the optimum solution. As an example, we are going
to enter a world of simplified genetic. Let us examine the
global genetic pool of four basilosaurus belonging to this
world. We will consider the "chromosomes" which encode
the length of anterior members. The length of the "paw"
and the length of the "fingers" are encoded by four genes:
the first two encode the "paw" and the other two encode
the fingers. In our representation of the genome, the circle
on blue background depict the activation of a feature, the
cross on green background depict its deactivation. The
ideal genome (short paws and long fingers) is:

The genetic pool of our population is the following one:

Subject Genome
A
B
C
D

We can see that A and B are the closest to their ancestors;
they have got quite long paws and short fingers. On the
contrary, D is close to the optimum, he just needs a small
lengthening of his fingers. The ability to move is the main
criteria of survival and reproduction. The fitness is easy to
compute as we just have to give one point to each gene
corresponding to the ideal. The perfect genome will then
get four points. The probability of reproduction of a given
subject will directly depend on this value. In our case, we
get the following results:

Subject Fitness Reproduction Probability
A 1 1/7 = 0.143
B 1 1/7 = 0.143
C 2 2/7 = 0.286
D 3 3/7 = 0.428

Total 7 7/7=1

The reproduction pattern is the following:

Subject Received genes Genome Fitness Reproduction
probability

A' A : D :

 2 2/10=0.2

B' B : D :

 2 2/10=0.2

C' D : C :

 3 3/10=0.3

D'
C :

D :
 3 3/10=0.3

Total 10 10/10=1

 During reproduction crossovers occur at a random place
center of the genome for A', B' and C', just after the first
gene for D'). The link existing between the degree of
adaptation and the probability of reproduction leads to a
trend to the rise of the average fitness of the population. In
our case, it jumps from 7 to 10. During the following cycle
of reproduction, C' and D' will have a common descendant
showing whole solution space can be used in the searching
of best solution [12].

 D’: + C’: =

Selection is based on the survival of the fittest strategy,
but the key idea is to select the better individuals of the
population as in tournament selection, where the
participants compete with each other to remain in the
population. The most commonly used strategy to select
pairs of individuals is the method of roulette-wheel
selection, in which every string is assigned a slot in a
simulated wheel sized in proportion to the sting's relative
fitness. This ensures that highly fit sunshade a greater
probability to be selected to form the next generation
through crossover and mutation. After selection of the
pairs of parent strings the crossover operator is applied to
each of these pairs. The crossover operator involves the
swapping of genetic material (bit-values) between the two
parent strings. In single point crossover a bit position
along the two strings is selected at random and the two
parent strings exchange their genetic material as illustrated
below. Parent A = a1 a2 a3 a4 | a5 a6,
Parent B = bl b2 b3 b4 | b5 b6
The swapping of genetic material between the two parents
on either side of the selected crossover point produces the
following offspring:
Offspring A' = a1 a2 a3 a4 | b5 b6
Offspring R' = bl b2 b3 b4 | a5 a6
The two individuals (children) resulting from each
crossover operation will now be subjected to the mutation
operator in the final step to forming the new generation.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

29

The mutation operator alters one or more bit values at
randomly selected locations in randomly selected strings.
Mutation takes place with a certain probability, which in
accordance with its biological equivalent is usually a very
low probability. The mutation operator enhances the
ability of the GA to find a near optimal solution to a given
problem by maintaining a sufficient level of genetic
variety in the population, which is needed to make sure
that the entire solution space is used in the search for the
best solution [10].

4. Proposed model

In this paper we have introduced a new model namely
Cellular Automata Based Evolutionary Computation
(CABEC) which detects cells for fitness that is to find the
optimum value of the objective function. The whole
process is made up of several stages and process of each
stage is described of existing procedure. As the above
existing fitness method is not appropriate in terms of
evolutionary computing, CABEC Model has been
introduced as a new model in order to meet the
constraints of fitness computation or survival of fittest
computation using genetic algorithm based approach
through cellular automata. The block diagram of the said
model is given in Fig. 2

.

Figure 2.Cellular Automata Based Evloutinary Computing Model
[CABEC Model]
Our main objective to present this model is to simulate the
process of evolutionary computation and extract the fittest
cells or genomes which can not be more competently
detected by traditional based methods. It can only be
detected easily by biological evolution procedure. The
entire process is consisting of three basic stages: transform
stage, recognition stage, and decision stage. Recognition
and detection stages are defined corresponding to the local
information and global information respectively [4].
4.1. Transform Stage

 To implement the transition function of CA to recognize
the weak cell, the recognition object first should be
transformed into a regular lattice which can be worked on

by the transition function of CA. In connection with the
transform stage, the human’s visual perception can be
considered to decide how much fact would be sufficient for
extended detection. Thus we would know how much fact
should be kept after the transform stage. When we want to
see the weak cells occurs, and then only need to see the
visual view of main trend curve is continuous or
discontinuous. Discontinuous shows only the weak edges
presence. During the detection process, the region which
includes all the points of the genetic curve can be split into
an m*n Lattice L to find the significance of the cell that
turns true if there are fittest cells existing in the consistent
region of the genetic curve. When a weak or false cell will
occur then only one need to see the main trend of the
genetic curve, not all the data one after another. So the
original genetic curve can be simplified when it is
transformed into a lattice. Thus after transform stage, the
trend of the curve can still be remain same (see Fig. 3) and
the false cell will be detected with a minimum cost of
computation. In fig. 2 the black square stands for “true”
while the white one for “false” [4].

 (a) (b)

Fig 3. (a) Original Genetic Curve, and (b) Genetic Curve obtained after
using CABEC Model.

4.2. Recognition Stage

For convenience, a decimal number is used to represent a
specific pattern of a black cell and its 8 neighboring cells.
The Fig. 4 is self explanatory for the rule that translate a
pattern to a decimal number representation.

 Fig. 4a. Translate a pattern to a decimal number.

Fig. 4b. Some typical patterns corresponding to decline cells.

Evolutionary
Computation
Process (s)

C
A
M

Genetic Operator(s) Input
Cell(s)

 Fitness

 Cell (s)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

30

It can be seen after transform process that when a weak
cell occurs there is a breaking in the in the resulting that
corresponds to the discontinuity at a point in the genetic
curve. So if a decline trend is detected from the lattice the
weak cell can be detected. Some of the typical patterns
which correspond to decline cells are shown in Fig. 4. It
can be seen that these patterns have their own
characteristics. For example, if a black cell r and its 8
neighboring cells have any of the characteristics of Fig. 4,
the cell r will be thought to be a cell that makes up of the
decline. The transition function of CA which completes
the recognition process can be stated as

()
⎩
⎨
⎧ Φ

=
otherwiseFalse

NinisodneighborhoifTrue
f

,
,

Where Φ(N) ={49,50,146,147,152,273,274,568}and each
number in Φ(N) denotes a decimal number corresponding
to a specific pattern. With the transition function f, the
decline trend of the lattice can emerge out of the lattice of
CA as shown in Fig. 5 where the left figure represents the
lattice and the right figure depicts the decline pattern of the
lattice. So the transition rule can be said to have the
function of decline recognition [4, 5].

Fig. 5 Evolution of CA with the recognition transition function.

4.4. Decision Stage
The global information will be used to improve the results
obtained from the initial stage by the consideration of local
information. To compute the fittest cell, global information
is suitable due to strong neighborhood connectivity. For
convenience, the cell for which the value is true will be
called the true cell. Following [4] the process required to
compute the fittest or weak cells can be designed as
follows.

Step 1: A true cell is considered as a starting point which is
given the additional value (i, j) to represent the row and the
column.

Step 2: If there is a true cell to the right of the current point,
it will be given the additional value (i, j+1). If a true cell is
just below the current point, the additional value is (i+1, j).
Similarly for just below right position the addition value
will be (i+1, j+1).

Step 3: If there is no true cell in the neighborhood of the
precious cell, the searching range will be expanded along
the horizontal direction.

Step 4: Repeat (2) and (3) until to reach the cell in the last
row or column or there is no true cell to continue the
decline trend.
Above steps are illustrated in Fig. 6.

.
 Fig. 6 An example of the corrected process.
During the corrected process the last cell which has the
large extra value can help in finding a declined trend. If
there is no such large decline trend, the conclusion is that
no dead cell occurs during the time period of the
observation.If a dead cell is detected then some information
on weak cells can be obtained. The weak cell starts at the
point where the cell has the extra value (i,j). Also the extra
value of the ending cell can approximate the magnitude and
the slope of the decline trend. On the basis of the above
defined corrected process the CABEC Model can give the
desired output as shown in the following Fig. 7.

(a) (b)

Fig.7 (a) Before cellular approach (b) After cellular
approach
4.5. Limitations of CABEC Model

 It is seen that a genetic algorithm, the basic method of
Evolutionary Computation, has proven to provide an
efficient and powerful problem-solving strategy. The first,
and most important, consideration in creating a genetic
algorithm is defining a representation for the problem. Any
model of this type used to specify candidate solutions must
be robust; i.e., it must be able to tolerate random changes
such that fatal errors do not consistently occur. The higher
the fitness the better the solution is attainable. Although,
these algorithms are powerful by their nature, if the fitness
function is poorly chosen or defined imprecisely they may
be unable to generate a proper solution to the given
problem. The proposed model may not explore enough of
the solution space to consistently find good solutions due
to large neighborhood computation that is required for the
transition function. Therefore, caution must be taken as
increasing the neighborhood set and the fitness cell state
that results in an exponential increase in the search space

 5. Conclusion

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

31

In this paper, a new method of fittest cell detection
technique based on Cellular Automata (CA) is proposed.
This new simple recognition process may be used for
efficient cell detection for any assigned problem that needs
genetic algorithm based approach. A neighborhood
detection procedure is used to establish the correct
neighborhood, which gives a detailed idea for getting the
proper fitness declined curve. Cellular automata approach
proves to be an effective technique that could benefit
immensely for reducing computation time and improving
output accuracy. This model is easy to understand and
supports local as well as global based information
environments. Further work maybe carried out to attempt
more complex processing tasks. This may require larger
neighborhoods for the transition function. As the proposed
model yields significant improvement in accuracy, we can
conclude that it is appropriate and suitable on different
multilevel computing than other existing models.

Acknowledgment

The authors would like to express their cordial thanks to
anonymous referees for their valuable suggestions.

References

[1]. T. Toffoli and N. Margolus, “Cellular automata machines”.

The MIT Press, Cambridge, Massachusetts, 1987.
[2].Michal. D. Vose, “The simple genetic algorithm”, University

of Tennessee, Knoxville.
[3]. Goldberg, D.E., "Genetic and Evolutionary Algorithms

Come of Age", 1994 .pp 113-1 19.
[4]. Chen Yang, Hao Ye, Guizeng Wang, “A cellular automata

based method for leak detection in Pipelines”, Tsinghua,
University, Beijing, 2002

 [5]. Yang, C., H. Ye and G. Z. Wang, “Cellular automata
modeling in Edge Recognition”, 2002.

[6] Adam Marczyk, “Genetic Algorithms and Evolutionary
Computation.” 2004.

[7] John P. Cartlidge , “An analysis of evolutionary computation
used in image processing techniques”,1999/2000

[8] Prof. Marek Perkowski , Hilton Tamanaha Goi , “An
Original Method of Edge Detection Based on Cellular
Automata”,2003

[9] Melanie Mitchell, “Computation in Cellular Automata: A
Selected Review”, U.S.A., pp. 95–140., 1998

[10] Electronic Technology Directions to the Year 2000, 1995.
Proceedings, “Introduction to evolutionary computing
technique “, 1995 Page(s):122 - 127 1995.

[11] Huricha Ruanxiogang, “Differential equation and cellular
automata model”, 2003.

[12]John Holland, “Evolution and genetic algorithm”, University
of Michigan”, 1992.

[13]. L.BULL, “On model–based evolutionary computation.”,
1999, pp. 76-82.

[14] Dr. G. Sahoo and Tapas Kumar, “Theory of computation: A
new approach of computation into cellular automata”,

Proceeding of 2nd International Conference on Advanced
Computing & Communication Technologies (ICACCT-2007).

G. Sahoo received his P.G. degree
from Utkal University in the year
1980 and Ph.D degree in the area
of Computational Mathematics
from Indian Institute of
Technology, Kharagpur in the year
1987.He is associated with Birla
Institute of Technology, Mesra,
Ranchi, India since 1988. He is

currently working as a professor and heading the
Department of Computer Science and Engineering. His
research interest includes theoretical computer science,
parallel and distributed computing, image processing and
pattern recognition.

Mr. Tapas kumar received his
B.E.(CSE) from Amravati
University, Amravati, India in the
year of 1998, Master of Computer
Science from Guru Jambeshwar
Technical University, Hissar. He is
doing PhD in the area of Cellular
Automata application in Image
Processing from BIT Mesra,

Ranchi. Currently He is working as Senior Lecturer
(Selection Grade) in LIMAT, Faridabad, India. He is the
life member of ISTE and International Association of
Engineers (IAENG).

