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Summary 
Evolutionary Computing techniques use an explicit fitness 
function or simulated to derive a solution to a problem from a 
population of individuals, over a number of generations. The 
general approach which allows such techniques to be used on 
problems in which evaluations are so costly, which cannot be 
expressed formally, or which are difficult to simulate, is 
examined [1]. Much work has been done on combining different 
evolutionary computing techniques particularly the genetic 
algorithm and neural networks. Our motivation here is to discuss 
how cellular automata techniques can be involved on 
evolutionary computation. A study of cellular automata based 
evolutionary computation in genetic analysis is an inherent 
problem. But the key problems of genetic analysis are very 
sensitive in the detection of fitness cells. Evolutionary algorithms 
use crossover operation to combine information from pairs of 
solutions and selection operation to retain the best solution. Here, 
we consider an interactive step so as to get a maximum amount of 
information that can be shared for the best evaluation of 
individual fitness cell [7]. 
  
Key words: Fitness analysis, Genetic algorithm, CABEC 
Model, Cellular automata. 
 
1. Introduction 
 
In the various fields of science and engineering 
evolutionary computing is usually introduced to integrate 
different approaches where something is unconventional or 
the problem to be solved is unorthodox. Evolutionary 
computing is a collective name for a range of problem-
solving involving natural selection and genetic inheritance 
properties based on   principles of biological evolution. 
These techniques are widely applied to a variety of 
problems, ranging quantum computing, DNA computing, 
membrane computing, fuzzy computing. Three types of 
evolutionary computing techniques are increasingly 
reported in the literature recently. Further, the 
Evolutionary Algorithms can be divided into Evolutionary 
Strategies (ES) and Evolutionary Programming (EP). All 
of these algorithms in some way are modelled after the 
evolutionary processes occurring in nature. Recently, 

researchers have begun exploring alternative 
computational systems based on entirely different 
principles. Evolutionary computing includes a number of 
computing algorithms which form a class of random search 
algorithms in which principles of natural evolution are 
regarded as the rules for optimization [7, 13]. The basic 
concepts of evolutionary computation and how these have 
been adopted in various ways to simulate within an 
artificial system and natural computing are discussed. In 
continuation the main components of any evolutionary 
algorithm namely representation and fitness analysis, 
mutation, recombination, and selection have also been 
discussed. The objective to use an evolutionary cellular 
automaton in genetic algorithm is to research and review 
the techniques encompassed within gain thorough 
understanding of the principles involved in evolutionary 
computation and their use. A new Evolutionary computing 
method called Cellular Automata Based Evolutionary 
Computing (CABEC) model has been introduced. The aim 
is here to discover how evolutionary computation and 
cellular computing processing can be combined together 
for better performance. This model also can be efficiently 
and successfully used in specific applications of image 
processing.  
 
2. Cellular Automata 
 
The computer science field has increased expectation on 
technologies of computations based on the theory of 
Cellular Automata. In recent years there are many 
researchers have shown interest to analysis and design 
techniques for complex systems. Cellular automata (CA) 
are one of the effective methods. Although Cellular 
Automata (CA) was proposed firstly by Von Neumann 
and Ulam, from theoretical point of view, in the late 
1940’s. John Horton Conway’s “game of life” ensures the 
new idea of its application in the computing field [1]. CA  
are henceforth considered as powerful modeling approach 
for complex systems in which global behavior arises  from 
the collective effect of many locally interacting simple 
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components. Subsequently several tools based on CA are 
proposed to provide meaningful results for real world 
applications. Cellular automata   consist of a set of cells 
normally arranged in a grid shape, each of which can be in 
a number of states. Each cell then updates itself by a rule 
known as state transition rule according to its own state 
and the states inscribed in a prescribed neighborhood. 
Generally, the local connecting pattern between cells 
distinguishes cellular automation. During an interaction, 
which takes place on a purely local basis, all cells are 
updated by the use of local transition rule synchronously 
by assigning numerical values to them. The values are in 
ascending order and depend only on the neighborhoods 
considered. A cellular automaton can also be viewed as 
consisting of a line sites where each site depends on a 
finite set of possible values for updating, which takes 
place in discrete time steps [8]. We can define cellular 
automata (Fig. 1) as: 
 
 CA= (Cells, Cells Space, Cell state, Neighborhoods, 
Rules) and satisfy the following [11]. 
  

• CA is an ideal mathematical model 
• CA is generally performed in space and time. 
• CA is nothing but a discrete simulation technique. 
• Elements of CA are known as Cells, which 

consist of a finite number of states and they are 
arranged to form a Lattice of some dimension. 

• The future state of each cell depends on the 
current state of that cell and the states of its 
neighborhood cells [8, 14]. 

 
 
 
 
 
 
 
 Fig 1. Block diagram of Cellular Automata 
 

3. Genetic Algorithm 
 
Genetic algorithms are based on evolutionary principles 
wherein a particular function or definition that fits the 
constraints of an environment survives to the next 
generation, and the other functions are eliminated. Genetic 
algorithm (GA) was developed by John Holland in   the 
year of 1960’s. GA is a method for moving from one 
population “chromosomes” to a new population by using a 
natural selection procedure. GA maintains a population of 
candidate solutions and this population is evolved until a 
competitive or near optimum solution is obtained. The 
idea is to efficiently find a solution to a problem in a large 
space of candidate solution. Standard GA is implemented 

where the initial position of individual is generated at 
random. The main advantage of a genetic algorithm is that 
it is able to process numerous binary strings parallel, 
where each binary string represents a different optimal 
solution to the given problem [5, 8] 
A basic genetic algorithm comprises three genetic 

operators. 
• Selection, 
• Crossover 
• Mutation 

Genetic algorithm proceeds with an initial population of 
individuals which is generated   either random or created 
as a result of some heuristic process. For every 
evolutionary step, known as a generation, the individuals 
in the current population are decoded and evaluated 
according to some predefined quality criterion, referred to 
as fitness, or fitness function. The above said procedure 
can be stated as [2]: 
BEGIN 
 INITIALIZE population P (f) with randomly 
COMPUTE   fitness value P (f) among population 
REPEAT UNTILL (TERMINATION CONDITION is 
satisfied) 
SELECT P (f); 
RECOMBINE pairs of parents; 
MUTATE the resulting offspring; 
EVALUATE new P (f);  
 DO 
END GA. 
 
3.1 Fitness computation on genetic algorithm 
 
Generally in fitness computation, individuals are selected 
to create a new population according to their individual   
correspondence fitness. Currently many selection 
procedures are in use, but Holland's original fitness-
proportionate selection is one of the simplest techniques 
where individuals are selected with a probability 
proportional to their analogous fitness for every 
evolutionary step, known as a generation. Further, the 
individuals in the current population are decoded and 
elevated according to some predefined quality basis, 
referred to as the fitness, or fitness function. This ensures 
that the expected number of times an individual is chosen 
is relativity reciprocal to its respective performance in the 
population. Thus, high-fitness individuals stand a better 
chance of reproduction while low fitness ones are more 
likely to disperse [6].The roll of evaluation based function 
is to represent the requirements to adopt it. It forms the 
basis for selection and thereby quality improvement. In the 
problem solving approach, it represents the task to solve in 
the evolutionary context .Technically it is a function or 
procedure that assigns a quality measures to genotypes.                
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3.2. Existing Fitness -proportionate selection 
method 
 
Genetic algorithms have enjoyed much success in a wide 
range of practical applications. In this application fitness 
computation is extremely simple since neither complex 
decoding nor evaluation is necessary.  The method due to 
Holland is especially effective because he not only 
considered the role of mutation but also utilized genetic 
recombination, crossover technique. It is worth to mention 
here that the crossover of partial solutions greatly 
improves the capability of the algorithm and eventually it 
finds the optimum solution. As an example, we are going 
to enter a world of simplified genetic. Let us examine the 
global genetic pool of four basilosaurus belonging to this 
world. We will consider the "chromosomes" which encode 
the length of anterior members. The length of the "paw" 
and the length of the "fingers" are encoded by four genes: 
the first two encode the "paw" and the other two encode 
the fingers. In our representation of the genome, the circle 
on blue background depict the activation of a feature, the 
cross on green background depict its deactivation. The 
ideal genome (short paws and long fingers) is: 
 
                                     
The genetic pool of our population is the following one: 
 

Subject  Genome  
A   
B   
C   
D   
  

We can see that A and B are the closest to their ancestors; 
they have got quite long paws and short fingers. On the 
contrary, D is close to the optimum, he just needs a small 
lengthening of his fingers. The ability to move is the main 
criteria of survival and reproduction. The fitness is easy to 
compute as we just have to give one point to each gene 
corresponding to the ideal. The perfect genome will then 
get four points. The probability of reproduction of a given 
subject will directly depend on this value. In our case, we 
get the following results: 

Subject  Fitness  Reproduction Probability  
A  1  1/7 = 0.143  
B  1  1/7 = 0.143  
C  2  2/7 = 0.286  
D  3  3/7 = 0.428  

Total  7  7/7=1  
 

The reproduction pattern is the following: 

Subject Received genes Genome  Fitness Reproduction 
probability  

A'  A : D : 

 
 2  2/10=0.2  

B'  B : D : 

 
 2  2/10=0.2  

C'  D : C : 

 
 3  3/10=0.3  

D'  
C :  

D : 
 3  3/10=0.3  

Total    10  10/10=1  

   During reproduction crossovers occur at a random place 
center of the genome for A', B' and C', just after the first 
gene for D'). The link existing between the degree of 
adaptation and the probability of reproduction leads to a 
trend to the rise of the average fitness of the population. In 
our case, it jumps from 7 to 10. During the following cycle 
of reproduction, C' and D' will have a common descendant 
showing whole solution space can be used in the searching 
of best solution [12]. 

    D’: + C’:   =     

Selection is based on the survival of the fittest strategy, 
but the key idea is to select the better individuals of the 
population as in tournament selection, where the 
participants compete with each other to remain in the 
population. The most commonly used strategy to select 
pairs of individuals is the method of roulette-wheel 
selection, in which every string is assigned a slot in a 
simulated wheel sized in proportion to the sting's relative 
fitness. This ensures that highly fit sunshade a greater 
probability to be selected to form the next generation 
through crossover and mutation. After selection of the 
pairs of parent strings the crossover operator is applied to 
each of these pairs. The crossover operator involves the 
swapping of genetic material (bit-values) between the two 
parent strings. In single point crossover a bit position 
along the two strings is selected at random and the two 
parent strings exchange their genetic material as illustrated 
below. Parent A = a1 a2 a3 a4 | a5 a6, 
Parent B = bl b2 b3 b4 | b5 b6 
The swapping of genetic material between the two parents 
on either side of the selected crossover point produces the 
following offspring: 
Offspring A' = a1 a2 a3 a4 | b5 b6 
Offspring R' = bl b2 b3 b4 | a5 a6 
The two individuals (children) resulting from each 
crossover operation will now be subjected to the mutation 
operator in the final step to forming the new generation. 
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The mutation operator alters one or more bit values at 
randomly selected locations in randomly selected strings. 
Mutation takes place with a certain probability, which in 
accordance with its biological equivalent is usually a very 
low probability. The mutation operator enhances the 
ability of the GA to find a near optimal solution to a given 
problem by maintaining a sufficient level of genetic 
variety in the population, which is needed to make sure 
that the entire solution space is used in the search for the 
best solution [10]. 
 
4. Proposed model  
 
In this paper we have introduced a new model namely 
Cellular Automata Based Evolutionary Computation 
(CABEC) which detects cells for fitness that is to find the 
optimum value of the objective function. The whole 
process is made up of several stages and process of each 
stage is described of existing procedure. As the above 
existing fitness method is not appropriate in terms of 
evolutionary computing, CABEC Model has been 
introduced as a new  model in order to meet the 
constraints of fitness computation or survival of fittest 
computation using genetic algorithm based approach 
through cellular automata.  The block diagram of the said 
model is given in Fig. 2 

.  
 
Figure 2.Cellular Automata Based Evloutinary Computing Model 
[CABEC Model] 
Our main objective to present this model is to simulate the 
process of evolutionary computation and extract the fittest 
cells or genomes which can not be more competently 
detected by traditional based methods. It can only be 
detected easily by biological evolution procedure. The 
entire process is consisting of three basic stages: transform 
stage, recognition stage, and decision stage. Recognition 
and detection stages are defined corresponding to the local 
information and global information respectively [4]. 
4.1. Transform Stage 
 
 To implement the transition function of CA to recognize 
the weak cell, the recognition object first should be 
transformed into a regular lattice which can be worked on 

by the transition function of CA.  In connection with the 
transform stage, the human’s visual perception can be 
considered to decide how much fact would be sufficient for 
extended detection. Thus we would know how much fact 
should be kept after the transform stage. When we want to 
see the weak cells occurs, and then only need to see the 
visual view of main trend curve is continuous or 
discontinuous. Discontinuous shows only the weak edges 
presence. During the detection process, the region which 
includes all the points of the genetic curve can be split into 
an m*n Lattice L to find the significance of the cell that 
turns true if there are fittest cells existing in the consistent 
region of the genetic curve. When a weak or false cell will 
occur then only one need to see the main trend of the 
genetic curve, not all the data one after another. So the 
original genetic curve can be simplified when it is 
transformed into a lattice. Thus after transform stage, the 
trend of the curve can still be remain same (see Fig. 3) and 
the false cell will be detected with a minimum cost of 
computation. In fig. 2 the black square stands for “true” 
while the white one for “false” [4]. 
 

 
                  
                      (a)            (b) 
 
Fig 3. (a)  Original Genetic Curve, and (b) Genetic Curve obtained after 
using CABEC   Model. 
 
4.2. Recognition Stage 
 
For convenience, a decimal number is used to represent a 
specific pattern of a black cell and its 8 neighboring cells. 
The Fig. 4 is self explanatory for the rule that translate a 
pattern to a decimal number representation. 

 
 
 Fig. 4a.    Translate a pattern to a decimal number. 
 
     

Fig. 4b. Some typical patterns corresponding to decline cells. 
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It can be seen after transform process that when a weak 
cell occurs there is a breaking in the in the resulting that 
corresponds to the discontinuity at a point in the genetic 
curve. So if a decline trend is detected from the lattice the 
weak cell can be detected. Some of the typical patterns 
which correspond to decline cells are shown in Fig. 4. It 
can be seen that these patterns have their own 
characteristics. For example, if a black cell r and its 8 
neighboring cells have any of the characteristics of Fig. 4, 
the cell r will be thought to be a cell that makes up of the 
decline. The transition function of CA which completes 
the recognition process can be stated as 

( )
⎩
⎨
⎧ Φ

=
otherwiseFalse

NinisodneighborhoifTrue
f

,
,

             

Where Φ(N) ={49,50,146,147,152,273,274,568}and  each 
number  in Φ(N) denotes a decimal number corresponding  
to a specific pattern. With the transition function f, the 
decline trend of the lattice can emerge out of the lattice of 
CA as shown in Fig. 5 where the left figure represents the 
lattice and the right figure depicts the decline pattern of the 
lattice. So the transition rule can be said to have the 
function of decline recognition [4, 5]. 
 
 
   
 
 

 
Fig. 5 Evolution of CA with the recognition transition function. 

 
4.4. Decision Stage 
The global information will be used to improve the results 
obtained from the initial stage by the consideration of local 
information. To compute the fittest cell, global information 
is suitable due to strong neighborhood connectivity. For 
convenience, the cell for which the value is true will be 
called the true cell. Following [4] the process required to 
compute the fittest or weak cells can be designed as 
follows. 
 
Step 1: A true cell is considered as a starting point which is 
given the additional value (i, j) to represent the row and the 
column. 
 
Step 2: If there is a true cell to the right of the current point, 
it will be given the additional value (i, j+1). If a true cell is 
just below the current point, the additional value is (i+1, j). 
Similarly for just below right position the addition value 
will be (i+1, j+1). 
 
Step 3: If there is no true cell in the neighborhood of the 
precious cell, the searching range will be expanded along 
the horizontal direction. 
 

Step 4: Repeat (2) and (3) until to reach the cell in the last 
row or column or there is no true cell to continue the 
decline trend. 
Above steps are illustrated in Fig. 6. 
 

.  
       Fig. 6   An example of the corrected process. 
During the corrected process the last cell which has the 
large extra value can help in finding a declined trend. If 
there is no such large decline trend, the conclusion is that 
no dead cell occurs during the time period of the 
observation.If a dead cell is detected then some information 
on weak cells can be obtained. The weak cell starts at the 
point where the cell has the extra value (i,j). Also the extra 
value of the ending cell can approximate the magnitude and 
the slope of the decline trend. On the basis of the above 
defined corrected process the CABEC Model can give the 
desired output as shown in the following Fig. 7. 
 

 
(a) (b) 
 

Fig.7 (a) Before cellular approach (b) After cellular 
approach         
4.5. Limitations of CABEC Model 
 
 It is seen that a genetic algorithm, the basic method of 
Evolutionary Computation, has proven to provide an 
efficient and powerful problem-solving strategy.  The first, 
and most important, consideration in creating a genetic 
algorithm is defining a representation for the problem. Any 
model of this type used to specify candidate solutions must 
be robust; i.e., it must be able to tolerate random changes 
such that fatal errors do not consistently occur. The higher 
the fitness the better the solution is attainable. Although, 
these algorithms are powerful by their nature, if the fitness 
function is poorly chosen or defined imprecisely they may 
be unable to generate a proper solution to the given 
problem. The proposed model may not explore enough of 
the solution space to consistently find good solutions due 
to large neighborhood computation that is required for the 
transition function. Therefore, caution must be taken as 
increasing the neighborhood set and the fitness cell state 
that results in an exponential increase in the search space 
 
 5. Conclusion 
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In this paper, a new method of fittest cell detection 
technique based on Cellular Automata (CA) is proposed. 
This new simple recognition process may be used for 
efficient cell detection for any assigned problem that needs 
genetic algorithm based approach. A neighborhood 
detection procedure is used to establish the correct 
neighborhood, which gives a detailed idea for getting the 
proper fitness declined curve. Cellular automata approach 
proves to be an effective technique that could benefit 
immensely for reducing computation time and improving 
output accuracy. This model is easy to understand and 
supports local as well as global based information 
environments. Further work maybe carried out to attempt 
more complex processing tasks. This may require larger 
neighborhoods for the transition function. As the proposed 
model yields significant improvement in accuracy, we can 
conclude that it is appropriate and suitable on different 
multilevel computing than other existing models. 
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