
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

32

Manuscript received November 16, 2007

Manuscript revised November 25, 2007

Hierarchical Tabu Programming

for Finding the Underwater Vehicle Trajectory

Jerzy Balicki †,

Naval University of Gdynia, ul. Smidowicza 69, Gdynia, Poland

Summary
Trajectory of an autonomous underwater vehicle can be
obtained by using tabu programming that is a new
paradigm of artificial intelligence. Three crucial criteria
can be used for an assessment of an underwater
vehicle trajectory quality: a total length, a smoothness, and
a measure of safety. Finally, results of some numerical
experiments have been presented.
Key words:
Tabu programming, remote operating vehicle, efficient solutions,
multi-criterion optimization.

1. Introduction

Path of an underwater vehicle can be determined by tabu
programming that is capable to solve some multiobjective
optimization problems [3]. Tabu programming is a new
paradigm of artificial intelligence that can be applied for
computer decision aid. Similarly to the genetic
programming, tabu programming solves different
problems by using a general solver that is based on a tabu
algorithm.

For evaluation of a vehicle trajectory, three main criteria
can be used: a total length of a path, a measure of safety,
and a smoothness of a trajectory [2]. An algorithm
implemented in the computer board of an underwater
vehicle is supposed to find a path between two specified
locations in a three dimensional space, which is collision-
free and satisfies optimization criteria [20].

Remotely operated vehicles are usually designed for
underwater observation in hostile environment [21]. The
foremost attributes of these vehicles are their power
capability and their compactness. The vehicle consists of
two divisions. The upper part ensures the vehicle positive
buoyancy and houses the sonar head. The lower part
consists of a watertight frame made of welded pressure-
resistant tubular stainless steel. The underwater vehicle is
equipped with four three-phase asynchronous thruster
motors with propellers. There is a surface control unit with
its power cable. It is possible to extend unit’s capabilities
by using the board computer to find the trajectory of the
vehicle.

Tabu search can be treated as a general combinatorial
optimization technique for using in zero-one programming,
non-convex non-linear programming, and general mixed
integer optimization [9]. This technique is basically used
to continuous functions by selection a discrete encoding of
the problem [17]. In a tabu search, special areas are
forbidden during the seeking in a space of all possible
combinations [4].

Tabu programming paradigm is implemented as a tabu
search algorithm operated on the computer program that
produces the current solution. A solution is generated as
the program function and then tabu search procedures are
applied for finding Pareto-suboptimal solutions. Tabu
programming is a relatively new paradigm of an artificial
intelligence [3].

In this paper, tabu programming for solving multiobjective
optimization problems of finding trajectory of underwater
vehicle has been considered. Tabu search algorithm has
been extended by using a computer program instead of a
mathematical variable. Finally, results of some numerical
experiments have been presented.

1. Vehicle trajectory evaluation

Trajectory between point (x1,y1,z1) and (xM,yM,zM), where
M is the number of turn points, can be represented as the
x vector, as below [2]:

),,,...,,,,...,,,,(111 MMMmmm zyxzyxzyxMx = (1)

The point (xm,ym,zm) for m∈{1,…M} is feasible, if both the
segment from (xm1,ym-1,zm-1) to (xm,ym,zm) and the segment
from (xm,ym,zm) to (xm+1,ym+1,zm+1) do not cut forbidden
areas for the vehicle. Some basic constraints for
coordinates of trajectory points in the given water areas
can be formulated, as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL. No.11, November 2007

33

,,1,0

,,1,

,,1,

,

max

maxmin

maxmin
maxmin

MmZz

MmYyY

MmXxX

MMM

mm

m

m

=≤≤

=≤≤

=≤≤

≤≤

 (2)

where
maxmin,XX – area constraints for the coordinate xm,

maxmin,YY – area constraints for the coordinate ym,

max
mZ – the maximal depth of water at (xm, ym).

The length of the trajectory x can be presented, as bellow:

∑
−

=
+=

1

1
1),,()(

M

m
mm ppdxL (3)

where d(pm,pm+1) is a distance between two neighboring
points pm=(xm,ym,zm) and pm+1=(xm+1,ym+1,zm+1).

The distance between two adjacent path points can be
calculated, as below:

.)()()(),(2
1

2
1

2
11 ++++ −+−+−= mmmmmmmm zzyyxxppd (4)

2. Optimization problem

A safety measure, where regions of non-moving obstacles
Kk ΩΩΩ ,...,,...,1 in the water are known, can be defined,

as follows [2]:

),,(max)(1
1,1

+
−=

= mm
Mm

ppbxP (5)

where b(pm,pm+1) - the penalty for the segment (pm, pm+1), if
the segment cuts the forbidden area.

The penalty value b(pm , pm+1) is calculated, as follows:

⎩
⎨
⎧

−
≥−

=
+−

++
+ otherwise,1

,)(if),(
),())((

min11min
1 1min ,e

dpprpprd
ppb

mmm pprd
mmmm

mm ,
,,

β
 (6)

where
r(pm, pm.+1) – the sampled smallest distance from the line

segment (pm, pm.+1) to the nearest forbidden area,
dmin – a minimal safe distance from the vehicle to another

object,
β – a positive penalty coefficient.

If r(pm, pm.+1) is non-smaller than dmin, then b(pm, pm.+1) is
negative. When r(pm, pm.+1) is smaller than dmin, then

b(pm, pm.+1) is positive and it grows exponentially due to
the subtraction. The function P is a maximum of penalties
for all segments it is supposed to be minimized to obtain
a trajectory as safe as possible.

The criterion S is supposed to maintain a smooth trajectory
to avoid sudden turns of direction, as follows [2]:

{ },
),(),,(min

max)(
111,2 +−−=

=
mmmm

m
Mm ppdppd

xS α (7)

where
αm. is the angle between the extension of the line segment
(pm-1, pm) and the line segment (pm, pm.+1) on a plane
determined by above segments.

For the same distances the trajectory is smoother, if the
maximum angle for it is smaller. We assume, that
αm∈[0,π]. If the minimum length from d(pm-1, pm) and
d(pm, pm.+1) is longer, then there are less points pm, where
the direction of trajectory is changed.

The smoothness of trajectory can be related to the sum of
all trajectory curvatures at points, as bellow:

{ }.),(),,(min

)(ˆ
1

2 11
∑
−

= +−
=

M

m mmmm

m
ppdppd

xS α (8)

What is more, the minimization of root for sum-squared
function can be considered, as below:

 { }.
),(),,(min

)(~ 1

2 11
∑
−

= +−
=

M

m mmmm

m
ppdppd

xS α (9)

We order partial criteria from the most important criterion
to the least important criterion. In such a way,
a hierarchical solution can be found. In a multicriteria
navigation of the underwater vehicle, the safety criterion
seems to be the most important. Let the multicriteria
optimization problem be considered for finding trajectory
of the underwater vehicle as the Pareto-optimal solution:

),,,(RFX (10)

where
X – the set of admissible trajectories,
F – the vector criterion,
R – the relation for finding hierarchical solutions [1].

Because of the variable number of points in trajectory,
a set of all trajectories (admissible or non-admissible)
consists of vectors with no more than 3Mmax coordinates. It

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

34

can be denotes as TX 2= , where max3MR=T and R
is a set of real numbers.

The set X of feasible trajectories is defined, as follows:

},1,0

,,1,

,,1,

,
),,,,...,,,,...,,,(|{

max

maxmin

maxmin
maxmin

111

MmZz

MmYyY

MmXxX

MMM
zyxzyxzyxxxX

mm

m

m

MMMmmm

=≤≤

=≤≤

=≤≤

≤≤
=∈= X

 (11)

Obstacles are respected by increasing the safety criterion
of the trajectory. The vector criterion 3: R→XF has three
partial criteria, as follows:

,)],(),(),([)(X∈= xxSxPxLxF (12)

where)(),(),(xSxPxL are calculated according to (2), (5)
and (7).

3. Tabu programming

Tabu programming is based on tabu search rules. The tabu
search starts by moving to a local minimum. The tabu
approach avoids entrainment in cycles by forbidding
moves which lead to points in the solution space
previously visited [12]. To avoid a path already
investigated a point with poor quality can be accepted [10].
This insures new regions of a solution space will be
explored in with the goal of avoiding local minima and
finding the global minimum.

To avoid repeating the steps recent moves are recorded in
some tabu lists [18]. That lists are form the tabu search
memory. The memory can vary as the search proceeds [5].
At the beginning, the target is testing the solution space,
during a 'diversification' [11]. As candidate locations are
identified the algorithm is more focused to find local
optimal solutions in an 'intensification' process. The tabu
method operates with the size, variability, and adaptability
of the tabu memory to a solved problem [7].

Special areas are forbidden during the seeking in a space
of all possible combinations. From that neighborhood
N(xnow) of the current solution, we can choose the next
solution xnext to a search trajectory [14]. The accepted
alternative is supposed to have the best value of an
objective function among the current neighborhood. In the
tabu search algorithm based on the short-term memory,
a basic neighborhood of a current solution may be reduced
to a considered neighborhood K (xnow) because of the
maintaining a selective history of the states encountered

during the exploration [19]. Some solutions, which were
visited during the given last term, are excluded from the
basic neighborhood according to the tabu classification of
movements [6]. If any solutions performs aspiration
criterion, then it can be included to the considered
neighborhood, only [16].

Tabu programming is the tabu search algorithm that
operates on the dedicated population of computer program
[3]. Computer programs are constructed from the basic
program that produces the current solution. The basic
program is modeled as a tree (Fig. 1).

That tree is equivalent to the parse tree that most
compilers construct internally to represent the given
computer program. A tree can be changed to create the
neighborhood N(xnow) of the current program. We can
remove a sub-tree with the randomly chosen node from
the parent tree. Next, the randomly selected node as
a terminal is required to be inserted. A functional node is
an elementary procedure randomly selected from the
primary defined set of functions [15]:

{ }Nn fff ,...,,...,1=F (13)

In the studied problem, we define set of functions, as
bellow:

{ }/,-,*,,+= ENDE,MOVE,IF_IF_OBSTACLF (14)

The procedure IF_OBSTACLE takes two arguments. If the
obstacle is recognized ahead the underwater vehicle, the
first argument is performed. In the other case, the second
argument is executed.

The function MOVE requires three arguments. It causes
the movement along the given direction with the velocity
equals the first argument during assumed time Δt. The
time Δt is the value that is equal to the division a limited
time by Mmax. The direction of the movement is changed
according to the second and third arguments. The second
argument is the angle of changing this direction up if it is
positive or down if it is negative. Similarly, the third
argument represents an angle of changing the direction to
the left if it is positive or – to the right if it is negative.

The procedure IF_END ends the journey of the
underwater vehicle if it is in the destination region or the
expedition is continued if it is not there.

Furthermore, each procedure is supposed to be capable to
allow any value and data type that may possible be
assumed by any terminal selected from the following
terminal set:

IJCSNS International Journal of Computer Science and Network Security, VOL. No.11, November 2007

35

{ }Mm aaa ,...,,...,1=T (15)
For finding the trajectory of the underwater vehicle, the
set of arguments consists of the real numbers generated
from the interval (-1; 1).

Fig. 1. The program tree that can be modified by tabu
algorithm

Another sort of movements is related to removing the
randomly chosen terminal node and then adding a sub-tree
with the functional node as a root. That sub-tree can be
constructed from the random number of nodes.

If the node is the root of the reducing sub-tree for the
current program, it can be protected against choosing it to
be that root in a reducing operation until the next λ1
movements is performed. However, that node can be
selected to be the root for adding the sub-tree. Similarly, if
the node is the root of the adding tree, it can be protected
against choosing him to be that root in a adding operation
until the next λ2 movements is performed.

We can implement that by introducing the assignment
vector of the node names to the node numbers. We
consider a dummy node D0 (Fig. 1) as the number 0, for
the formal reason. The node index ,,1 maxLl = where

maxL represents the assumed maximal number of nodes in
the tree. Numbers are assigned from the dummy node to
lower layers and from the left to the right at the current
layer. The assignment vector of the node names to the
node numbers for the tree from the Figure 1 can be
represented, as below:

 ()xzyD ,,,7/,,,,0 −−+=ω (14)

Moreover, the vector of function f and argument
assignment can be defined, as follows:

()aaaaffff ,,,,,,,=ψ (15)

The vector of the argument number can be determined, as
below:

()0,0,0,0,2,2,2,1=χ (16)

Now, we can introduce the matrix of reducing node

memory [] ,
maxmax LLnmmM ×

− = where nmm represents

the number of steps that can be missed after reduction the
function fm (with the parent fn) as a root of the chosen sub-
tree. After exchanging that root, .1λ=nmm

Similarly, we can define the matrix of adding node

memory [] ,~
maxmax LLnmmM ×

+ = where nmm~

represents the number of steps that can be missed after
adding the function fm (with the parent fn) as a root of the
created sub-tree. After exchanging that root, .~

2λ=nmm

Parameters λ1 and λ2 are usually equal to λ, but we can
adjust their values to tune the tabu programming for the
solved problem. On the other hand, the length of the short-
term memory λ is supposed to be no greater than Lmax.
After λ movements, the selected node may be chosen for
operation once again.

Tabu programming rules can be implemented as an
algorithm ATP (Fig. 2) that can be used for optimisation.
ATP can be used for solving an optimization problem with
one criterion, as follows:

)(minmin xFF
Xx∈

= (17)

where

F – criterion of the problem,

X – set of admissible trajectories of vehicle.

The selection function W is constructed from the criterion
F and functions describing constraints [8]. Usually, the
penalty function can be applied [13].

If some admissible solutions are in the neighborhood of
the current solutions produced by the modified programs,
then the hierarchical solutions are determined.

A tabu algorithm has been written in the Matlab language.
Our initial numerical experiments confirm that feasible,
sub-optimal in Pareto sense, trajectories can be found by
tabu programming. A paradigm of tabu programming
gives opportunity to solve the several problems.

 +

 - /

 y -7 x z

 D0 0

1

2 3

4 5 6 7

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

36

Fig. 2. An algorithm ATP of tabu search programming

If the trajectory x is admissible, then the selection function
value is estimated, as below:

,1)()(maxmax ++−= Pxrrxf (18)

where r(x) denotes the rank of an admissible solution in
the neighbourhood of the current solution,

Let the Pareto points {P1, P2,..., PU} be given for any
instance of the optimal trajectory problem. If the AMT
finds the efficient point (Au1, Pu2) for the smoothness Pu2,
this point is associated to the uth Pareto result (Pu1, Pu2)
with the same value of the smoothness.

The distance between points (Au1, Pu2) and (Pu1, Pu2) is
calculated according to an expression 11 uu AP − . If the
point (Au1, Pu2) is not discovered by the algorithm, we

assume the distance is min
11 uu AP − , where min

1uA is the

minimal length of the trajectory for the instance of
problem.

The level of convergence to the Pareto front is calculated,
as follows:

∑
=

−=
U

u
uu APS

1
11 . (19)

An average level S is calculated for several runs of the
ATP. That tabu programming ATM gives better outcomes
than the genetic programming AMEA/GP (Fig. 3). After
300 selections, an average level of Pareto set obtaining is
1.2% for the ATM, 3.6% for the AMEA/GP. 40 initial
trajectories were prepared, and each algorithm starts 40
times from these points.

An average level of convergence to the Pareto set, an
maximal level, and the average number of optimal
solutions become worse, when the number of internal
points of trajectory, size of the water space, and number of
obstacles increase. An average level is 23.7% for the AMT
versus 37.9% for the AMEA/GP, if the instance includes
200 internal points, and also 12 obstacles.

1. Initial procedure k:=0
(A) Generation of the program that produces xnow
(B) xbest := xnow , xbis:= xnow
(C) Fmin:=F(xnow)
(D) Initialization of restriction matrixes M

+, M
-

(E) Setting λ1, λ2

2. Solution selection and stop criterion k:=k+1
(A) Finding a set of tree candidates K(M

+,M
-, xnow) from

the neighborhood N(xnow)
(B) Selection of the next solution xnext∈ K (M

+, M
-,

xnow) with the minimal value of the selection
function W among solutions taken from K

(C) Aspiration condition. If all solutions from the
neighbourhood are tabu-active and Fmin≥F(xnow),
then xbest := xnow, Fmin:=F(xnow)

(D) Re-linking of search trajectory. If xnext was not
changed during main iteration, then crossover
procedure for parents xbest, xbis is performed. A child
with the smaller value of F is xnext, and another one
is xbis

(E) If k = 0.4 Kmax, then λ1:= 4λ1, λ2:= 4λ2
(F) If k = Kmax or maximal time of calculation is

exceeded, then STOP.

3. Up-dating
(A) xnow := xnext
(B) If F(xnow)< Fmin, then xbis := xbest and go to 1(B)
(C) After reduction the procedure fm (with the parent

fn) as a root of the chosen sub-tree M
-:= M

- –1,
.1λ=nmm

(D) After adding the procedure fm (with the parent fn)
as a root of the created sub-tree M

+:= M
+ –1,

.~
2λ=nmm

(E) go to 2
1,2

1,9

7,2

3,1
3,64,8

7,2

12

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

50 75 100 125 150 175 200 225 250 275 300 325 350

AMT AMEA/GP

S [%]

Fig. 3. Convergence of results for the AMT and the
AMEA/GP

Selection number

IJCSNS International Journal of Computer Science and Network Security, VOL. No.11, November 2007

37

4. Concluding remarks

Tabu programming is a new paradigm of artificial
intelligence that can be used for finding solution to several
problems. Tabu programming can be applied for control
an underwater vehicle. A computer program as a tree is
a subject of tabu operators such as selection from
neighborhood, short-term memory and re-linking of the
search trajectory. A tabu programming has been applied
for operating on the computer procedures written in the
Matlab language.

Our initial numerical experiments confirm that feasible,
sub-optimal in Pareto sense, task assignments can be
found by tabu programming. A paradigm of tabu
programming gives opportunity to solve this problem for
changeable environment.

Our future works will focus on testing the other sets of
procedures and terminals to find the Pareto-optimal
solutions for distinguish criteria and constraints. Moreover,
we will concern on a development the combination
between tabu search and evolutionary algorithms for
finding efficient solutions.

References
[1] A. Ameljañczyk, Multicriteria Optimization, WAT,

Warsaw 1986.
[2] J. Balicki: Finding Trajectory of Underwater Vehicle by

Multi-Criterion Genetic Programming, Proceedings of the
9th IEEE International Conference on Methods and
Models in Automation and Robotics, (Ed. R. Kaszyński),
Vol. 1, Międzyzdroje, Poland, 25-28 August 2005, pp.
237-242.

[3] J. Balicki, Tabu Programming for Multiobjective
Optimization Problems, International Journal of
Computer Science and Network Security, VOL.7
No.10, October 2007, pp. 863-870.

[4] R. Battiti, Reactive search: Toward self-tuning heuristics,
in V. J. Rayward-Smith, editor, Modern Heuristic Search
Methods, John Wiley and Sons Ltd, 1996, pp. 61-83.

[5] R. Battiti, G. Tecchiolli, Simulated annealing and tabu
search in the long run: a comparison on qap tasks,
Computer Math. Applic., Vol. 28, No. 6, 1994, pp. 1-8.

[6] T. G. Crainic, M. Toulouse and M. Gendreau, Toward a
Taxonomy of Parallel Tabu Search Heuristics, INFORMS
Journal on Computing, Vol. 9, No. 1, 1997, pp. 61-72.

[7] M. Dell’Amico, M. Trubian, Applying Tabu Search to the
Job-Shop Scheduling Problem, Annals of Operations
Research, Vol. 41, 1993, pp. 231-252.

[8] U. Faigle, W. Kern, Some Convergence Results for
Probabilistic Tabu Search, ORSA Journal on Computing,
Vol. 4, No. 1, 1992, pp. 32-38.

[9] F. Glover, Tabu Search — Part I, ORSA Journal on
Computing, Vol. 1, No. 3, 1989, pp. 190-206.

[10] F. Glover, Tabu Search — Part II, ORSA Journal on
Computing, Vol. 2, No. 1, 1990, pp. 4-32.

[11] F. Glover, Tabu Search: A Tutorial, Interfaces, Vol. 20,
No. 4, 1990, pp. 74-94.

[12] F. Glover, M. Laguna, Tabu Search, Kluwer Academic
Publishers, Boston 1997

[13] M. P. Hansen, Tabu Search for Multicriteria Optimisation:
MOTS. Proceedings of the Multi Criteria Decision
Making, Cape Town, South Africa, 1997

[14] A. Hertz, Finding a Feasible Course Schedule Using Tabu
Search, Discrete Applied Mathematics and Combinatorial
Operations Research and Computer Science, Vol. 35,
1992.

[15] J.R. Koza, Genetic programming. The MIT Press,
Cambridge 1992.

[16] A. Lokketangen, A. K. Jornsten and S. Storoy, Tabu
Search within a Pivot and Complement Framework,
International Transactions in Operations Research, Vol. 1,
No. 3, 1994, pp. 305-316.

[17] C. Rego, A Subpath Ejection Method for the Vehicle
Routing Problem, Management Science, Vol. 44, No. 10,
1998, pp. 1447-1459.

[18] J. Węglarz, Recent Advances in Project Scheduling.
Kluwer Academic Publishers, Dordrecht 1998.

[19] A. M. Widmer, The Job-shop Scheduling with Tooling
Constraints: A Tabu Search Approach, J. Opt. Res. S, Vol.
42, 1991, pp. 75-82

[20] J. Xiao, Z. Michalewicz, L. Zhang, K. Trojanowski:
Adaptive Evolutionary Planner/Navigator for Mobile
Robots. IEEE Transactions on Evolutionary Computation,
Vol. 1, No. 1, April 1997, pp. 18-28.

[21] C.K. Yap, Algorithm motion planning. In the Advances in
Robotics, vol. I: Algorithmic and Geometric Aspects of
Robotics, J.T. Schwartz and C.K. Yap, Eds., Hillsdale, NJ:
Lawrence Erlbaum, 1987, pp. 95-14.

Jerzy Balicki received the
M.S. and Ph.D. degrees in
Computer Science from Warsaw
University of Technology in 1982
and 1987, respectively. During
1982-1997, he stayed in Computer
Center of Maritime High School of
Gdynia to study management
systems, mobile systems, and
decision support systems. Then, he

achieved habilitation from Technical University of Poznan in
2001. He was admitted as a university professor at Naval
University of Gdynia in 2002.

