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Summary 
Trajectory of an autonomous underwater vehicle can be 
obtained by using tabu programming that is a new 
paradigm of artificial intelligence. Three crucial criteria 
can be used for an assessment of an underwater 
vehicle trajectory quality: a total length, a smoothness, and 
a measure of safety. Finally, results of some numerical 
experiments have been presented. 
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1. Introduction 

Path of an underwater vehicle can be determined by tabu 
programming that is capable to solve some multiobjective 
optimization problems [3]. Tabu programming is a new 
paradigm of artificial intelligence that can be applied for 
computer decision aid. Similarly to the genetic 
programming, tabu programming solves different 
problems by using a general solver that is based on a tabu 
algorithm.  

For evaluation of a vehicle trajectory, three main criteria 
can be used: a total length of a path, a measure of safety, 
and a smoothness of a trajectory [2]. An algorithm 
implemented in the computer board of an underwater 
vehicle is supposed to find a path between two specified 
locations in a three dimensional space, which is collision-
free and satisfies optimization criteria [20]. 

Remotely operated vehicles are usually designed for 
underwater observation in hostile environment [21]. The 
foremost attributes of these vehicles are their power 
capability and their compactness. The vehicle consists of 
two divisions. The upper part ensures the vehicle positive 
buoyancy and houses the sonar head. The lower part 
consists of a watertight frame made of welded pressure-
resistant tubular stainless steel. The underwater vehicle is 
equipped with four three-phase asynchronous thruster 
motors with propellers. There is a surface control unit with 
its power cable. It is possible to extend unit’s capabilities 
by using the board computer to find the trajectory of the 
vehicle.  

Tabu search can be treated as a general combinatorial 
optimization technique for using in zero-one programming, 
non-convex non-linear programming, and general mixed 
integer optimization [9]. This technique is basically used 
to continuous functions by selection a discrete encoding of 
the problem [17]. In a tabu search, special areas are 
forbidden during the seeking in a space of all possible 
combinations [4].  

Tabu programming paradigm is implemented as a tabu 
search algorithm operated on the computer program that 
produces the current solution. A solution is generated as 
the program function and then tabu search procedures are 
applied for finding Pareto-suboptimal solutions. Tabu 
programming is a relatively new paradigm of an artificial 
intelligence [3].  

In this paper, tabu programming for solving multiobjective 
optimization problems of finding trajectory of underwater 
vehicle has been considered. Tabu search algorithm has 
been extended by using a computer program instead of a 
mathematical variable. Finally, results of some numerical 
experiments have been presented. 

1. Vehicle trajectory evaluation  

Trajectory between point (x1,y1,z1) and (xM,yM,zM), where 
M is the number of turn points,  can be represented as the 
x vector, as below [2]: 

),,,...,,,,...,,,,( 111 MMMmmm zyxzyxzyxMx =     (1) 

The point (xm,ym,zm) for m∈{1,…M} is feasible, if both the 
segment from (xm1,ym-1,zm-1) to (xm,ym,zm) and the segment 
from (xm,ym,zm) to (xm+1,ym+1,zm+1) do not cut forbidden 
areas for the vehicle. Some basic constraints for 
coordinates of trajectory points in the given water areas 
can be formulated, as follows: 
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where  
maxmin,XX – area constraints for the coordinate xm, 

maxmin,YY – area constraints for the coordinate ym, 

max
mZ – the maximal depth of water at (xm, ym). 

The length of the trajectory x can be presented, as bellow: 
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where d(pm,pm+1) is a distance between two neighboring 
points pm=(xm,ym,zm) and pm+1=(xm+1,ym+1,zm+1). 

The distance between two adjacent path points can be 
calculated, as below: 
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2. Optimization problem 

A safety measure, where regions of non-moving obstacles 
Kk ΩΩΩ ,...,,...,1  in the water are known, can be defined, 

as follows [2]: 
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where b(pm,pm+1) - the penalty for the segment (pm, pm+1), if 
the segment cuts the forbidden area.  

The penalty value b(pm , pm+1) is calculated, as follows: 
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where 
r(pm, pm.+1) – the sampled smallest distance from the line 

segment (pm, pm.+1) to the nearest forbidden area, 
dmin – a minimal safe distance from   the vehicle to another 

object, 
β    – a positive penalty coefficient. 

If r(pm, pm.+1) is non-smaller than dmin, then b(pm, pm.+1) is 
negative. When r(pm, pm.+1)  is smaller than dmin, then 

b(pm, pm.+1) is positive and it grows exponentially due to 
the subtraction. The function P is a maximum of penalties 
for all segments it is supposed to be minimized to obtain 
a trajectory as safe as possible. 

The criterion S is supposed to maintain a smooth trajectory 
to avoid sudden turns of direction, as follows [2]: 
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where  
αm. is the angle between the extension of the line segment 
(pm-1, pm) and the line segment (pm, pm.+1) on a plane 
determined by above segments.  

For the same distances the trajectory is smoother, if the 
maximum angle for it is smaller. We assume, that 
αm∈[0,π]. If the minimum length from d(pm-1, pm) and 
d(pm, pm.+1) is longer, then there are less points pm, where 
the direction of trajectory is changed.  

The smoothness of trajectory can be related to the sum of 
all trajectory curvatures at points, as bellow: 
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What is more, the minimization of root for sum-squared 
function can be considered, as below: 
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We order partial criteria from the most important criterion 
to the least important criterion. In such a way, 
a hierarchical solution can be found. In a multicriteria 
navigation of the underwater vehicle, the safety criterion 
seems to be the most important. Let the multicriteria 
optimization problem be considered for finding trajectory 
of the underwater vehicle as the Pareto-optimal solution: 

),,,( RFX                             (10) 

where 
X – the set of admissible trajectories, 
F – the vector criterion, 
R – the relation for finding hierarchical solutions [1]. 

Because of the variable number of points in trajectory, 
a set of all trajectories (admissible or non-admissible) 
consists of vectors with no more than 3Mmax coordinates. It 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007 

 

34 

 

can be denotes as TX 2= , where max3MR=T  and R  
is a set of real numbers. 

The set X of feasible trajectories is defined, as follows: 
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Obstacles are respected by increasing the safety criterion 
of the trajectory. The vector criterion 3: R→XF  has three 
partial criteria, as follows: 

,)],(),(),([)( X∈= xxSxPxLxF          (12) 

where )(),(),( xSxPxL  are calculated according to (2), (5) 
and (7). 

3. Tabu programming  

Tabu programming is based on tabu search rules. The tabu 
search starts by moving to a local minimum. The tabu 
approach avoids entrainment in cycles by forbidding 
moves which lead to points in the solution space 
previously visited [12]. To avoid a path already 
investigated a point with poor quality can be accepted [10]. 
This insures new regions of a solution space will be 
explored in with the goal of avoiding local minima and 
finding the global minimum.  

To avoid repeating the steps recent moves are recorded in 
some tabu lists [18]. That lists are form the tabu search 
memory. The memory can vary as the search proceeds [5]. 
At the beginning, the target is testing the solution space, 
during a 'diversification' [11]. As candidate locations are 
identified the algorithm is more focused to find local 
optimal solutions in an 'intensification' process. The tabu 
method operates with the size, variability, and adaptability 
of the tabu memory to a solved problem [7].  

Special areas are forbidden during the seeking in a space 
of all possible combinations. From that neighborhood 
N(xnow) of the current solution, we can choose the next 
solution xnext to a search trajectory [14]. The accepted 
alternative is supposed to have the best value of an 
objective function among the current neighborhood. In the 
tabu search algorithm based on the short-term memory, 
a basic neighborhood of a current solution may be reduced 
to a considered neighborhood K (xnow) because of the 
maintaining a selective history of the states encountered 

during the exploration [19]. Some solutions, which were 
visited during the given last term, are excluded from the 
basic neighborhood according to the tabu classification of 
movements [6]. If any solutions performs aspiration 
criterion, then it can be included to the considered 
neighborhood, only [16]. 

Tabu programming is the tabu search algorithm that 
operates on the dedicated population of computer program 
[3]. Computer programs are constructed from the basic 
program that produces the current solution. The basic 
program is modeled as a tree (Fig. 1).  

That tree is equivalent to the parse tree that most 
compilers construct internally to represent the given 
computer program. A tree can be changed to create the 
neighborhood N(xnow) of the current program. We can 
remove a sub-tree with the randomly chosen node from 
the parent tree. Next, the randomly selected node as 
a terminal is required to be inserted. A functional node is 
an elementary procedure randomly selected from the 
primary defined set of functions [15]: 

{ }Nn fff ,...,,...,1=F                   (13) 

In the studied problem, we define set of functions, as 
bellow: 

{ }/,-,*,,+= ENDE,MOVE,IF_IF_OBSTACLF  (14) 
 
The procedure IF_OBSTACLE takes two arguments. If the 
obstacle is recognized ahead the underwater vehicle, the 
first argument is performed. In the other case, the second 
argument is executed.  

The function MOVE requires three arguments. It causes 
the movement along the given direction with the velocity 
equals the first argument during assumed time Δt. The 
time Δt is the value that is equal to the division a limited 
time by Mmax. The direction of the movement is changed 
according to the second and third arguments. The second 
argument is the angle of changing this direction up if it is 
positive or down if it is negative. Similarly, the third 
argument represents an angle of changing the direction to 
the left if it is positive or – to the right if it is negative.  

The procedure IF_END ends the journey of the 
underwater vehicle if it is in the destination region or the 
expedition is continued if it is not there.   

Furthermore, each procedure is supposed to be capable to 
allow any value and data type that may possible be 
assumed by any terminal selected from the following 
terminal set:  
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{ }Mm aaa ,...,,...,1=T                     (15) 
For finding the trajectory of the underwater vehicle, the 
set of arguments consists of the real numbers generated 
from the interval (-1; 1).  

 

 

 
 
 
 
 

 
 
 
 
 
 
 

Fig. 1. The program tree that can be modified by tabu 
algorithm 

 
Another sort of movements is related to removing the 
randomly chosen terminal node and then adding a sub-tree 
with the functional node as a root. That sub-tree can be 
constructed from the random number of nodes.  

If the node is the root of the reducing sub-tree for the 
current program, it can be protected against choosing it to 
be that root in a reducing operation until the next λ1 
movements is performed. However, that node can be 
selected to be the root for adding the sub-tree. Similarly, if 
the node is the root of the adding tree, it can be protected 
against choosing him to be that root in a adding operation 
until the next λ2 movements is performed.  

We can implement that by introducing the assignment 
vector of the node names to the node numbers. We 
consider a dummy node D0 (Fig. 1) as the number 0, for 
the formal reason. The node index ,,1 maxLl =  where 

maxL  represents the assumed maximal number of nodes in 
the tree. Numbers are assigned from the dummy node to 
lower layers and from the left to the right at the current 
layer. The assignment vector of the node names to the 
node numbers for the tree from the Figure 1 can be 
represented, as below: 

 ( )xzyD ,,,7/,,,,0 −−+=ω                (14)  

Moreover, the vector of function f and argument 
assignment can be defined, as follows: 

( )aaaaffff ,,,,,,,=ψ                (15)  

The vector of the argument number can be determined, as 
below: 

( )0,0,0,0,2,2,2,1=χ                      (16)  

Now, we can introduce the matrix of reducing node 

memory [ ] ,
maxmax LLnmmM ×

− =  where nmm  represents 

the number of steps that can be missed after reduction the 
function fm (with the parent fn) as a root of the chosen sub-
tree. After exchanging that root, .1λ=nmm  

Similarly, we can define the matrix of adding node 

memory [ ] ,~
maxmax LLnmmM ×

+ =  where nmm~  

represents the number of steps that can be missed after 
adding the function fm (with the parent fn) as a root of the 
created sub-tree. After exchanging that root, .~

2λ=nmm  

Parameters λ1 and λ2 are usually equal to λ, but we can 
adjust their values to tune the tabu programming for the 
solved problem. On the other hand, the length of the short-
term memory λ is supposed to be no greater than Lmax. 
After λ movements, the selected node may be chosen for 
operation once again.  

Tabu programming rules can be implemented as an 
algorithm ATP (Fig. 2) that can be used for optimisation. 
ATP can be used for solving an optimization problem with 
one criterion, as follows: 

)(minmin xFF
Xx∈

=                        (17) 

where 

F – criterion of the problem, 

X – set of admissible trajectories of vehicle. 

The selection function W is constructed from the criterion 
F and functions describing constraints [8]. Usually, the 
penalty function can be applied [13]. 

If some admissible solutions are in the neighborhood of 
the current solutions produced by the modified programs, 
then the hierarchical solutions are determined.  

A tabu algorithm has been written in the Matlab language. 
Our initial numerical experiments confirm that feasible, 
sub-optimal in Pareto sense, trajectories can be found by 
tabu programming. A paradigm of tabu programming 
gives opportunity to solve the several problems. 
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Fig. 2. An algorithm ATP of tabu search programming  
 

If the trajectory x is admissible, then the selection function 
value is estimated, as below: 

,1)()( maxmax ++−= Pxrrxf            (18) 

where r(x) denotes the rank of an admissible solution in 
the neighbourhood of the current solution, 

Let the Pareto points {P1, P2,..., PU} be given for any 
instance of the optimal trajectory problem. If the AMT 
finds the efficient point (Au1, Pu2) for the smoothness Pu2, 
this point is associated to the uth Pareto result (Pu1, Pu2) 
with the same value of the smoothness.  

The distance between points (Au1, Pu2) and (Pu1, Pu2) is 
calculated according to an expression 11 uu AP − . If the 
point (Au1, Pu2) is not discovered by the algorithm, we 

assume the distance is min
11 uu AP − , where min

1uA  is the 

minimal length of the trajectory for the instance of 
problem.  

The level of convergence to the Pareto front is calculated, 
as follows: 

∑
=

−=
U

u
uu APS

1
11 .                   (19) 

An average level S  is calculated for several runs of the 
ATP. That tabu programming ATM gives better outcomes 
than the genetic programming AMEA/GP (Fig. 3). After 
300 selections, an average level of Pareto set obtaining is 
1.2% for the ATM, 3.6% for the AMEA/GP. 40 initial 
trajectories were prepared, and each algorithm starts 40 
times from these points.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

An average level of convergence to the Pareto set, an 
maximal level, and the average number of optimal 
solutions become worse, when the number of internal 
points of trajectory, size of the water space, and number of 
obstacles increase. An average level is 23.7% for the AMT 
versus 37.9% for the AMEA/GP, if the instance includes 
200 internal points, and also 12 obstacles. 

1. Initial procedure   k:=0 
(A) Generation of the program that produces xnow  
(B)  xbest := xnow , xbis:= xnow 
(C)  Fmin:=F( xnow) 
(D) Initialization of restriction matrixes M 

+, M 
-  

(E) Setting λ1, λ2 

2. Solution selection and stop criterion    k:=k+1 
(A) Finding a set of tree candidates K(M 

+,M 
-, xnow) from 

the neighborhood N(xnow) 
(B) Selection of the next solution xnext∈ K (M 

+, M 
-, 

xnow)  with the minimal value of the selection 
function W among solutions taken from K 

(C) Aspiration condition. If all solutions from the 
neighbourhood are tabu-active and Fmin≥F( xnow), 
then xbest := xnow, Fmin:=F( xnow) 

(D) Re-linking of search trajectory. If xnext  was not 
changed during main iteration, then crossover 
procedure for parents xbest, xbis is performed. A child 
with the smaller value of F is xnext, and another one 
is xbis 

(E) If  k = 0.4 Kmax, then λ1:= 4λ1,  λ2:= 4λ2 
(F) If  k = Kmax or maximal time of calculation is 

exceeded, then STOP.  

3. Up-dating 
(A) xnow := xnext 
(B) If F( xnow)< Fmin, then xbis := xbest and go to 1(B) 
(C) After reduction the procedure fm (with the parent 

fn) as a root of the chosen sub-tree M 
-:= M 

- –1, 
.1λ=nmm  

(D) After adding the procedure fm (with the parent fn) 
as a root of the created sub-tree M 

+:= M 
+ –1, 

.~
2λ=nmm  

(E) go to 2 
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Fig. 3. Convergence of results for the AMT and the 
AMEA/GP  
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4. Concluding remarks 

Tabu programming is a new paradigm of artificial 
intelligence that can be used for finding solution to several 
problems. Tabu programming can be applied for control 
an underwater vehicle. A computer program as a tree is 
a subject of tabu operators such as selection from 
neighborhood, short-term memory and re-linking of the 
search trajectory. A tabu programming has been applied 
for operating on the computer procedures written in the 
Matlab language. 

Our initial numerical experiments confirm that feasible, 
sub-optimal in Pareto sense, task assignments can be 
found by tabu programming. A paradigm of tabu 
programming gives opportunity to solve this problem for 
changeable environment.  

Our future works will focus on testing the other sets of 
procedures and terminals to find the Pareto-optimal 
solutions for distinguish criteria and constraints. Moreover, 
we will concern on a development the combination 
between tabu search and evolutionary algorithms for 
finding efficient solutions.   
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