
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

98

Manuscript received November 5, 2007

Manuscript revised November 20, 2007

Supporting Web Service Composition in Wireless Environment

Based on Mobile Agents

HaiYang Hu, Hua Hu

†College of Computer Science and Information Engineering, ZheJiang GongShang University
Hangzhou City, Zhejiang Province, 310018, China

Summary
The emergence of Web services has created unprecedented
opportunities for organizations to establish more agile and
versatile collaborations. As mobile computing becoming a
standard of modern life, Web service coordination in mobile
wireless environment brings new technology challenge. This
paper presents a new service coordination framework based on
mobile agents. By mobile agents’ melting and splitting
dynamically, it can perform a fault-tolerance and efficient
autonomic composition. Compared with other approaches, our
scheme shows its advantage by performance tests.
Key words:
mobile agents; web service composition; melting and
splitting

1. Introduction

Web Services are capabilities that enable applications and
are of crucial importance to pervasive computing in
next-generation networks [1]. Web services composition
[1], [2], [3] is the construction of complex application
from primitive Web services, thus enabling rapid and
flexible creation of new application. As mobile computing
becoming a standard of modern life [4], Web services
composition in this wireless environments bring new
technology challenge to the underlying coordination
platforms. First, with the limited capability of hardware,
mobile devices can’t run continuously for a long time and
store too much data. Second, mobile devices access the
services by wireless network which has a low bandwidth
and the communication cost is very expensive. Third, the
wireless network can’t maintain stable connection
continuously. Thus, to support mobile devices composing
the distributed Web services, some efficient and reliable
composition mechanism will be needed. It should not need
mobile devices connecting with networks continuously
during Web services composition. It should be automatic
enough with the least participation of clients so as to save
the resource of mobile devices. And it should be
fault-tolerance to adapt to the dynamic environments, e.g.
some candidate Web services can’t be connected or some
physical nodes are shut down. At last, the composition
mechanism should be efficient enough to save the overall

wireless communication cost of client application on the
mobile devices for the wireless communication cost is
very expensive.
 In this paper, we propose a new coordination
framework based on mobile agents. It supports automatic
Web service composition without the participation of
client application, so that client application on mobile
device can disconnect itself from the network when
performing composition, and after a period of time
reconnect again to get the results. In composition phrase, a
mobile agent can split itself into several different
subagents or melt other agents into a new one, thus, to
perform a fault-tolerance service composition and to
enhance the efficiency of the composition.
 The reminder of the paper is organized as follows. In
section 2, we present our system model for Web service
composition in wireless environments. In section3, we
describe the dependences between Web services in
composition, and present the running scheme of mobile
agents. Performance study is given in section 4. In section
5, the related works are overviewed. Finally, section 6
concludes this paper.

2. System Model

To lighten the structure complexity of client application on
mobile devices, in our approach, the whole composition
process is implemented by mobile agents in wired
networks without consuming any resource of mobile client
terminal. To run the mobile agents on these nodes
seamlessly, agent servers are needed to deploy on these
nodes. These agent servers play an important role in the
service composition process [5], [6], their responsibility
including generating a new instance of mobile agent,
sending it to another physical node, receiving a mobile
agent migrating from another node here, helping one agent
split into several subagent or melt several agents into an
integrity one. During service composition process, client
application first sends a service composition specification
file to base station. The agent server on the base station
parses it into a mobile agent (also named coordination
agent) containing an itinerary file and an assignment

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

99

file in itself, and then the coordination agent migrates in
the wired network to implement its assignments.

 The detailed parsing procedure is shown in Fig.2.
Including a set of candidate Web services info, the
specification of Web service composition states the control
flow of composition. Each Web service item in the
specification may include the service’s method interface,
its physical location, and some of the input parameters.
Among them, the interface of Web services is essential.
When a candidate Web service can’t be connected, the
agent will search for other new Web services in the
network depending on the certain specification of method
interfaces. Agent Manager is responsible for managing the
results carried back by coordination agents. After coming
back, the agents will call the appropriate put(…) method in
Agent Manager to return the results. And agent manager
will send the result to client application when mobile client
terminal reconnects to network again.

3. Framework of Web Service Composition

Using mobile agents to compose Web services, client
application would represent the control flow and the
structure of composition, and then tell it as a set of
assignments to mobile agent. Depending on this set of
assignments, mobile agent migrates in the network,
splitting or melting, and at last gain its goal.

3.1 Dependences Among Web Services

In our approach, the service composition information
carried by coordination agent is a tuple (I, M, L, PM, R,
Tpre, Tpost, CS) where : I is the identifier of Web service;
M is the correlated service method; L is the physical
address of the service; PM is a set of input parameters of

the service; R is the execution results of the service. Tpre
is the set of services that this Web services depends on.
Tpost is the set of services which depend on this service.
We’ll explain Tpre and Tpost below. CS is the current state
of the service. The value of CS is “READY” or
“NOTREADY”. If the value is “NOTREADY”, it means
that the service can’t be executed now, and must be
waiting until all the conditions needed are satisfied.

There may be dependences between the services in
composition. For example, one input parameter of Web
service A may be the execution result of Web service B.
Thus, service A can’t be executed until service B has been
called. We call this dependence as parameter dependence.
Parameter dependence plays a critical role between the
Web services. One Web service may be parameter
dependence on several other Web services. Also, several
services may be parameter dependence on one same Web
service, with each depending on a certain input parameter.

Definition 1 (Parameter dependence). For Web service

iWS and jWS , if one of the execution results of iWS
will influence the input parameters of jWS , then jWS is
Parameter dependence on iWS , and is denoted as

),(ji WSWSDEP .
For a set of Web services in composition given, we

present an algorithm below to generate a directed
parameter dependence graph (PDG), which has only one
start point and one end point.
Algorithm 1:

1) For a set of Web services }..1,{ niSST i == , add
one start point and one end point. Thus, 'ST = ST ∪

},{ ENDSTART SS . And PDG={ (V, E) | V= 'ST ,
E={),(ji SS | VSS ji ∈∀ , ,),(ji SSDEP }}. E is configured
as follows:

STSi ∈∀ , if there is no such service jS in 'ST that
),(ji SSDEP holds, then)},{(ENDi SSEE ∪= ; if there is no

such Web service S in 'ST that),(ji SSDEP holds, then
)},{(iSTART SSEE ∪= ; if 'STS j ∈∃ , and),(ji SSDEP , then

)},{(ji SSEE ∪= .
In PDG, the value of the directed arc),(ji SS is the

execution cost between service iS and jS . This cost
includes three parts: a) the cost of agent finding the
appropriate Web service iS ; b) the cost of agent migrating
from the physical node of iS to the node of jS ; c) the
cost of agent executing the methods of jS .

Fig.2. Generation of coordination agents

Specification of Web services composition

Coordination agents parser

Agent Manager Coordination Agent
Manage

parse

Mobile device

Base station

Wired netowork

Wireless link

Fig.1 The system model

Mobile agent Web service

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

100

We denote the cost of a) as)(jSTF , the cost of b) as

).,.(LSLSTM ji , here, LSi . being the physical address of
service iS and the cost of c) as)(iSTS . If iS and jS

are distributed on the same physical node, then the value
of).,.(LSLSTM ji equals to zero. Fig.3 gives the structure
of Assignment in PDG implemented in Java language.

3.2 Structure of Coordination Agent
In our approach, the coordination agent is a tuple (G ,
I , CT , CS , F) where: G is the PDG carried by agent;
I is the identifier of this agent; CT is the current
service executed by agent; CS is current state of agent.

Its value is “WAITING”, “NOTREADY” or “READY”;
F is the agent’s function body.

3.3 Running of Coordination Agents

To gain a high efficient composition, coordination agent
will dynamically split and melt to compose the services as
parallel as possible, so that the total cost will be minimized.
We define agent splitting and melting as follows.

Definition 2 (Dynamically splitting). For PDG g
carried by agent A, kVg =|.| , there are no such two
services in g.V that iS , jS Vg.∈ , and),(ji SSDEP . Then

public class Assignment implements Serializable{
 private int identity; // this assignment's identity is unique
 private Vector Parameter; // the assignment's parameters, and the
 private String methodName ; // the name that this assignment will call

//on the server node as the methodname;
private Address addr ; // the physical address of this

//assignment's method;
 private Vector preAssignment; //the assignment that will be

//performed directly before this assignment;
 private Vector postAssignment ; // the assignment that will be

//performed directly after this assignment

private boolean isReady; //when ready ,that menas this assignment can
//be performed.

private Vector result ; // store the result of this as signment when has //been
performed

private Vector preARC; // the arcs directing to this assignment
private Vector postARC; // the arcs directing to the following assign//ments

}

Fig.3. The structure of Assignment implemented in Java

public class CoordinationAgent implements Serializable{

 private Assignment originAssignment; //an identifier given by client
 private String Identity; // the identifier of this agent
 private Assignment currentAssignment; //this agent’s current

//assigenment
 private Vector result ; // the execution result stored in agent
 private String CS; // the current state of this agent

private AgentServer as;
 public void run(AgentServer as){}

 /* when agent migrates to the physical node of its current assigenment,
it tries to perform the execution */

 private void performAssignment(Assignment cua){}
 /* split the agent corresponding to the postassignment of current

assignment,and put the new agentresponsible for each assignment; */
 private void splitAgent(Vector postAssignment){}

/* let the agent know which assignment it will want to perform
 */
 public void setCurrentAssignment(Assignment ass){}
 public Assignment getCurrentAssignment(){}

/* If the agent's currentAssignment is ready then the agent is
ready */

 public boolean isReady(){}
}

Fig.4 The structure of coordination agent implemented in Java

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

101

}1|{).|(kiAVgASPL i ≤≤= , and for each subagent iA ,
IAi . is unique, kiVgSCTA ii ≤≤∈= 1,.. .

Definition 3 (Dynamically melting). For Agent iA , jA if

Cji SCTACTA == .. , CSAi . = “WAITING”, CSAj .
= ”NOTREADY”, then)|,(CjiN SAAMELA = , IAN . is
unique, jiN AAA ∪= , and CN SCTA =. . If CSSC .
= ”READY”, then CTAN . = ”READY”.

In PDG, there are four possible kinds of control flow

between the Web services as shown in Fig.5. In (A),
service 2S only depends on 1S and there is only one
service 2S depending on 1S . In this case, coordination
agent sequentially executes 2S after the execution of 1S .
In (B), both 2S and 3S depend on 1S . In this case, after
the execution of 1S , agent 1A splits itself into two
subagents 12A , 13A , and then 12A begins to execute 2S
and 13A to execute 3S respectively. In (C), 3S depends
on both 1S and 2S . In this case, suppose there are two
agents 1A , 2A executing services 1S and 2S
respectively. When agent 1A and 2A finish their
execution of 1S and 2S , they melt into a new agent 3A
with the help of agent server, and 3A starts to executing
service 3S . In (D), neither 1S nor 2S depends directly
or indirectly on the other. And in this case, as shown in
(A)-(C), there are two different agents in the environment
to call them in parallel.

For example, in fig.6, the seven services in such a
control structure are represented in the PDG. A
coordination agent 1A parsed by agent server depending
on this PDG is sent out to fulfill the composition. After
calling service 1S , 1A splits itself into three subagents

12A , 13A and 14A , with each to call one of the following
services 2S , 3S and 4S respectively, so that the three
services are executed in parallel. And after that, agent 12A
splits into 125A and 126A to execute 5S and 6S in
parallel. Agent 13A splits into 136A and 137A to execute

6S and 7S in parallel. As 6S is parameter dependence
on 2S and 3S , neither 126A nor 136A can fulfill the
execution of 6S alone. So, while calling service 6S ,
agent 126A and 136A melt together into a new agent 6A
to fulfill the execution. And agent 137A and 14A melt
into agent 7A to call the service 7S . After calling the
services 5S , 6S and 7S , the three agents 125A , 6A and

7A proceed with their execution in parallel. From this
example, we can see that the services are composed as
parallel as possible to save the total cost.

In the dynamic environments, often some candidate

Web service in composition are shut down and can’t be
connected, thus, coordination agent must dynamically find
some other Web service having the matching behavior in
the environment to perform a fault-tolerance composition
at runtime. As shown in Fig.7 and 8, to realize a
fault-tolerant composition, the agent dynamically splits
into multiple subagents to search the environment for the
candidate Web services providing the same service method.
And during this process, the failure of several subagents
won’t prevent the coordination agent from proceeding with
its composition. As in figure 9, there being three candidate
Web services (1

1WS , 2
1WS , 3

1WS) providing the same service
method M1, coordination agent splits itself into three
subagents, each calling a certain Web services. After the
calling, these subagents will again melt into a new one to
call the following Web services.
 Based on the rules of interface compatibility and
behavior compatibility, coordination agent A searches the
new web service S in environment to substitute the
candidate service in the PDG , which can’t be accessed.

S7

Fig.6 An example of service composition

S1

S2 S4

S5

S3

S6

Splitting Melting

Web service1
Searching,
executing

Fig.7. Fault-tolerance searching and executing

split
WS1

1

WS1
2

WS1
3

M1

WS2

1

WS2
2

WS2
3

M2
Fig.8. Fault-tolerance searching and executing

S1

S2

(A)
Fig.5 Four structures of services composition

S1

S2 S3

(B)

S3

S1 S2

(C)

S1 S2

(D)

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

102

Definition 4 (interface compatibility). For interface
compatibility, S provides at least the service interfaces
methods required by A. And∀ ipa1: input parameter of
request interface method in A, ipa2:the corresponding
parameter of service interface method of S, then ipa1 has
the same type of ipa2, or ipa1 is a subtype of ipa2. The
requirement result type in A is the same type of the result
type of S, or a supertype of that in S.

Definition 5 (behavior compatibility). For behavior
compatibility: first, each request interface method in A
must have a corresponding service interface method in S,
and the two interfaces are interface compatibility; Second,
let LA be the set of request method traces in A, LS be the
set of service method traces of S, and LA ⊆ LS. Thus, S is
behavior compatibility to A’s requirements.

3.4 An Efficient Composition Scheme

In this section, we propose an efficient Web service
composition scheme based on coordination agents’
dynamically splitting and melting. We fist define the
concepts of))((SPLNumT ρ and))((MELNumT ρ , and then
provide the algorithm.

Definition 6 (Splitting point). Suppose ρ =< STARTS ,

1S , 2S ,… kS , ENDS > is a directed path in PDG, if for some
ρ∈iS , ki ≤≤1 , VS j ∈∃ , ρ∉∧∈ jji SESS),(, then we

call iS a split point of ρ. Split point states that when
agent finishes executing iS , it will split into several
subagents to execute the following services. Suppose

)(SPLNum ρ is the total number of split points in ρ, then
))((SPLNumT ρ is the overall cost of agent performing all

split operations along path ρ, then it’s easy to see that
))((SPLNumT ρ =)(1 SPLNumc ρ , and 1c is a constant.

Definition 7 (Melting point). Suppose ρ =< STARTS ,

1S , 2S ,… kS , ENDS > is a directed path in PDG, if for some
ρ∈iS , ki ≤≤1 , VS j ∈∃ , ρ∉∧∈ jij SESS),(, then we

call iS is a melting point of ρ . Melting point states that
when agent finishes executing 1−iS along path ρ , it will
wait for other agents coming from other paths here and
melt them together into a new agent to execute Si. Suppose

)(MELNum ρ is the total number of melting points in ρ ,
))((MELNumT ρ is the overall cost of agent performing all

melting operations along path ρ , then it’s easy to see that
))((MELNumT ρ = 2c)(MELNum ρ , and 2c is a constant.

Theorem. Suppose coordination agent carries such a PDG

>=< EVg , , and the set of all the critical paths [7] in g is
}1|{ mkk ≤≤ρ . }1|{ mkkj ≤≤∈∃ ρρ , jρ =

< STARTS , 1
jS , 2

jS ,… n
jS , ENDS >, and))((

)(MELjNumT ρ +

))((
)(SPLjNumT ρ =))}(())(({)()(SPLkMELkk NumTNumTMin ρρ + .

So the cost of coordination agent fulfilling the overall
composition in PDG is at least)(jT ρ +

))((
)(MELjNumT ρ +))((

)(SPLjNumT ρ . Here,)(jT ρ is the

cost of one single agent executing along path jρ from the
beginning node to the end node without considering the
cost of melting and splitting.
Proof With the concept of critical path, it’s easy to prove
this theorem.

Based on the theorem, we present an efficient
algorithm for Web service composition.

Algorithm 2:
1) For a set of Web service to be composed, use

algorithm 1 to generate the interrelated PDG. Agent
server sends out an agent A carrying the PDG to
fulfill the composition.

2) Generate the set of critical paths in PDG. If there is
only one such critical path ρ =< 1S , 2S ,…>, then
for agent A, it sets its current assignment CTA. =

1S ; If there are several critical paths, }1|{ mii ≤≤ρ ,
then select such a path jρ that

)(
)(MELjNum ρ +)(

)(SPLjNum ρ = +)({)(SPLii NumMin ρ

)}()(MELiNum ρ , mi ≤≤1 . Suppose such a path jρ =<

1S , 2S ,…>, then the agent sets its current assignment
agent.CT = S1.

3) If the agent’s current assignment CT = SSTART, then
goto 8); If If the agent’s current assignment CT =
SEND, then goto 9); If it’s current assignment CT
≠ SSTART ∧ CT≠ SEND, goto 4).

4) Coordination agent migrates to the physical address
of its current assignment.
a) If the current state CS of agent’s current

assignment CT is “NOTREADY”, then agent
applies to the local agent server for entering into
the waiting queue, goto 5).

b) If the current state CS of agent’s current
assignment CT is “READY”, then agent call the
service methods of the Web service. After that,
goto 8).

5) Agent server searches local waiting queue, if it finds
such an agent agent1 that has originated from the
same client application and is waiting to execute the
same service methods, then goto 6); If agent server
can’t find such an agent, then goto 7).

6) Agent server helps the two agent to melt together,

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

103

suppose agent2=MEL(agent, agent1 |agent.CT); After
the melting, if the current state CS of agent2’s current
assignment CT is “READY”, agent2 will execute its
current assignment, and then goto 8); If the value of
CS is still “NOTREADY”, goto 7).

7) Agent server adds the agent into its local waiting
queue.

8) For the current assignment CT executed,
a) if |CT.Tpost|>1, then the agent A splits itself into

several subagents. Suppose the set of
subagents }1|.|1|{ −≤≤ TpostCTiAi = |(ASPL

)))((. CTNextTpostCT ρ≠ , here))((CTNext ρ is the
following service of S in path ρ , for ∈∀ iA

|(ASPL)))((. CTNextTpostCT ρ≠ , goto 2); While
for agent A, it sets its current assignment A.CT =

))((CTNext ρ , then goto 3).
b) if |CT.Tpost|=1, then the agent sets its current

assignment A.CT =))((CTNext ρ , then goto 3).
9) Coordination agent migrates back to the agent manager

and puts back the results.

4. Performance Study

We use IBM NetVistas to run Client application, and use a
set of Dell PowerEdge 1400SC servers to run as agent
Servers. The Web services are also distributed on these
servers with the connection of 100MB/S Ethernet network.
Client application connects to the network with a common
10Kb modem to simulate as the mobile device.
 Figure 9 shows the cost of dynamically agent splitting.
The splitting cost includes dynamically creating instances
of subagent, setting the correlated assignments and
sending them out. Figure 10 shows the cost of agents’
dynamically melting. The process includes agent server
searching the wait queue, and agent server helping the
agents melting together into an absolutely new agent. As
seen from the figures, both agents’ melting and splitting
activities cost little.

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8Th
e

co
st

of
 d

yn
am

ic
al

ly
sp

lit
in

g
ag

en
t(m

s)

The number of subagents created

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8

Th
e

co
st

 o
f d

yn
am

ic
al

ly
m

el
tin

g
ag

en
ts

(m
s)

The number of agents melting together

In the second experiment we compare the
performance of our approach with the traditional Axis
Web service composition framework using standard SOAP
protocol both in wired and wireless networks (as shown in
fig. 11 and 12). In the former, both client application and
web services are located on wired networks. While in the

latter, client application is on a mobile device. In this
scenario, by the approach of agents, client application
sends a specification of the Web service composition to
one of the agent servers, the server parses it into a
coordination agent, then the coordination agent fulfill the
overall composition by dynamically splitting and melting.
During the process, client application can disconnect itself
from the network freely. By the approach of SOAP, client
application uses RPC-SOAP protocol to call all the Web
services one by one, while the network connection needing
to be maintained continuously. In this experiment, we
compare the time cost of the two approaches at the
different level of application payloads (500 Bytes, 5
KBytes, and 50 KBytes). And the result is shown in Fig.11
and 12. Seen from the figures, our approach is greatly
efficient than the Axis composition approach in wireless
networks. And this is because, in our approach, the
unnecessary network transporting from mobile device to
the Web services in wired network is avoided and agents
can perform the composition in the network by itself.
However, in wired networks, the advantage of agent
approach is not very apparent because of the cost of
agents’ migration between the nodes in wired networks.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11

Axis(500) Axis(5k)
Axis(50k) Agent
Agent(50k)

To
ta

l c
om

m
un

ic
at

io
n

co
st(

m
s)

Number of Web services in composition

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000

2 3 4 5 6 7 8 9 10 11

Axis:500B
Axis:5KB
Axis:50KB
Agent:5KB
Agent:50KB

To
ta

l c
om

m
un

ic
at

io
n

co
st(

m
s)

Number of Web services in composition

Fig.9 Agent dynamically
splitting

Fig.10 Agents dynamically
melting

Fig.12 Compared with SOAP protocol in wireless network

Fig.11 Compared with SOAP protocol in wired network

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

104

5 Related Works

Research on Web service composition has going on from
the last decade. An architecture for service composition in
pervasive computing environment is proposed in [8]. In
their work, service descriptions include platform specific
information such as processor type, speed and memory
availability. In [9], the system uses a rule-based exert
system to automatically determine whether a desired
composite service can be achieved using existing services.
CMI [10] and eFlow [11] have investigated the possibility
of performance dynamic service selection based on user
requirements. CMI’s service definition model states the
concept of a placeholder activity to cater for dynamic
composition of services. In [12], SAHARA system
proposed a model for service composition which
recognizes two different models: the cooperative
composition model and the brokered composition model.
The work proposed In [13] implemented dynamic
QoS-aware service composition selection, Thus, the
service composition manager in the architecture acts as a
broker between the composite service clients and the
services participating the composition.
 However, none of the works concern on how to
optimize the total cost of service composition, and most of
them need the client’s participating in during the service
composition. Thus, they can’t best satisfy the requirements
of service composition in wireless environment.

6 Conclusion

This paper presents a new Web service composition
framework in wireless environment based on mobile
agents. It supports automatic Web service composition
without the participation of client application, so that the
mobile client terminal can disconnect itself from the
network,. During composition procedure, the coordination
agent can dynamically split itself into several different
subagents or melt other agents into a new one to perform a
fault-tolerance and high efficient composition.

Reference

[1] G. Alonso, F.Casati, H.Kuno, V.Machiraju. Web
Services. Springer Verlag, 2003.

[2] B.Benatallah, M.Dumas, Q.Z.Sheng, A.H.Ngu.
Declarative composition and peer-to-peer
provisioning of dynamic Web services. ICDE
2002,297-308

[3] B.Medjahed, A.Bouguettaya, et al. Composing Web
services on the semantics Web. The journal of
VLDB, 2003, 12(4): 333-351.

[4] Chander Dhawan. Mobile Computing: A systems

Integrator’s Handbook. McGraw-Hill, USA.
[5] Hu Hai-Yang, Yang Mei, Tao Xian-Ping, Lv Jian.

Research and implementation of late assembly
technology in Cogent. ACTA ELECTRONICA
SINICA, 2002, 30(12): 1823~1827(in Chinese)

[6] Lv Jian, Zhang Ming, Liao Yu, Tao Xian-Ping.
Research on componentware framework based on
mobile agent technology. Journal of Software, 2000,
11(8):1018~1023(in Chinese)

[7] Bruno R, Preiss. Data structures and Algorithms with
Object-Oriented Design Patterns in C++. John Wiley
& Sons, 1998

[8] Chakraborty D, Perich F, Joshi A, Finin T. A reactive
service composition architecture for pervasive
computing environments. In proceedings of the 7th
personal wireless communications conference,
Singapore 2002, 53-62.

[9] Ponnekanti SR, Fox A. SWORD: A developer toolkit
for Web service composition. In proceedings of the
4th international ACM workshop on Web
information and data management, McLean, VA,
2002, 56-62.

[10] D. Georgakopoulos, H.Schuster, A.Cichocki,
and D.Baker. Managing Process and Service fusion
in virtual enterprises. Information system, special
issue on Information system support for electronic
commerce, 1999, 24(6):429-456.

[11] F.Casati, M.C.shan. Dynamic and adaptive
Composition of E-Services. Information Systems,
2001, 6(2): 143-162.

[12] B.Raman, S.Agarwal, Y.Chen, M.Caesar, et al.
The SAHARA model for service composition across
multiple providers. In proceedings of first
international conference on pervasive computing,
2002, 1-14.

Haiyang Hu received the B.E. and M.E. degrees,
from Nanjing Univ. in 2000 and 2003, respectively. He
received the Dr. Eng. degree from Nanjing Univ. in 2006.
He is now working as a teacher (from 2006) at Zhejiang
GongShang University. His research interest includes software
engineering and Internet computing. He is a member of CCM.

Hua Hu received the B.E., M. E., and Dr. Eng. degrees
from Zhejiang University. He is now working as a full professor
at Zhejiang GongShang University. His research interest includes
software engineering and Internet computing.

