
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

105

Manuscript received November 20, 2007

Manuscript revised November 27, 2007

Redundant Group Peers Based Adaptive Load Distribution in Peer-to-
Peer Grid

Yong-Hyuk Moon†, Jae-Hoon Nah†, and Chan-Hyun Youn††

† Electronics and Telecommunications Research Institute, Daejeon 305-700, Korea
††School of Engineering, Information and Communications University, Daejeon 305-714, Korea

Summary
We present our own research work that uses extents of Peer-to-
Peer technology with a framework that allows reliable Grid
computing (P2P Grid) over the Internet. We propose how to
decide optimized redundancy level of group peers by using
system cost function and grid local reliability. Moreover we
discuss an effectiveness of SLA-constrained load scheduling
policy with multi-probing technology in order to maintain group
more stable. Especially SLA-constrained load scheduling policy
is designed for handling divisible loads and indivisible loads
simultaneously and guaranteeing the shortest time of completing
task. Finally through the simulation, we provide that these two
proposed schemes can be evaluated to the reasonable solution to
overcome unexpected system fault or down regarding system
dependability issues in redundant group peers based P2P Grid
environment.

Key words:
P2P Network, Grid Computing, Load Distribution, Group Peer

1. Introduction

Recently, both approaches of Grid computing [1] and
Peer-to-Peer (P2P) networks [2] have been rapidly
evolved and widely deployed. These two technologies
appear to have the same ultimate objectives: the pooling
and coordinated use of large number of distributed
resources, even though the current studies on these
architecture tend to focus on different requirements and
there are also important distinguishes such as method of
resource management, motivation of target application and
scalability level [3][4]. However, few noteworthy
researches have made efforts currently how to integrated
Grid to P2P, namely P2P Grid. The core issues in P2P
Grid [5] are related to how to maintain the group
permanently enduring dynamic nature of P2P Grid with
high reliability; therefore we will discuss about optimum
system dependability using reliability analysis as
conventional method and a way of load imposition in
terms of vital nodes as main scheme to make whole system
stable and robust.
First, provision of reliable services in distributed
computing system (DCS) can be considered as the main
issue. Normally, using redundancy scheme (duplicate vital

nodes) for reason of dependability, complete executing
jobs or transferring tasks can be guaranteed. However, in
the literature on redundancy, the reliability problem for a
general DCS has been turn out highly complicated and
reliability evaluation is also usually computationally
expensive [6]. Thus, one thing to consider next is to define
what primary factor is helpful to simply decide reliability
(e.g. communication load, computation time, the extent of
system instability) and how to generate and maintain
duplicated nodes in the distributed computing
environments (DCEs) (e.g. redundancy optimization
[6][7]).
Due to the dynamics between the individual systems in
practical, optimized hardware redundancy level is yet
unknown so that it is worth to deserve some investigation.
Secondly, the paradigm of load distributions is basically
concerned with a single large load which originates or
arrives at one of the nodes in the network. The load is
massive and requires an enormous amount of time to
process given the computing capability of the node. The
processor partitions the load into many fractions, keeps
one of the fractions for itself to process and sends the rest
to its neighbors (or other nodes in the network) for
processing. An important problem here is to decide to how
to archive the balance in the load distribution between
system resources so that the computation is completed in
the possibly shortest time. This balancing can be done at
the beginning or dynamically as the computation
progresses and the computational requirements become
more precise.
As a reason of that, many researchers focusing on the
conventional divisible load theory (DLT) [8][9] based
algorithms have attempted to achieve optimal partitioning
of massive loads to be distributed among resources in
DCEs. However, there is strong dependency upon prior
knowledge of network parameters. Namely, existing
algorithm based on the perfect information strategy [8] can
handle the variations or lack of information about these
parameters. Furthermore, system utilization is to represent
indirectly the system availability, and it can be a criterion
to decide how much intensive fraction of loads should be
distributed to a particular peer in multi-level tree graph. In
short, computation and communication capability of each

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

106

peer can be thought of as parameters to decide load
fraction assigned to individual system. Additionally, they
are the primary performance indices how fast particular
peer completes imposed load fraction. Multi installment
[10] has better performance than single installment in the
perfect information strategy, because of allowing a
workstation to start computing without waiting for the
whole load to be received. Therefore, we will use the
probing technology to obtain the values.
In this paper, firstly we will discuss about a decision
method of redundancy optimization in redundant group
peers based P2P Grid architecture using the average
system cost determined by Grid Local Reliability [5].
Furthermore, we will propose SLA-constrained load
scheduling policy which support divisible and indivisible
load with possibly minimum time of completing task as
our main contribution, because Grid system try to decide
required quality of services through the SLA (Service Level
Agreement) scheme which can be thought of service
requirement description or contract.

2. P2P Grid with Redundant Group Peers

We are here concerned with the key aspects of the
distributed model of P2P Grid computing system:
distributed peers provide cost-effective means for resource
sharing and extensibility, and obtain potential increases in
performance, reliability and fault tolerance. In order to
provide functionalities oriented to P2P networks such as
the efficiency of search, autonomy, load balancing, and
robustness into Grid computing technology, there are very
strong needs to employ the P2P conceptual model such as
the super peer networks [11] since, its structure can be an
acceptable method to make more decentralized Grid.

A. Redundant Group Peers
Now, we propose the Group Peer based P2P Grid
computing architecture which has been introduced in [5].
Basically each peer can be classified into two types of peer
such as a group peer (GP) and a client peer (CP). First, GP
has many responsibilities to manage a group and peers and
to communicate with other GPs as well. And it has a lot of
functionalities as following: control message processing,
resource discovery (e.g. Grid services, data, and
computing element), and store the metadata of peers with
index. In addition, as aspect of Grid middleware, it should
take a role of the quality of services negotiator, job
executor with monitoring, and aggregation of result sets.
On the other hands, the latter can be considered as a
resource consumer and a resource provider at the same
time in the proposed system. It is obvious that GP will
experience a problem in terms of system over-load,
namely failure of single point. As the alternative way to
overcome this, we propose the redundant GPs scheme for

dependability and performance reasons. To utilize this
efficiently a controller distributes the load between GPs in
the best possible way. A variety of factors can take a
system off-line, ranging from planned downtime for
maintenance to catastrophic failure [7]. The GP based P2P
Grid computing can be modeled by the k-level of a
redundancy. Simply we consider that increasing k value
makes system more reliable than system with low level of
redundancy scheme. However, one more thing to consider
next is that intuitively, unlimited duplication is improper
due to infinite cost. Thus, redundancy optimization policy
regarding performance issue (e.g. cost-wise strategy) is
still remained to discuss.

B. Reliability Analysis with Redundant GPs
The system reliability of P2P Grid for a given job is the
product of the component reliability that each processor on
which a job is executed, is operational during the period of
module execution, and the component reliability that each
communication link on which the data communication
takes place is operational.

▪ Component Reliability
A general model of component reliability in DCEs can be
derived from a probability analysis with the concept of
Poisson process and working time. We begin a derivation
by examining component reliability with working time
such as computation time on a resource and
communication time at a job execution path as depicted in
fig. 1. One of the main causes of failures in P2P Grid is
the heavy data migration, which is the physical flow of
data from one data source (CP) to next network nodes.
Moreover, execution of a job inducing a critical software
fault or system down due to the unexpected trials of an
access to unauthorized memory area, lack of storage space,
and internal exception of an operating system significantly
should be dealt. Thus, with these points mentioned above
we continue to set up component reliability model in detail.

Fig. 1. Reliability model in P2P Grid job execution path

Fig. 1 shows the interaction (job execution path) between
the Pth CP (CPp) and level k redundant qth GPs in the gth

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

107

group, ()g
qGP r . From this relation, the partial component

reliability LR could be derived as followings:

1

, ,
1 1

{ (, , ,) / }

[inf ((, |))]

1 [1]

k k

p q p q
i j i

L m
p CP q GP

i j p q w

p CP q GP

b R p q J

e
λ τ

−
∗

= = +

∈ ∈

−

∈ ∈

=

⎡ ⎤∑∑
⎢ ⎥− −
⎢ ⎥
⎣ ⎦

∏ ∏

∏ ∏

(1)

Where the ,p qλ is the failure rate, satisfying Poisson

process, for communication between CPp and ()g
qGP r

during mission. And Jm means an mth instance of Grid job
J. And (, , ,)i j p qτ is the amount of data to be
transmitted through path L(p,q). Among the
communication links from

pCP to ()g
qGP r if at least one

connection is alive then CP will have an opportunity to
transmit data sets or exchange information successfully
during processing grid job. That is the reason why binary
function inf[]b R should be used for the component
reliability of group peer.
Furthermore, in order for finding the more accurate
reliability of component, we derive new term ,p qw∗ ,

“adjusted transmission rate” for the path (,)L p q since it
reflects the fact that the behavior of a path depends on
both the transmission rates and the reliabilities of all links
in the path. On that account, we mathematically define the
term as below:

1 2 3
,

31 2

1 2 3

...

...

p
p q

p

p

w
μ μ μ μ

ωωω ω
μ μ μ μ

∗ + + + +
=

+ + + +

(2)

For the path (,)L p q consisting of

links 1 2 3, , ,...,st nd rd pthl l l l , we let
iμ and iω be the failure

rate and transmission rate of link (1)il i p≤ ≤ ,
respectively.

Next, we will show the component reliability of GPs
itself. In the perspective of GPs, formulating the
component reliability of GP could be started from the
consideration with two main functions such as
computation of request and communication of data.
Redundant GPs’ reliability CR is defined as follows:

1

, , ,
1 1 1

{ (, , ,) / }

1 1

inf[()] 1 [1]

RES k k

q m n m n p y
n i j i

x e i j q y wRES RES

C
q q

b R q e
λ τ

−
∗

= = = +

− +

= =

∑ ∑∑
= − −∏ ∏ (3)

Where xm,n is defined to an indicator whether the mth Grid
job instance Jm is allocated to nth processing resource

proc
nRES or not. And em,n means an Accumulative Execution

Time (AET) for processing Jm on particular resources.
Then, in order to guarantee the successful completion of a
grid job, at a moment during the mission at least one
constantly GP should keep taking requests sent by CPs.
As depicted in fig. 1, the link failure probability between

gGP and g iGP + for all , 1i i G≤ ≤ should be considered as
the third component reliability. Incidentally, a successful
completion of grid job is meant to all connections between

gGP and CPRES should be stable to meet quality of
services demanded by grid job. And the last part of
component reliability to think is the failure on processing
resources during execution of a grid job. Simply, we
define the reliability of these cases in a similar manner.

▪ System Reliability
The system reliability could be classified into two parts:
GLR (Grid Local Reliability) and GSR (Grid System
Reliability). The former is focusing on how GP will
perform to treat CPs’ requests and data. Thus, GLR should
consist of two component reliabilities previously
mentioned in Eqs. (1) ~ (3), because the principal factors
in GLR are strongly related to working times on GP which
might suffer from unstable link status connected to CPs.
With considerations to that at a pair of node-link, we set
the GSR to as follows:

1 1

() inf[(, |)] inf[()]
k k

L m C
q q

R GLR b R p q J b R q
= =

= ⋅∏ ∏ (4)

What is more, the latter (GSR) is defined to the degree of
stability on the overall P2P Grid which performs a lot of
grid sub-jobs within in a set of period. That means how
stable service can provide to CPs or how P2P Grid system
is reliable to endure dynamically changed state of
processing nodes and communication links. Therefore we
define the GSR concisely from the Eq. (4).

,

() () (, |) (,)L m C
q GP n RES n RES

R GSR R GLR R q n J R m n
∈ ∈ ∈

= ⋅ ⋅∏ ∏ ∏

(5)

Now we examine the result regarding two reliability
concepts as depicted in fig. 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

108

0.65 0.7 0.75 0.8 0.85 0.9
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

Offered Load

Lo
ca

l G
ro

up
 F

ai
lu

re
 R

at
e

GLR (Grid Local Reliability) Reduction

GP=1
GP=2
GP=3

(a) GLR vs. Offered Load

0.65 0.7 0.75 0.8 0.85 0.9
10-7

10-6

10
-5

10-4

10
-3

10-2

10-1

Offered Load

Sy
st

em
 F

ai
lu

re
 R

at
e

GSR (Grid System Reliability) Reduction

GP=1
GP=2
GP=3
GP=4
GP=5

(b) GSR vs. Offered Load

Fig. 2. A cost-optimized reliability in P2P Grid

When it comes to system dependability of GPs, we focus
how long time or how large of load the system can tolerate.
Thus indirectly GLR means the system availability.
Moreover we need to consider overall system reliability
during execution jobs since GLR does not tell us whether
the mission completes successfully or not. For that reason,
we derived GSR in considerations of component
reliabilities with regard to communication links, GP
systems, and resource nodes. In fig. 2 (a), there are three
results with different analysis conditions: we set CP to 100
and GP to 1, 2, and 3 respectively. Each line has a similar
increasing pattern, however a gradient of each line is quite
different: in case of GP=1, GLR suddenly goes up in the
early state, however after 0.8 normalized load
approximately we obtain the line slowly moving up,
namely saturated. Moreover, for evaluating the effective
of the k-redundancy scheme in proposed P2P Grid, we
compare the system reliability, GSR, with different level
of redundancy of GPs from 1 to 5. Especially GPs equal
to 1 or 2, system might not be operational or provide
reliable service owing to rapid increment during mission
as shown in fig. 2 (b).
Next we consider a relation the system cost duplicating
GPs to system reliability.

C. Redundancy Optimization with System Cost
With additional endowment of GPs redundancy, the P2P
Grid becomes more reliable, hence reducing average
execution cost more significantly in the long run. However,
such endowment increases system cost such as hardware
deployment cost, maintenance cost, etc. This trade-off
between system cost and the redundancy level is
accounted for after examining the sources of system cost
due to redundant group peers. Suppose that system cost is
the sum of communication cost and computation cost due
to generation of additional GPs and these costs are linear
function of time. The two costs at a particular GP
respectively can be defined as: (|) ()p p nC k m k c t m= ⋅ ⋅ and

(|) (,)c c cC k m k c T p q= ⋅ ⋅ . Therefore, finding k that minimizes
the average system cost can be a solution for redundancy
optimization in P2P Grid.

{ }
()

1
[] (|) (|) ()

n GP

system p c
m J k

Avgf C C k m C k m R GLR
∈ =

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ ∑

(6)

Where Avgf[Csystem] is meant to average system cost.
Usually, it is hard to find optimal redundancy level from
Eq. (2) directly. Thus we need to examine the pattern of
the graph by using the mathematical approach introduced
in paper [6]. First let define 1/R(GLR)=fopt(k|m) then
function fopt(k|m) is decreasing convex with respect to the
level of redundancy k, due to d[fopt(k|m)]/dk<0 for all k≥ 1.
Next total expected cost can be expressed by Avgf[Csystem]
=(a+b)k*fopt(k|m) because Avgf[Csystem] is the function of k
so that the other terms are treated as constant. Especially,
we set F(k|m)= k*fopt(k|m) as the decision function.
In fig. 3 shows two graphs: one is optf (|)k m decreasing
strictly, the other is line straight denoting the gradient of

optf (|)k m . In case of kr, x can be determined by this
simple Eq. as follows: 'f (|) (|) |

ropt r opt k k rk m f k m x k== ∇ = − ,
then 'x = f (|)r opt rk k m− ⋅ . If (|)F k m increasing with
respect to k, then optimal k (*k) is 1, otherwise we need to
find the k making the derivative ' (|) 0F k m = , since it
means that * ' * *

optf (|) f (|)optk k m k m− ⋅ ≈ as depicted fig.
3. Namely, (|)F k m is uni-modal and *k is the optimal
redundancy level such that *(|)F k m is minimized.

optf (|)k m

' *
optf (|)k m

*k

*
optf (|)k m

k

* ' *f (|)opt

x
k k m
=

− ⋅

rk 1rk +

'
optf (|)rk m

'
opt 1f (|)rk m+

Fig. 3. Archiving the level of optimization

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

109

0.5 1 1.5 2 2.5

0

2

4

6

8

10

12

x 10
8 Redundancy Optimization

Sy
st

em
 C

os
t

The level of redundancy

High Load
Medium Load
Low Load

Fig. 4. Redundancy optimization with minimum system cost

Fig. 4 can be a good result how to decide the optimized
redundancy level against system cost in P2P Grid. For
showing the different optimal level of redundancy, we set
unit load size to 500, 200, and 100 relatively. In the first
case, we allocate heavy individual load to GPs so that we
get 3.25 optima for supporting imposed load. The rest of
both results show same appearance as first one, however
as decreasing unit load size, we can save system cost to
guarantee reliable service in P2P Grid.

3. Adaptive Load Distribution in P2P Grid

Although many studies on conventional reliability of DCS
have been progressed, theoretical reliability analysis still
has a weak point; it is not enough to prove whether
decided optimum redundancy level might be useful or not
in the practical DCS. However, our reliability model in
P2P Grid is based on job execution path depicted in fig. 1,
and it focuses only to check job completion. Thus, feasibly
we can decide redundancy level under offered loads.
In order to improve this shortcoming, we suggest adaptive
load distribution algorithm, because a heavy volume of
loads imposed by CPs can be thought of a main cause to
induce system fault in P2P Grid environment.
Finding a scheduling algorithm that minimizes the
completion time for a distributed program consisting of a
number of processes is one of the classical computer
science problems, and has been shown to be NP-complete
[9]. Therefore, a number of good heuristic methods have
been suggested, and it is thus possible to come close to the
optimal result for many important cases. However, all
heuristics are highly diverse and are dependent on the
structure of the parallel program and architecture.
As a reason of that, with the well-known DLT and multi-
installment [10] based load distribution strategy, which
might be appropriate to tree networks, we will devise
heuristic algorithm in order for minimizing the finishing
time in the proposed P2P Grid.

A. Analytical Model for P2P Grid Load Scheduling
We set the network graph which consists of peers and is
based on star networks. Besides concurrent load
distribution is used: suppose that divisible load (e.g. data
set), and invisible load (e.g. Grid tasks or programs) [9]
are thought of as main load type.
Entire loads are distributed to local GPs first and each of
GPs sends sub-jobs or data sets to the foreign GPs. These
loads finally arrive at each resource allocated to P2P Grid
application by resource discovery [12]. We consider that
incoming loads from CP at the thk level are equivalent to
entire load imposed to GPs at the (1)thk − level of star tree
networks. Therefore, the aggregation load T can be
expressed by the summation of individual load such as
T1,T2,T3,..,Ti.

B. Probing Strategy for Unknown Parameters
In order to estimate network parameters, some papers
[8][10] have proposed the feedback strategy as probing
technology with multi-installment such as below:

▪ PDD (Probing and Delayed Distribution) is the simplest
strategy, but time delay to receive feedback such as CTC
(Communication Task Completion) and PTC (Processing
Task Completion) messages will be very high. Also it does
not have fault tolerance capability; when one workstation
gets isolated due to some faults, the PTC message will not
arrive and the processing of the remaining load will never
commence.

▪ PCD (Probing and Continuous Distribution) strategy
shortens idle time with fast workstation-link pairs. But still
workstation should wait for the last feedback (PTC)
message computing network parameter in order to
estimate workstation-link’s performance. Especially, with
a consideration of slow workstation-link, PCD might be
slower than PDD.

▪ PSD (Probing and Selective Distribution) is the strategy
improving PCD; a very slow workstation-link pair will get
only a small fraction of the entire load, and the one which
has a fault will not get any load.

With the PSD as probing technique, we estimate the
capability of peers and put the dropping condition [10]
that finds slow peers for optimal load distribution in the
completion time of task. The problem which we have to
consider next is the loads with no precedence relations.
Since in case of indivisible loads the scheduling algorithm
has been done in such a way that an entire load is assigned
to only one processor [10], we simply integrate indivisible
loads as a part of our dynamic load distribution.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

110

Before starting the algorithm, we define the following
parameters used in load distribution analysis:

Table 1: Type Sizes for Camera-Ready Papers
Symbol Description

L Set of load consisting of indivisible and divisible
tasks e.g. L = { Td1, Ti2, Ti3, Td4, Ti5,…, Tdn}

M The total number of resources allocated
Ti Set of indivisible tasks
Ti-rs Set of indivisible tasks after executing step 2
Td Set of divisible tasks
n(Ti) The number of indivisible tasks
n(Td) The number of divisible tasks

Si-k
The finish time needed to execute all the individual
tasks on k dedicated resources

ti The finish time of the ith task
fti The finish time of resources i

k The number of resources dedicated to serve the
indivisible tasks from M available resources

C. SLA-Constrained Load Scheduling Policy
Our proposed load distribution algorithm is aimed to
arrange the entire loads to resource-limited computing
nodes in order to guarantee the most minimum completion
time of tasks. We assume that offering load composes with
indivisible load and divisible load according to a given
constraint of SLA (Service Level Agreement); the former
is the set of sub-processes (e.g. MPICH-G2 application
[12]) which have strong relation among sub-processes
such as very small delay time for exchanging messages,
while the latter can be considered as data sets with no
precedence relations. The adaptive SCL (SLA-Constrained
Load) scheduling policy can be split to two sub-algorithms.
The first one (step 1 ~2, see fig. 5) is to check the pre-
defined conditions to schedule each load (task): dividing
entire load to indivisible and divisible one under a SLA
condition and with PSD feedback strategy, attempting to
probe network capabilities in terms of the time taken by a
reference link to communicate one unit of load and by a
reference processing node to process or compute one unit
of load. And the second sub-algorithm (step 3 ~ 5) is
designed to distribute loads optimally under meaningful
steps depicted in fig. 6. Next we will discuss more about
sub-algorithms.

▪ The 1st Sub-Algorithm
The first sub-algorithm describe in fig. 5, divides a set of
load into the set of indivisible load and divisible load
respectively then we estimate ti for each resource through
the probe phase in step 1. And checking the number of
indivisible tasks is larger than the given available
resources M; if it is so, just distribute all tasks to idle
resources, shortly it proceeds to schedule indivisible tasks
as large as only the number of available resources,

otherwise from the remaining set of indivisible tasks, it
tries to find any task such that minimize the gap between
the average finish time and practical one on each resource
iteratively. Then this selected task first will be allocated to
the most available (idle) resource with respect to finish
time. Finally if we do not have any divisible tasks, the
SCL scheduling policy ends here, otherwise it goes to the
second sub-algorithm in order to treat the divisible tasks.

BEGIN:
Step 1
Divide L into Td and Ti
Estimate network capabilities by using PSD strategy

Step 2
Let L = { Ti1, Ti2, Ti3,…, Tin}, assume that M available
resources

If n(Ti) > M continue
Schedule the n(Ti)=M to the M available resources

Else let Ti-rs = Ti,
From Remaining Set, RS={1, 2,…, n(Ti)-M-1, n(Ti)-
M} of unscheduled indivisible task, Select any tasks
and distribute them to any resources satisfying as
followings:

() / 1, 2,...,in T
i xi

Min D t M ft for x M⎡ ⎤= − =⎢ ⎥⎣ ⎦∑

repeat until all indivisible tasks are scheduled
to any resources

If n(Td)=0
 fti = Final time stopping to execute last task
exit

Else go to Step 3
END

Fig. 5. The 1st sub-algorithm of SCL scheduling policy

▪ The 2nd Sub-Algorithm
The question of what would be the best way to schedule
the divisible tasks remains unsettled. As a reason of that,
we will devote some space to the discussion of the 2nd
sub-algorithm. Note that term scheduling has a different
meaning from distribution: scheduling is pre-decision
prior to distribute task on a particular resource.
As given in below, it iterates to find the jth minimum time
of indivisible task being less than maximum time of
indivisible task. And if j is found then continue to step 4,
otherwise go to step 5 then distribute all indivisible tasks
to execute on idle resources and check the final time as
completion time of task.
In step 4, resources are divided into two parts; k resources
are dedicated to the indivisible tasks and M-k among them
devoted to serve the divisible tasks respectively. And in
the final step 5, we have to find k such that makes the
finish time minimum. There are two cases; if given
condition is satisfied then k is equal to 0, else we continue
find k with an additional condition such that equation:

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

111

()() / (),dn T
d d i kMax t M k S −−∑ . Especially, k equal to 0

means that the finish time is minimum if we use all
resources to execute the divisible (indivisible) tasks first
and the indivisible (divisible) tasks next.

BEGIN:

Step 3
Do find max j satisfying the following equation:

()dn T
j i rs d jd

t of T t Max t− + ≤∑

While (j ≤ n(Ti-rs))
If j is found continue Else Step 5

Step 4
Distribute all Ti to idle M and wait until finish to finish jth
indivisible task then divide divisible tasks to all idle
resources

fti = Final time stopping to execute last task
exit

Step 5
Let k resources dedicated to the indivisible tasks then M-k
resource to serve the divisible tasks, then finding k makes
finish time minimum

If ()() ()/ / (1)d dn T n T
d i dd d

t M Max t t M+ < −∑ ∑

k = 0
Else Find k that provides the minimum of
 ()() / (),dn T

d i kd
Max t M k S −−∑

fti = Final time stopping to execute last task
END

Fig. 6. The 2nd sub-algorithm of SCL scheduling policy

Therefore, we can predict the minimum finish time of
entire tasks (loads) through the two sub-algorithms. In
short, SCL scheduling policy gives an answer of adaptive
and dynamic load balancing policy with respect to the
finish time in the P2P Grid computing system.

 4. Simulation and Discussion

In this section we discuss about the performance
evaluation by using an analytical model as stated in the
section 2 ~ 3. Through the analysis, we will show the
effectiveness of usage in proposed schemes.

A. Evaluation Preliminaries
In order to consider characteristics of proposed P2P Grid
computing system (e.g. scalability, duplication of core
system) we design the evaluation model which meets the
requirements related to two performance indices such as
cost-optimized system redundancy, and SCL scheduling
policy. The number of total peers in network graph is
defined to 10,000 ~ 20,000 and each group has the same
number of GPs. The policies with respect to task

assignment depend on the PQRM [12] which is the Grid
resource brokering system. We summarize those
assumptions of into table 2.

Table 2: Configuration of Parameters
Parameters Default Range

()N n Peers= 10,000 ~ 20,000
sizeGroup 50 ~ 100

()k n GP= 1 ~ 5 (, 1)no redundant if k− =
()Unit Load 100,200,300,,1000 (. .)e g MBytes

Failure Rate 1 810 ~ 10− −

The several meaningful simulation results generated by
numerical analysis will be discussed in detail. Simulation
procedures are composed with three phases. First we
estimate system capability for each resource then classify
loads to divisible and indivisible one according to SLA
constraints of application. Second we schedule each load
to resources with individual strategy of RLD, SCL, and
PIS scheduling policy respectively. At last load controller
(LC) check the time of final task completion then
distribute loads optimally according to the pre-decided
load distribution policy.
For showing obvious effectiveness of SCL scheduling
policy and extending scalability of P2P Grid system, we
set the maximum number of CPs and GPs to about 100
and 5, respectively. Approximately 100 ~ 200 resources in
a single group and 100 unit load size are applied to this
analysis.

B. Simulation Results
The fig. 7 shows that difference of the degree of load
balancing among GPs is getting larger as the number of
CPs increases. Since we suppose that all GPs’ system
capability (e.g. communication and computation) is not
predictable (almost unknown), in the fig. 7 (a) this result
shows a disorder pattern of load distribution. In this paper,
we name this policy Random Load Distribution (RLD)
which might be a lower bound of performance. However
fig. 7 (b) gives us more stable feature when we use the
SCL scheduling algorithm as our main policy for load
distribution. Moreover a simulation result in fig. 7 (c)
represents an ideal appearance of balanced loads among
GPs. The last case comes from the Perfect Information
Strategy (PIS) [8].
In summary, three lines go up with a large difference of
loads intuitively as a volume of offered loads increases
highly. Hence, we expect that heavy loads imposed to a
particular GP causes a problem so called failure of single
point (e.g. down of core system). As a reason of that, the
degree of load balancing can be thought of as a significant
factor to decide how stable a group lasts in proposed P2P
Grid networks.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

112

Accumulative Load on Group Peer

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 5 9 1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

The Number of Client Peers

V
o
lu

m
e
 o

f
L
o

a
d

GP1 GP2 GP3
(a) Unknown (applying Random Load Distribution)

Accumulative Load on Group Peer

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 3 5 7 9 1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

The number of Clients

V
o
lu

m
e
 o

f
L
o

a
d

GP1 GP2 GP3
(b) PSD based estimation (applying SCL Scheduling Policy)

Accumulative Load on Group Peer

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 5 9 1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

The Number of Client Peers

V
o

lu
m

e
 o

f
L
o

a
d

GP1 GP2 GP3
(c) Ideally balanced (applying Perfect Information Strategy)

Fig. 7. The effective of scalable load balancing policy

As we have shown in above simulation results, PIS is the
ideal measure of load distribution. It means that LC has
already known about network parameters so that LC can
optimally distribute given loads to resources without any
process for estimation of network dynamics. Moreover,
we suppose that resource nodes have similar capability.
These assumptions give us upper bound of performance.
Consequently, the difference of the degree of load
balancing between SCL and PIS comes from a burden to
compute optimal load fraction and expected processing

time on resources. However, these differences are not
critical, because simulation result of PIS accounts for
diverse nature of peer systems in P2P Grid networks.
Now we turn to discuss about finish time in SCL
scheduling policy comparing to RLD and PIS algorithm.
Usually, the effective of load distribution strategy can be
measured by a completion time of task in DLT even
though we try to handle indivisible loads simultaneously.
The finish time of given tasks such as data, jobs is defined
to the period such that spent for last execution of job on a
particular resource node. Here is a fig. 8 which shows the
completion time of task.

Finish Time vs. Offered Load

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10 20 30 40

Offered Load (x10^5)

F
in

is
h
 T

im
e

RLD SCL PIS

Fig. 8. Performance Comparison of Completion Time

In case of SCL scheduling policy, as offered load going up,
the line representing final time of task processing is
sharply increasing at particularly 520 10× in fig. 8. The
occurrence of differences might be caused by the lack of
available resources, wrong decision of SCL scheduling
policy or network delay for probing; however, a primary
reason that makes such an unreliable outcome is originated
from the network delay obviously. Namely LC should wait
the last computation completion message about probe
(small task) in order to release load fraction to assigned
resources, because LC decides capability of resource
through the return time of completion message. This
procedure makes delay. However this exception can be
acceptable in practical networking system.
Moreover, after 530 10× point, all strategies show declining
line where resources are added for taking load fractions
according to cost-optimized redundancy scheme
mentioned in the section 2. In other words, this feature
means that more number of available resources is given to
P2P Grid.
Since a large chunk of loads is assign to LC, the volume of
load distribution must increase probabilistically.
Especially, despite there are still lots of resources which
have enough capacity to handle individual load, RLD
algorithm is blind to about that up-to-date information.
Hence we get relatively high completion time throughout

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

113

the simulation. While PIS offers us delicate results such
that it tries to schedule individual load into more-capable
machines in advance. Namely more-capable machine has a
high priority to treat load since that machine can guarantee
the more fast completion of task. As compared with PIS,
we obtain a quite good result from the SCL scheduling
policy. From what has been discussed above, we can
conclude that the result base on SCL has a relatively small
difference.
So far, we have pointed out two performance aspects
regarding dynamic group peering mechanism in this
section; one is load balancing in a single group where a lot
of CPs transfers a heavy volume of loads to redundant-
GPs, the other is how to GPs as LC can optimally
distribute loads to resources in terms of minimum
completion time of task. Additionally, we have shown that
through the reliability analysis, LC can recognize the
appropriate time. In other words, that offers critical point
to system; when it should assign more available resources
to P2P Grid system in order for protection from a
performance degrades of load distribution.

5. Conclusion and Future Work

Our research topic belongs to an area finding a way to
make more decentralized and reliable Grid computing
system. Therefore, we have proposed P2P Grid as a
prominent solution using Peer-to-Peer technology in this
paper.
First, we have discussed the reliability analysis with a
consideration to cost-optimized redundancy scheme as one
part of dynamic group peering mechanism. Second, SCL
scheduling policy which utilizes allocated resources with
the most efficient way regarding completion time of task
mainly has been proposed. The SCL is a dynamic strategy
because it uses probe based feedback technology such as
PSD to estimate variations of resource capability.
Moreover, Adaptively SCL can handle two different types
of load: divisible and indivisible depending upon SLA
constraints.
In conclusion through performance evaluations, we have
shown that effectiveness of SCL scheduling strategy with
optimized redundant GPs as acceptable solutions for
provision of reliable and stable service under P2P Grid
system.

Acknowledgments

This work was supported by the IT R&D program of
MIC/IITA [2005-S-090-03, Development of P2P Network
Security Technology based on Wired/Wireless IPv6
Network].

References
[1] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. “The

Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems”,
http://www.globus.org/alliance/
publications/papers/ogsa.pdf.

[2] Schollmeier, R. (2001), “A definition of peer-to-peer
networking for the classification of peer-to-peer
architectures and applications”, 2001, Proceedings of the
First International Conference on Peer-to-Peer Computing,
Linköping, Sweden, pp. 101-102.

[3] Jon Crowcroft, Tim Moreton, Ian Pratt, Andrew Twigg,
“Peer-to-Peer Systems and the Grid”, University of
Cambridge Computer Laboratory, JJ Thomson Avenue,
Cambridge, UK.

[4] Ian Foster, Adriana Iamnitchi, “On Death, Taxes, and the
Convergence of Peer-to-Peer and Grid Computing”,
Department of Computer Science, University of Chicago.

[5] Yong-Hyuk Moon, et al., “Design of P2P Grid Networking
Architecture Using k Redundancy Scheme Based Group
Peer Concept”, WINE’05, LNCS 3828, pp. 748-757, 2005.

[6] Raghavendra CS, Hariri S., “Reliability optimization in the
design of distributed systems”, IEEE Transactions on
Reliability 1985.

[7] Chung-Chi Hsieh, Yi-Che Hsieh, “Reliability and cost
optimization in distributed computing systems”, VOL. 30
Elsevier Science Ltd. Oxford, UK, Issue 8 (July 2003), pp
1103 – 1119, ISSN: 0305-0548.

[8] Debasish Ghose., et al., “Adaptive Divisible Load
Scheduling Strategies for Workstation Clusters with
Unknown Network Resources”, IEEE Transactions on
parallel and distributed systems, vol. 16, No. 10, Oct. 2005.

[9] Sameer Bataineh, Bassam Al-Asir, “Efficient scheduling
algorithm for divisible and indivisible tasks in loosely
coupled multiprocessor systems”, IEE Software Engineering
Journal, Jan. 1994.

[10] V. BHARADWAJ, et al., “Multi-installment Load
Distribution in Tree Networks With Delays”, IEEE
Transaction on Aerospace and Electronic Systems VOL. 31,
NO. 2 April 1995.

[11] Beverly Yang, Hector Garcia-Molina, “Designing a Super-
Peer Network”, 19th International Conference on Data
Engineering (ICDE'03), p. 49, 2003.

[12] Chan-Hyun YOUN, Byungsang KIM, and Eun Bo SHIM,
“Resource Reconfiguration Scheme Based on Temporal
Quorum Status Estimation for Grid Management”, IEICE
Transaction on Communication, VOL.E88-B, NO.11, Nov.
2005.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.10, October 2007

114

Yong-Hyuk Moon received BS
degree in Computer Engineering from
Dankook University, Seoul, Korea in
2003. And He received MS degree in
Information and Communications
University (ICU), Daejeon, Korea in
2006. Currently he is with Division of
Information Security in Electronics
and Telecommunications Research
Institute (ETRI), Daejeon, Korea. His

research topics are related to Grid Computing, P2P networking
architecture, distributed computing security, IPTV security and
various networked computing issues.

Jae-Hoon Nah received M.S.
degree in Computer Engineering from
Chung-Ang University in 1987. He
received the Ph.D. degree in Electronic
and Information Engineering from
Hankuk University of Foreign Studies
in 2005. He is a principal research
engineer and a team leader in Division
of Information Security in Electronics
and Telecommunications Research
Institute (ETRI), Daejeon, Korea. His

research interest includes distributed network security, peer-to-
peer network, overlay multicasting, and IPTV security.

Chan-Hyun Youn received BS and
MS degrees in Electronics Engineering
from Kyungpook National University,
Daegu, Korea, in 1981 and 1985,
respectively. He also received a Ph.D.
in Electrical and Communications
Engineering from Tohoku University,
Japan, in 1994. He served at Korean
Army as a communications officer,
first Lieutenant, from 1981 to 1983.
Before joining the University, from

1986 to 1997, he was a leader of high-speed networking team at
Korea Telecom (KT) Telecommunications Network Research
Laboratories where he had been involved in the research and
developments of centralized switching maintenance system,
MOVE, and HAN/B-ISDN network test-bed. Especially, he was
a principal investigator of high-speed networking projects
including ATM technical trial between KT and KDD, Japan,
Asia-Pacific Information and Communications University (ICU),
Daejeon, Korea. Prof. Youn also was a visiting scholar at MIT,
Cambridge in US since 2004. He is a vice president of Grid
Forum Korea. Currently, he is interested in the Grid middleware,
high performance routing, multicasting, optical Internet, and
network performance measurement. He was a recipient of IEICE
PAACS friendship prize, Japan, in 1994. He is a member of
IEEE, IEICE, KICS and KISS respectively.

