
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

142

Manuscript received November 5, 2007

Manuscript revised November 20, 2007

Test Case Generation for Context Testing of Embedded Systems

Qi-Ping Yang and Tae-Hyong Kim

School of Computer and Software Engineering, Kumoh National Institute of Technology, Gumi, 730-701 Korea

Summary
The context of a modular system through which its embedded

components interact with the user is the main development target
of the modular system because developers usually purchase
embedded components on the market. Therefore, context testing
is necessary for the development of a reliable modular system.
Test case generation for context testing may be complicated as
the tester cannot directly control the interfaces between the
context and the embedded components. This paper first shows a
basic solution approach and its incompleteness. Then it
investigates the conditions for avoiding nondeterminism in
context testing. A graph conversion algorithm is also proposed
which constructs safer context specifications for test generation
of context testing without nondeterminism.
Key words:
Embedded System, Context Testing, Test Case Generation

1. Introduction

As communication protocols are getting more complex,
their architectures have been changed from monolithic to
modular with a lot of components. Embedded systems are
currently popular examples of modular systems where a
couple of components are crucial control ones. An
embedded system consists of two parts: (1) the
components embedded in the system, and (2) the context
through which embedded components interact with the
environment. In order to develop a reliable modular
system, there have been several researches on testing
embedded components [1-5]. However, when developing a
practical embedded system, designers tend to directly
utilize components that have been verified faultless and
can be purchased from the market as modules for reducing
the developing and testing time of an embedded system.
These modules are embedded in the system and operated
by interactions with the user through the context.
Therefore, how to design a dependable context is a
practical goal in the development of embedded systems. In
fact, testing the context, what we call ‘context testing’,
may be more important than testing the components in
embedded system testing. In order to generate test cases
for context testing, testers should be able to generate every
possible input that is defined in the context. In addition, all

outputs generated by the context should be observable by
the testers.
 Unfortunately, these two requirements are often
unattainable. Testers may have two different types of
interfaces on the context: accessible interfaces and
inaccessible interfaces. Fig.1 shows a context of an
embedded system which has inaccessible interfaces such
as I1 and I2. Testers can directly apply inputs to the context
through accessible interfaces but cannot apply to the
interfaces between the components and the context. Such
inaccessible interfaces are similar to the semi-controllable
interfaces that were presented in [6]. Due to the
controllability problem, nondeterminism and race
conditions may occur during testing, which reduces the
testability of the context.

Fig. 1 The concept of context testing

 Interactions between embedded components and the
context through multiple inaccessible interfaces may
sometimes cause nondeterminism. If the context, for
example, moves into a state at which several inputs from
different interfaces are pending, choosing which input is
consumed first may lead to nondeterminism. Another
important issue in context testing is the buffer types of the
interfaces between the context and components. Although
those interfaces can be assumed as FIFO-type buffers, in
practice this assumption may not be correct for all
implementations. Test sequences generated under that
assumption may not be applicable due to the different
buffer type.
 Fecko, et al. presented a test generation algorithm for
embedded systems which tried to handle safely

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

143

semi-controllable interfaces of the system [6]. This paper
first tries to utilize that algorithm in test generation for
context testing. Then the test generation conditions are
discussed for context testing which can avoid the possible
race condition and nondeterminism. We also propose a
new algorithm for checking and modifying the context to
generate such safe test sequences.
 The rest of this paper is organized as follows. After
the preliminaries of Section 2, Section 3 introduces how to
use the existing algorithm to construct a test sequence for
the context testing. A new algorithm is proposed in section
4 to check and modify the context graph for handling the
inaccessible interfaces without the race conditions. Finally,
section 5 concludes the paper and presents ideas for future
work.

2. Preliminaries

In this paper, an FSM model, which is sufficient to model
protocols with finite state space and deterministic behavior,
is used to represent the context and the components.

2.1 FSM and its graphical representation

Definition 1. A finite state machine (FSM) is a 6-tuple M
= (S, X, Y, δ, λ, s0), where S is a finite set of states of M
and s0∈S is the initial state of M, X is a finite nonempty set
of input symbols, Y is a finite nonempty set of output
symbols, δ is a state transition function that maps S×X to S,
and λ is an output function that maps S×X to Y.

 State si is equivalent to state sj if the inputs defined for
si are a subset of those for sj and their corresponding
outputs and next states are identical. An FSM M is said to
be minimal if its specification has no equivalent states.
 An FSM M may be represented by a directed graph
(digraph) G = (V, E) where a set of vertices V represents
the set S of states of M, and a set of directed edges E
represents the set of transitions of M. An edge e represents
a specific transition t of M from state si to state sj with
input x∈X and output y∈Y. Thus, an edge e is defined by a
3-tuple (vi, vj, x/y) in which vi is the initial vertex, vj is the
final vertex and l = x/y is its label. Vertices vi and vj which
represent respectively state si and sj are called the head and
the tail of e, denoted head(e) and tail(e).
 The indegree and outdegree of a vertex are the number
of edges coming toward and directly away from it,
respectively. If, for any given vertex, its indegree is equal
to its outdegree, the graph is said to be symmetric. A tour
of a graph G is a sequence of consecutive edges that starts
and ends at the same vertex. One special kind of tour is an
Euler tour, which contains every edge of G exactly once.
 A digraph G = (V, E) is said to be strongly connected, if,
for every pair of vertices vj and vk, there exists a path from

vj to vk. G is weakly connected if the undirected graph,
generated by removing the direction from each edge, is
connected. If a graph is symmetric and strongly-connected,
an Euler tour exists [8,9].

2.2 Modeling testing embedded systems

Since the structure of embedded systems is similar to the
multi-layer testing environment that is presented in [6], we
directly use the same definitions for modeling the
embedded systems in this paper. Given a graph G(V, E)
representing an FSM model of the context with multiple
interfaces with components, the following parameters are
defined: |V| is the number of nodes in G, F is the number
of multiple interfaces between the context and the
components, bi is the buffer size (maximum number of
inputs buffered) at the i-th interface Ii, Ai is the set of
inputs from i-th component triggering transitions, Oi is the
set of outputs of the context that force inputs in Ai to the
context from the i-th component, Tφ is the subset of edges
in G whose input and output symbols are not in Ai and Oi
respectively, and ci is the number of different transition
classes in the context triggered by inputs from i-th
component. Two transitions t1 and t2 belong to the same
transition class if and only if they both become fireable by
the same input, Ti,j (⊂ E) is the subset of edges in G
triggered by the inputs ai,j from the i-th component, and
Ui,j is the set of transitions in the context with output oi,j
such that, in response to oi,j, an input ai,j is buffered at Ii.
An example is presented for those definitions, which was
shown in [6]. We use that example for easier comparison
afterwards.

Example 1. Consider the context of Fig. 2 which is
interacting with components M1 and M2 through
inaccessible interfaces I1 and I2, respectively. The FSM of
the context is described in Table 1. Transition e1, triggered
by input x1 from the tester, generates output o1,1 to M1. In
response, M1 sends back input a1,1 which triggers transition
e3. Note that ai,j denotes the expected response to oi,j. e3,
when traversed, outputs o2,1 to M2, which responds with
input a2,1 triggering e4 or e9. o2,1 is also output to M2 by e12,
which is fired by the tester's input x1,2. Transitions e7 and
e8, after being triggered by the tester's inputs x7 and x8,
respectively, generate output o1,2 to M1. M1 sends back
input a1,2, which triggers either e2 or e11. e2 outputs o1,2 to
M1. Again, M1 responds with input a1,2. On the other hand,
transitions e5, e6, e10, e13, and e14, can be triggered directly
by the tester and do not generate outputs to the
inaccessible interfaces. In this example, we have:

• |V| = 3; F = 2; c1 = 2, c2 = 1
• A1 = { a1,1, a1,2 }, A2 = { a2,1 }
• O1 = { o1,1, o1,2 }, O2 = {o2,1 }

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

144

• T1,1 = { e3 }, T1,2 = { e2, e11 }, T2,1 = { e4, e9 }
• U1,1 = { e1 }, U1,2 = { e2, e7, e8 }, U2,1 = { e3, e12 }

v1

v2

v3

e1 e2 e4 e3

e13
e11

e5-7

e8-10

e14

e12
Context

Component
M1

Component
M2

Tester
C

Embedded system

I1 I2

IT

Fig. 2 FSM model of the context in Example 1 [6]

Table 1 Inputs and outputs for the edges of Fig.2. [6]

Edge Input Output Edge Input Output

e1 C?x1 M1!o1,1 e8 C?x8 M1!o1,2
e2 M1?a1,2 M1!o1,2 e9 M2?a2,1 C!y9
e3 M1?a1,1 M2!o2,1 e10 C?x10 C!y10
e4 M2?a2,1 C!y4 e11 M1?a1,2 C!y11
e5 C?x5 C!y5 e12 C?x12 M2!o2,1
e6 C?x6 C!y6 e13 C?x13 C!y13
e7 C?x7 M1!o1,2 e14 C?x14 C!y14

* A?x and B!y denote receiving input x from A, and sending output y to B,
respectively.

3. Basic Approach

In this section, we present a basic approach for generating
minimum-cost test sequences for context testing while
avoiding race conditions and nondeterminism. In this
approach we directly use the test generation algorithm for
multiple semi-controllable interfaces which was presented
in [6].

3.1 Controllability problem

Consider the embedded system shown in Fig. 2 and Table
1. In order to execute the transition e11 of the context, input
a1,2 is to be applied from M1 to the context which is in state
v3. The tester has to force the context to generate output
o1,2 to M1 through the accessible interface IT. We can use
transition e7 for that purpose. When the input x7 is applied,
the context generates output o1,2 to the M1 and moves to
state v1. Then the tester applies input x10 to the context,
which executes transition e10 and the state is changed to v3
in the context. Finally transition e11 can be triggered by
input a1,2 from M1 which may be buffered in I1 before.

 Unfortunately, this solution may have a race condition.
When the context is in state v1, after traversing e7, M1 may
produce a1,2 as a response to o1,2 before the tester applies
x10 for executing e10. Then the a1,2 may be consumed by
transition e2 before transition e10 fires. This problem
occurs because the tester cannot directly control the
interface between the context and the components. The
input a1,2 from M1 may arrive at the context before, after,
or at the same time input x10 does.
 As shown in this example, the context may move into
a state where the context is forced to consume a previously
buffered input. This situation may create a race condition
if the test sequence requires that another input be sent to
the context immediately by the tester. Therefore, a test
sequence producing such a race condition should be
avoided which may bring the context to a state where
multiple inputs are pending, one from the tester, and others
from the buffers. Test sequences should be generated so
that they may traverse the transitions of the context
without such a race condition.

3.2 Algorithm for graph transformation

The algorithm we use in this approach is described in
Algorithm 1, which was presented in [6]. That algorithm
constructs a new graph G' = (V', E') from the original
graph G for generating risk-free test sequences. It creates a
new state v'∈V' by multiplying the original state v∈V by
buffer configurations. In this process, all possible buffer
configurations with up to bi inputs in buffer Bi at Ii are
constructed by examining all outgoing edges of v in a
breadth-first-search manner, where bi is the buffer size of
Bi. Several copies may be generated in E' for each edge
e∈E, based on the class of transition e. In general, each
edge in E belongs to one of the four classes defined as
follows [6].

• Class 1: e is triggered by an input from and generates
output(s) to the tester.
• Class 2: e is triggered by an input from the tester and
generates an output oq,l at Iq, which is buffered in Bq to
create a new configuration.
• Class 3: e is triggered by ap,k from Ip and generates
output(s) to the tester, which is extracted from Bp to
create a new configuration.
• Class 4: e is triggered by an input ap,k from Ip and
generates an output oq,l at Iq.

Algorithm 1. Graph conversion from G to G'
Step.1: initialize r', the root of G', as (r, φ, …, φ).
Step.2: initialize E' as empty set, and V' as {r'}.
Step.3: initialize Q, queue of vertices, as V'.
Step.4: repeat until Q is empty.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

145

 (a) extract v' = (vstart, B̊1, …, B̊F) as the first element from
Q, where (B̊1, …, B̊F) is the current configuration.

 (b) for each outgoing edge e = (vstart, vend) ∈E do
 i. identify the class k of e.
 ii. given (B̊1, …, B̊F) and class k definition, construct:
 • new configuration (B̊1, …, B̊F)
 • new vertex v'new = (vend, B̊1, …, B̊F) ∈V'
 • new edge e'new = (v', v'new) ∈E'

(c) add new edges in E' if and only if inputs in (B̊1, …,
B̊F) cannot trigger other edges outgoing from vstart.

 (d) append to Q the end vertices v'new ∈V' of new edges
included in E'.

Step.5: remove from V' all vertices from which r' cannot
be reached.

Step.6: remove from E' all edges incident to such vertices.

 As mentioned in the introduction, the model presented
in section 2 is constructed under the assumption that an
inaccessible interface consists of FIFO-type buffers. In
practice, in addition to (or instead of) FIFO-type buffers,
interrupt-driven mechanism may be used as an interaction
technique, which can be considered also an inaccessible
interface. There may be various choices to implement
interfaces, Therefore, test sequences generated for a
system with the assumption that all interfaces is composed
of FIFO-type buffers, may result in nondeterminism when
applied in real testing if that assumption is not valid. To
eliminate this type of nondeterminism in test sequences,
the system model should have a buffer size bi = 1. Another
issue is the number of inputs that can be buffered
simultaneously at all inaccessible interfaces of the context.
When inputs are allowed to be buffered simultaneously at
several interfaces, even a buffer size equal to 1 may not
prevent nondeterministic behavior during testing. To avoid
this type of nondeterminism during testing, the model
presented in section 2 should be used to generate tests with
the restriction that, at any time, inputs may be buffered in
only one inaccessible interface of the context. According
the above consideration, a refinement of the graph
conversion algorithm is also given [6]: "at most one input
at only one inaccessible interface utilized at any time."
 By the graph transform algorithm and the refinement,
the new graph G'(V',E') is illustrated as shown in Fig.3. A
minimum-cost tour of G' where each original edge from G
is covered at least once can be generated by the Rural
Chinese Postman (RCP) method [10]. There are two sets
of edges of E': E'c, the set of mandatory edges, and (E' −
E'c), the set of optional edges. The minimum-cost tour
should include each transition in the mandatory set at least
once and each transition in the optional set zero or more
times. The sets E, E' and E'c are as follows [6]:

 E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14}

 E'= {e1.0, e2.2, e3.1, e4.3, e5.0, e5.3, e6.0, e6.3, e7.0, e8.0, e9.3,
 e10.0, e10.1, e12.0, e13.0, e13.1, e13.2, e14.0, e14.1}
 E'c= {e1.0, e2.2, e3.1, e4.3, e5.0, e6.0, e7.0, e8.0, e9.3, e10.0, e11.2,
 e12.0, e13.0, e14.0}

 Given the above sets E' and E'c, the minimum-length
test sequence for G' is shown in Table 2. Note that, for
simplicity, the Unique Input Output (UIO) sequences [11]
for state verification are not included in this sequence and
a step with ‘→’ indicates that the corresponding edge is
tested in that step.

Fig. 3 Graph Transformation applied to the graph of Fig.2 [6]

Table 2 Minimum-length test sequence for the context of Fig.2 [6]

Step Edge Input Output Step Edge Input Output

→1 e14 C?x14 C!y14 →10 e12 C?x12 M2!o2,1

→2 e13 C?x13 C!y13 11 e5 C?x5 C!y5
→3 e5 C?x5 C!y5 →12 e9 M2?a2,1 C!y9
→4 e8 C?x8 M1!o1,2 →13 e7 C?x7 M1!o1,2

→5 e11 M1?a1,2 C!y11 →14 e2 M1?a1,2 M1!o1,2

→6 e1 C?x1 M1!o1,1 15 e13 C?x13 C!y13
→7 e10 C?x10 C!y10 16 e11 M1?a1,2 C!y11
→8 e3 M1?a1,1 M2!o2,1 17 e13 C?x13 C!y13
→9 e4 M2?a2,1 C!y4 →18 e6 C?x6 C!y6

3.3 Nondeterminism in context testing

The graph conversion of algorithm 1 may be directly used
for generating a minimum-cost test sequence for context
testing, and the refinement of algorithm 1 established to
eliminate nondeterminism may be also necessary.
However, that refinement cannot be applied for test
sequence generation in some particular context
specifications. In such specifications, therefore, test
sequences would most likely have nondeterminism.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

146

Example 2. Consider the following possible test sequence
for the context of Fig.2. The edge information of this
context is described in Table 3. Note that Table 3 is
identical to Table 1 except the edges e1, e6, and e13.

 e10, e7, e2, e1, e2, e4, e11, e1, e9, e6, e14, e13, e3, e4, e12, e5, e9

Table 3 The edge information of Fig.2 for Example 2
Edge Input Output Edge Input Output

e1 C?x1 M2!o2,1 e8 C?x8 M1!o1,2
e2 M1?a1,2 M1!o1,2 e9 M2?a2,1 C!y9
e3 M1?a1,1 M2!o2,1 e10 C?x10 C!y10
e4 M2?a2,1 C!y4 e11 M1?a1,2 C!y11
e5 C?x5 C!y5 e12 C?x12 M2!o2,1
e6 C?x6 M1!o1,1 e13 M1?a1,1 M1!o1,1
e7 C?x7 M1!o1,2 e14 C?x14 C!y14

The underlined portion of the above test sequence first
traverses e2, which causes input a1,2 to be buffered at I1 and
the context to move to state v2 where that buffered input
a1,2 cannot be consumed. Since transitions e4 and e13
requires inputs a2,1 and a1,1 to be applied to the context
from M1 and M2 respectively, transition e1 can be uniquely
traversed from the current state v2. Transition e1 moves the
state of the context into v1 with input a2,1 buffered at I2. As
a1,2 was generated earlier than a2,1, the second e2 is
expected to be triggered ahead of e9 . Actually, due to the
unknown response time of the interfaces, a1,2 may be
applied to the context at an arbitrary time: earlier than,
later than, or simultaneously with a2,1. In this situation, the
refinement condition "at most one input at only one of the
context's inaccessible interface utilized at any time" is not
fulfilled and nondeterministic behaviors may happen,
which may result in that test sequence invalid.

4. Extension for Context Testing

4.1 Condition for avoiding nondeterminism

In order to eliminate nondeterminism in context testing,
the specification of the context in an embedded system
should satisfy the refinement condition. For presenting our
modified method for context testing to avoid
nondeterminism, we introduce the following concept.

Definition 2. An edge ei (∈ E) is an independent edge if ei
∈ Tφ, and a path p = e1e2 … em, is an independent path if
and only if ei is an independent edge for all i (1 ≤ i ≤ m).

Example 3. In Example 1, e5 is an independent edge, and
e5e14e13 is an independent path.

Definition 3. T_SET(i, j) (⊆V) and U_SET(i, j) (⊆V) are
defined as { head(e) | e ∈ Ti,j } and { tail(e) | e ∈ Ui,j }

respectively. B_SET(i, j) (⊆V) and C_SET(i, j) (⊆V) are
defined as { v | v ∈ U_SET(i, j) ∧ v ∉ T_SET(i, j) } and { v
| v ∈ T_SET(i, j) ∧ v ∉ U_SET(i, j) } respectively.

Example 4. In Example 1, T_SET(1,1) = { v3 },
T_SET(1,2) = { v1, v3 }, and T_SET(2,1) = { v2, v1 }.
U_SET(1,1) = { v1 }, U_SET(1,2) = { v2, v1, v3 }, and
U_SET(2,1) = { v2, v3 }. B_SET(1,1) = { v1 }, B_SET(1,2)
= { v2 }, and B_SET(2,1) = { v3 }. C_SET(1,1) = { v3 },
C_SET(1,2) = φ, and C_SET(2,1) = { v1 }.

Proposition 1. A test sequence can be generated which
does not cause multiple inputs pending in interface buffers
during testing if the following two conditions are satisfied:
− Condition A: for each input ai,j ∈ Ai, if B_SET(i, j) is not

empty, then T_SET(i, j) is also nonempty; and for each v
∈ B_SET(i, j), ∃v' ∈ T_SET(i, j) such that there is at least
one independent path from v to v'.

− Condition B: for each input ai,j ∈ Ai, if C_SET(i, j) is not
empty, then B_SET(i, j) is also nonempty; and for each v
∈ C_SET(i, j), ∃v' ∈ B_SET(i, j) such that there is at
least one independent path from v' to v.

Proof) For each v ∈ V, there are four classes related to
U_SET(i, j) and T_SET(i, j).
• Class 1: { v | v ∉ U_SET(i, j) and v ∉ T_SET(i, j) }. For

each state v in this class, no outgoing transitions can
trigger the input ai,j to be buffered, so it is impossible
to occur multiple inputs pending in buffers for ai,j.

• Class 2: { v | v ∈ U_SET(i, j) and v ∉ T_SET(i, j) }. For
each state v in this class, v ∈ B_SET(i, j). According to
the condition A, there is an independent path from v' to
v. Therefore, in any state v, ai,j is consumed before
another input is buffered.

• Class 3: { v | v ∉ U_SET(i, j) and v ∈ T_SET(i, j) }. For
each state v in this class, v ∈ C_SET(i, j). The
condition B makes sure that the transition Ti,j for state v
can be traversed without multiple inputs pending in
buffers for ai,j.

• Class 4: { v | v ∈ U_SET(i, j) and v ∈ T_SET(i, j) }. For
each state v in this class, obviously, input ai,j is
consumed immediately; no multiple inputs can be
pending in buffers for ai,j.■

Example 5. Consider the context of Fig.2 with its
specification in Table 3. We have:

• T_SET(1,1) = { v2, v3 }, T_SET(1,2) = { v1, v3 },

T_SET(2,1) = { v1, v2 }.
• U_SET(1,1) = { v1, v3 }, U_SET(1,2) = { v1, v2, v3 },

U_SET(2,1) = { v1, v2, v3 }.
• B_SET(1,1) = { v1 }, B_SET(1,2) = { v2 }, B_SET(2,1) =

{ v3 }.
• C_SET(1,1) = { v2 }, C_SET(1,2) = φ, C_SET(2,1) = φ.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

147

 For input a1,2, B_SET(1,2) has an element v2 and
T_SET(1,2) has v1 and v3, however, there are no
independent path from v2 to v1 nor to v3. Therefore, the
proposition 1 cannot be satisfied for that context and
accordingly the multiple pending inputs cannot be avoided
during testing.

4.2 Transition addition for better testability

A well-designed context of an embedded system would
utilize safe and sound inaccessible interfaces between the
context and the embedded components. We expect that, in
such well-designed contexts, proposition 1 will be satisfied
and thus a safe test sequence can be found for the context
without nondeterminism. On the contrary, there may be
some contexts where proposition 1 is not fulfilled like the
context of example 5.
 In order to solve that problem, we propose an intuitive
digraph transform algorithm which checks the given
context whether it satisfies proposition 1, and then
attempts to add special transitions for test in the context if
proposition 1 is not satisfied. Owing to those additional
transitions a safe test sequence can be generated without
the nondeterminism problem. Algorithm 2 shows how to
transform an original graph G(V, E) to a new graph G''(V'',
E'').

Algorithm 2. Graph conversion from G to G''
Step.1: For each vertex vj (∈V), create a set of vertices

}{}{ ,1, ,...,, inii a
j

a
jj vvvφ in V''.

Step.2: For each edge ej,k = (vj, vk, x/y) (∈E), create the
following edge(s) in E'':

 −)/,,(yxvv kj
φφ and a set of dashed edges,

)/,,(),...,/,,(}{}{}{}{ ,,1,1, yxvvyxvv iniiniii a
k

a
j

a
k

a
j , if ej,k∈Tφ

 −)/,,(yxvv kj ′′ , if ej,k∉Tφ, such that:

 • }{ , inia
jj vv =′ , if x∈Ai and

iniax ,= ;

otherwise, φ
jj vv =′ .

 • }{ , imia
kk vv =′ , if y∈Oi and y = trigger input

imia , ;

otherwise, φ
kk vv =′ .

Step.3: For each vertex }{ , jia
kv (∈V'') which has solid

incoming edges, add a set of transitions eφ =
)/,,(}{}{ ,,

φφ yxvv jiji a
l

a
k such that vl ∈ T_SET(i, j), if

}{ , jia
kv has no outgoing edges.

Step.4: For each vertex v (∈V'') which has solid outgoing
edges, remove from E'' all dashed outgoing edges of v.

Step.5: For each vertex v (∈V'') which has no outgoing
edges, remove all incoming edges of v both from V''
and from E''.

 Since algorithm 2 requires to modify the context by
adding some transitions eφ = (vj, vk, xφ/yφ), it is
recommended to be applied during the design phase of the
context when its modification will not cost high.

Example 6. Consider the context of Fig.2 with its
specification in Table 3. When algorithm 2 is applied so as
to solve the nondeterminism problem, a new digraph G''
are generated as shown in Fig.4. In that figure, the solid
edges are mandatory edges and the dashed edges are
optional. The minimum-length test sequence for G'' are
shown in Table 4.

Fig. 4 New digraph generated by the algorithm 2 for example 6

Table 4 Minimum-length test sequence for example 6

Step Edge Input Output Step Edge Input Output

→1 e10 C?x10 C!y10 →10 e11 M1?a1,2 C!y11
→2 e6 C?x6 M1!o1,1 →11 e1 C?x1 M2!o2,1

→3 e14 C?x14 C!y14 →12 e9 M2?a2,1 C!y9
→4 e13 M1?a1,1 M1!o1,1 →13 e12 C?x12 M2!o2,1

→5 e3 M1?a1,1 M2!o2,1 →14 e5 C?x5 C!y5
→6 e4 M2?a2,1 C!y4 15 e9 M2?a2,1 C!y9
→7 e7 C?x7 M1!o1,2 16 e5 C?x5 C!y5
→8 e2 M1?a1,2 M1!o1,2 →17 e8 C?x8 M1!o1,2

9 eφ C?xφ C!yφ 18 e11 M1?a1,2 C!y11

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

148

5. Concluding Remarks

In an embedded system, where the embedded components
interact with the environment through the context, a tester
cannot directly control the interfaces between the context
and the embedded components. Therefore, race conditions
and/or nondeterministic behaviors may happen during
testing. This paper first showed a basic solution technique
generated for handling semi-controllable interface and also
its incompleteness due to no considerations on the
nondeterminism condition. This paper then presented a
complimentary technique to identify the possibility of
nondeterminism in the context and to add some transitions
to eliminate possible nondeterminism in test sequences.
This technique might be also very useful to refine context
specifications during the context design phase for the
development of safer embedded systems.
 How to relax the refinement condition for avoiding
nondeterminism is our major interest for further study of
this work in order to apply to various types of embedded
systems. Another interesting issue is test generation for the
embedded systems under multiple testers for easier testing,
which may address synchronization problems [12].

Acknowledgment

This paper was supported by Research Fund, Kumoh
National Institute of Technology.

References
[1] L. P. Lima Jr. and A. R. Cavalli, "A pragmatic approach to

generating test sequence for embedded systems," Proc. IFIP
Int'l Workshop on Testing of Communicating
Systems(IWTCS), Cheju Island, Korea, Sep 1997.

[2] A. F. Petrenko and N. Yevtushenko, " Fault detection in
embedded components," Proc. IFIP Int'l Workshop on
Testing of Communicating Systems(IWTCS), Cheju Island,
Korea, Sep 1997.

[3] A. F. Petrenko and N. Yevtushenko, and G. von Bochmann,
"Fault models for testing in context," Proc. IFIP Joint Int'l
Conf. FORTE/PSTV, Kaiserslautern, Germany, Oct 1996.

[4] N. Yevtushenko, A. R. Cavalli, and L. P. Lima Jr., "Test suite
minimization for testing in context," Proc. IFIP Int'l
Workshop on Testing of Communicating Systems (IWTCS)},
pages 127-145, Tomsk, Russia, Sep 1998.

[5] A. F. Petrenko, N. Yevtushenko, G von Bochmann, and R.
Dssouli, "Testing in context: Framework and test
derivation," Computer Communications,
19(14):1236-1249,1996.

[6] M. A. Fecko, M. U. Uyar, A. S. Sethi, and P. D. Amer, "Issues
in conformance testing: Multiple semicontrollable
interfaces," Proc. IFIP Joint Int'l Conf. FORTE/PSTV, pages
111-126, Paris, France, Nov 1998.

[7] The Department of Defense (DoD), "Military
Standard--Interoperability Standard for Digital Message
Device Subsystems (MIL-STD 188-220B)," Jan. 1998.

[8] A. Gibbons, "Algorithmic Graph Theory," Cambridge
University Press, Cambridge, MA, 1985.

[9] M. Gondran, M. Minoux, and S. Vajda, "Graphs and
Algorithms," Wiley-Interscisence, Series in Discrete
Mathematics, New York, NY, 1984.

[10] A. V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar, "An
optimization technique for protocol conformance test
generation based on UIO sequences and rural Chinese
postman tours," IEEE Trans. on Communications,
39(11):1604-1615, Nov 1991.

[11] K. Sabnani and A. Dahbura, "A protocol test generation
procedure," Computer Networks and ISDN Systems, Vol.15,
pp.285-297, 1988.

[12] B. Sarikaya, G.v. Bochmann, "Synchronization and
specification issues in protocol testing," IEEE Trans.
Comm}. 32 (1984) pp.389-395.

Qi-Ping Yang received the B.S. degree
in communication engineering from Jilin
University, Changchun, China, in 2001,
and the M.S. degree in computer
engineering from Kumoh National
Institute of Technology (KIT), Gumi,
Korea, in 2006. He is currently a Ph.D.
candidate in the School of Computer and
Software Engineering at KIT. His
current research interest is software
testing techniques and next generation

mobile networks.

Tae-Hyong Kim received the B.S.
and M.S. degrees, from Yonsei
University in 1992 and 1995,
respectively, and a Ph.D. degree in
electrical and electronic engineering
from the same university in 2001. He
was a postdoctoral fellow at the School
of Information Technology and
Engineering (SITE) in University of
Ottawa from 2001 to 2002. He is
currently an assistant professor at the

School of Computer and Software Engineering (SCSE) in
Kumoh National Institute of Technology (KIT), Korea. His
current research interests include software and protocol
specification, verification and testing techniques, communication
protocols, and next generation mobile networks. He is an IEEE
member and also a member of the SDL Forum Society.

