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Summary 
The context of a modular system through which its embedded 

components interact with the user is the main development target 
of the modular system because developers usually purchase 
embedded components on the market. Therefore, context testing 
is necessary for the development of a reliable modular system. 
Test case generation for context testing may be complicated as 
the tester cannot directly control the interfaces between the 
context and the embedded components. This paper first shows a 
basic solution approach and its incompleteness. Then it 
investigates the conditions for avoiding nondeterminism in 
context testing. A graph conversion algorithm is also proposed 
which constructs safer context specifications for test generation 
of context testing without nondeterminism. 
Key words: 
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1. Introduction 

As communication protocols are getting more complex, 
their architectures have been changed from monolithic to 
modular with a lot of components. Embedded systems are 
currently popular examples of modular systems where a 
couple of components are crucial control ones. An 
embedded system consists of two parts: (1) the 
components embedded in the system, and (2) the context 
through which embedded components interact with the 
environment. In order to develop a reliable modular 
system, there have been several researches on testing 
embedded components [1-5]. However, when developing a 
practical embedded system, designers tend to directly 
utilize components that have been verified faultless and 
can be purchased from the market as modules for reducing 
the developing and testing time of an embedded system. 
These modules are embedded in the system and operated 
by interactions with the user through the context. 
Therefore, how to design a dependable context is a 
practical goal in the development of embedded systems. In 
fact, testing the context, what we call ‘context testing’, 
may be more important than testing the components in 
embedded system testing. In order to generate test cases 
for context testing, testers should be able to generate every 
possible input that is defined in the context. In addition, all 

outputs generated by the context should be observable by 
the testers. 
 Unfortunately, these two requirements are often 
unattainable. Testers may have two different types of 
interfaces on the context: accessible interfaces and 
inaccessible interfaces. Fig.1 shows a context of an 
embedded system which has inaccessible interfaces such 
as I1 and I2. Testers can directly apply inputs to the context 
through accessible interfaces but cannot apply to the 
interfaces between the components and the context. Such 
inaccessible interfaces are similar to the semi-controllable 
interfaces that were presented in [6]. Due to the 
controllability problem, nondeterminism and race 
conditions may occur during testing, which reduces the 
testability of the context. 
 

 
Fig. 1 The concept of context testing 

 
 Interactions between embedded components and the 
context through multiple inaccessible interfaces may 
sometimes cause nondeterminism. If the context, for 
example, moves into a state at which several inputs from 
different interfaces are pending, choosing which input is 
consumed first may lead to nondeterminism. Another 
important issue in context testing is the buffer types of the 
interfaces between the context and components. Although 
those interfaces can be assumed as FIFO-type buffers, in 
practice this assumption may not be correct for all 
implementations. Test sequences generated under that 
assumption may not be applicable due to the different 
buffer type. 
 Fecko, et al. presented a test generation algorithm for 
embedded systems which tried to handle safely 
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semi-controllable interfaces of the system [6]. This paper 
first tries to utilize that algorithm in test generation for 
context testing. Then the test generation conditions are 
discussed for context testing which can avoid the possible 
race condition and nondeterminism. We also propose a 
new algorithm for checking and modifying the context to 
generate such safe test sequences. 
 The rest of this paper is organized as follows. After 
the preliminaries of Section 2, Section 3 introduces how to 
use the existing algorithm to construct a test sequence for 
the context testing. A new algorithm is proposed in section 
4 to check and modify the context graph for handling the 
inaccessible interfaces without the race conditions. Finally, 
section 5 concludes the paper and presents ideas for future 
work. 
 
2. Preliminaries 
 
In this paper, an FSM model, which is sufficient to model 
protocols with finite state space and deterministic behavior, 
is used to represent the context and the components. 
 
2.1 FSM and its graphical representation 
 
Definition 1. A finite state machine (FSM) is a 6-tuple M 
= (S, X, Y, δ, λ, s0), where S is a finite set of states of M 
and s0∈S is the initial state of M, X is a finite nonempty set 
of input symbols, Y is a finite nonempty set of output 
symbols, δ is a state transition function that maps S×X to S, 
and λ is an output function that maps S×X to Y. 
 
 State si is equivalent to state sj if the inputs defined for 
si are a subset of those for sj and their corresponding 
outputs and next states are identical. An FSM M is said to 
be minimal if its specification has no equivalent states. 
 An FSM M may be represented by a directed graph 
(digraph) G = (V, E) where a set of vertices V represents 
the set S of states of M, and a set of directed edges E 
represents the set of transitions of M. An edge e represents 
a specific transition t of M from state si to state sj with 
input x∈X and output y∈Y. Thus, an edge e is defined by a 
3-tuple (vi, vj, x/y) in which vi is the initial vertex, vj is the 
final vertex and l = x/y is its label. Vertices vi and vj which 
represent respectively state si and sj are called the head and 
the tail of e, denoted head(e) and tail(e). 
 The indegree and outdegree of a vertex are the number 
of edges coming toward and directly away from it, 
respectively. If, for any given vertex, its indegree is equal 
to its outdegree, the graph is said to be symmetric. A tour 
of a graph G is a sequence of consecutive edges that starts 
and ends at the same vertex. One special kind of tour is an 
Euler tour, which contains every edge of G exactly once. 
 A digraph G = (V, E) is said to be strongly connected, if, 
for every pair of vertices vj and vk, there exists a path from 

vj to vk. G is weakly connected if the undirected graph, 
generated by removing the direction from each edge, is 
connected. If a graph is symmetric and strongly-connected, 
an Euler tour exists [8,9]. 
 
2.2 Modeling testing embedded systems 
 
Since the structure of embedded systems is similar to the 
multi-layer testing environment that is presented in [6], we 
directly use the same definitions for modeling the 
embedded systems in this paper. Given a graph G(V, E) 
representing an FSM model of the context with multiple 
interfaces with components, the following parameters are 
defined: |V| is the number of nodes in G, F is the number 
of multiple interfaces between the context and the 
components, bi is the buffer size (maximum number of 
inputs buffered) at the i-th interface Ii, Ai is the set of 
inputs from i-th component triggering transitions, Oi is the 
set of outputs of the context that force inputs in Ai to the 
context from the i-th component, Tφ is the subset of edges 
in G whose input and output symbols are not in Ai and Oi 
respectively, and ci is the number of different transition 
classes in the context triggered by inputs from i-th 
component. Two transitions t1 and t2 belong to the same 
transition class if and only if they both become fireable by 
the same input, Ti,j (⊂ E) is the subset of edges in G 
triggered by the inputs ai,j from the i-th component, and 
Ui,j is the set of transitions in the context with output oi,j 
such that, in response to oi,j, an input ai,j is buffered at Ii. 
An example is presented for those definitions, which was 
shown in [6]. We use that example for easier comparison 
afterwards. 
 
Example 1. Consider the context of Fig. 2 which is 
interacting with components M1 and M2 through 
inaccessible interfaces I1 and I2, respectively. The FSM of 
the context is described in Table 1. Transition e1, triggered 
by input x1 from the tester, generates output o1,1 to M1. In 
response, M1 sends back input a1,1 which triggers transition 
e3. Note that ai,j denotes the expected response to oi,j. e3, 
when traversed, outputs o2,1 to M2, which responds with 
input a2,1 triggering e4 or e9. o2,1 is also output to M2 by e12, 
which is fired by the tester's input x1,2. Transitions e7 and 
e8, after being triggered by the tester's inputs x7 and x8, 
respectively, generate output o1,2 to M1. M1 sends back 
input a1,2, which triggers either e2 or e11. e2 outputs o1,2 to 
M1. Again, M1 responds with input a1,2. On the other hand, 
transitions e5, e6, e10, e13, and e14, can be triggered directly 
by the tester and do not generate outputs to the 
inaccessible interfaces. In this example, we have: 
 

• |V| = 3; F = 2; c1 = 2, c2 = 1 
• A1 = { a1,1, a1,2 }, A2 = { a2,1 } 
• O1 = { o1,1, o1,2 }, O2 = {o2,1 } 
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• T1,1 = { e3 }, T1,2 = { e2, e11 }, T2,1 = { e4, e9 } 
• U1,1 = { e1 }, U1,2 = { e2, e7, e8 }, U2,1 = { e3, e12 } 

 

v1
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v3

e1 e2 e4 e3

e13
e11
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e8-10

e14

e12
Context

Component 
M1

Component 
M2
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C

Embedded system

I1 I2
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Fig. 2 FSM model of the context in Example 1 [6] 

 
Table 1 Inputs and outputs for the edges of Fig.2. [6] 

Edge Input Output Edge Input Output 

e1 C?x1 M1!o1,1 e8 C?x8 M1!o1,2 
e2 M1?a1,2 M1!o1,2 e9 M2?a2,1 C!y9 
e3 M1?a1,1 M2!o2,1 e10 C?x10 C!y10 
e4 M2?a2,1 C!y4 e11 M1?a1,2 C!y11 
e5 C?x5 C!y5 e12 C?x12 M2!o2,1 
e6 C?x6 C!y6 e13 C?x13 C!y13 
e7 C?x7 M1!o1,2 e14 C?x14 C!y14 

* A?x and B!y denote receiving input x from A, and sending output y to B, 
respectively. 
 
3. Basic Approach 
 
In this section, we present a basic approach for generating 
minimum-cost test sequences for context testing while 
avoiding race conditions and nondeterminism. In this 
approach we directly use the test generation algorithm for 
multiple semi-controllable interfaces which was presented 
in [6]. 
 
3.1 Controllability problem 
 
Consider the embedded system shown in Fig. 2 and Table 
1. In order to execute the transition e11 of the context, input 
a1,2 is to be applied from M1 to the context which is in state 
v3. The tester has to force the context to generate output 
o1,2 to M1 through the accessible interface IT. We can use 
transition e7 for that purpose. When the input x7 is applied, 
the context generates output o1,2 to the M1 and moves to 
state v1. Then the tester applies input x10 to the context, 
which executes transition e10 and the state is changed to v3 
in the context. Finally transition e11 can be triggered by 
input a1,2 from M1 which may be buffered in I1 before. 

 Unfortunately, this solution may have a race condition. 
When the context is in state v1, after traversing e7, M1 may 
produce a1,2 as a response to o1,2 before the tester applies 
x10 for executing e10. Then the a1,2 may be consumed by 
transition e2 before transition e10 fires. This problem 
occurs because the tester cannot directly control the 
interface between the context and the components. The 
input a1,2 from M1 may arrive at the context before, after, 
or at the same time input x10 does. 
 As shown in this example, the context may move into 
a state where the context is forced to consume a previously 
buffered input. This situation may create a race condition 
if the test sequence requires that another input be sent to 
the context immediately by the tester. Therefore, a test 
sequence producing such a race condition should be 
avoided which may bring the context to a state where 
multiple inputs are pending, one from the tester, and others 
from the buffers. Test sequences should be generated so 
that they may traverse the transitions of the context 
without such a race condition. 
 
3.2 Algorithm for graph transformation 
 
The algorithm we use in this approach is described in 
Algorithm 1, which was presented in [6]. That algorithm 
constructs a new graph G' = (V', E') from the original 
graph G for generating risk-free test sequences. It creates a 
new state v'∈V' by multiplying the original state v∈V by 
buffer configurations. In this process, all possible buffer 
configurations with up to bi inputs in buffer Bi at Ii are 
constructed by examining all outgoing edges of v in a 
breadth-first-search manner, where bi is the buffer size of 
Bi. Several copies may be generated in E' for each edge 
e∈E, based on the class of transition e. In general, each 
edge in E belongs to one of the four classes defined as 
follows [6]. 
 
• Class 1: e is triggered by an input from and generates 
output(s) to the tester. 
• Class 2: e is triggered by an input from the tester and 
generates an output oq,l at Iq, which is buffered in Bq to 
create a new configuration. 
• Class 3: e is triggered by ap,k from Ip and generates 
output(s) to the tester, which is extracted from Bp to 
create a new configuration. 
• Class 4: e is triggered by an input ap,k from Ip and 
generates an output oq,l at Iq. 

 
Algorithm 1. Graph conversion from G to G' 
Step.1: initialize r', the root of G', as (r, φ, …, φ). 
Step.2: initialize E' as empty set, and V' as {r'}. 
Step.3: initialize Q, queue of vertices, as V'. 
Step.4: repeat until Q is empty. 
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 (a) extract v' = (vstart, B̊1, …, B̊F) as the first element from 
Q, where (B̊1, …, B̊F) is the current configuration. 

 (b) for each outgoing edge e = (vstart, vend) ∈E do 
   i. identify the class k of e. 
   ii. given (B̊1, …, B̊F) and class k definition, construct: 
  • new configuration (B̊1, …, B̊F) 
  • new vertex v'new = (vend, B̊1, …, B̊F) ∈V' 
  • new edge e'new = (v', v'new) ∈E' 

(c) add new edges in E' if and only if inputs in (B̊1, …, 
B̊F) cannot trigger other edges outgoing from vstart. 

 (d) append to Q the end vertices v'new ∈V' of new edges 
included in E'. 

Step.5: remove from V' all vertices from which r' cannot 
be reached. 

Step.6: remove from E' all edges incident to such vertices. 
 
 As mentioned in the introduction, the model presented 
in section 2 is constructed under the assumption that an 
inaccessible interface consists of FIFO-type buffers. In 
practice, in addition to (or instead of) FIFO-type buffers, 
interrupt-driven mechanism may be used as an interaction 
technique, which can be considered also an inaccessible 
interface. There may be various choices to implement 
interfaces, Therefore, test sequences generated for a 
system with the assumption that all interfaces is composed 
of FIFO-type buffers, may result in nondeterminism when 
applied in real testing if that assumption is not valid. To 
eliminate this type of nondeterminism in test sequences, 
the system model should have a buffer size bi = 1. Another 
issue is the number of inputs that can be buffered 
simultaneously at all inaccessible interfaces of the context. 
When inputs are allowed to be buffered simultaneously at 
several interfaces, even a buffer size equal to 1 may not 
prevent nondeterministic behavior during testing. To avoid 
this type of nondeterminism during testing, the model 
presented in section 2 should be used to generate tests with 
the restriction that, at any time, inputs may be buffered in 
only one inaccessible interface of the context. According 
the above consideration, a refinement of the graph 
conversion algorithm is also given [6]: "at most one input 
at only one inaccessible interface utilized at any time." 
 By the graph transform algorithm and the refinement, 
the new graph G'(V',E') is illustrated as shown in Fig.3. A 
minimum-cost tour of G' where each original edge from G 
is covered at least once can be generated by the Rural 
Chinese Postman (RCP) method [10]. There are two sets 
of edges of E': E'c, the set of mandatory edges, and (E' − 
E'c), the set of optional edges. The minimum-cost tour 
should include each transition in the mandatory set at least 
once and each transition in the optional set zero or more 
times. The sets E, E' and E'c are as follows [6]: 
 
 E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14} 

 E'= {e1.0, e2.2, e3.1, e4.3, e5.0, e5.3, e6.0, e6.3, e7.0, e8.0, e9.3, 
 e10.0, e10.1, e12.0, e13.0, e13.1, e13.2, e14.0, e14.1} 
 E'c= {e1.0, e2.2, e3.1, e4.3, e5.0, e6.0, e7.0, e8.0, e9.3, e10.0, e11.2, 
 e12.0, e13.0, e14.0} 
 
 Given the above sets E' and E'c, the minimum-length 
test sequence for G' is shown in Table 2. Note that, for 
simplicity, the Unique Input Output (UIO) sequences [11] 
for state verification are not included in this sequence and 
a step with ‘→’ indicates that the corresponding edge is 
tested in that step. 
 

 
Fig. 3 Graph Transformation applied to the graph of Fig.2 [6] 

 
Table 2 Minimum-length test sequence for the context of Fig.2 [6] 

Step Edge Input Output Step Edge Input Output

→1 e14 C?x14 C!y14 →10 e12 C?x12 M2!o2,1

→2 e13 C?x13 C!y13 11 e5 C?x5 C!y5 
→3 e5 C?x5 C!y5 →12 e9 M2?a2,1 C!y9 
→4 e8 C?x8 M1!o1,2 →13 e7 C?x7 M1!o1,2

→5 e11 M1?a1,2 C!y11 →14 e2 M1?a1,2 M1!o1,2

→6 e1 C?x1 M1!o1,1 15 e13 C?x13 C!y13 
→7 e10 C?x10 C!y10 16 e11 M1?a1,2 C!y11 
→8 e3 M1?a1,1 M2!o2,1 17 e13 C?x13 C!y13 
→9 e4 M2?a2,1 C!y4 →18 e6 C?x6 C!y6 

 
3.3 Nondeterminism in context testing 
 
The graph conversion of algorithm 1 may be directly used 
for generating a minimum-cost test sequence for context 
testing, and the refinement of algorithm 1 established to 
eliminate nondeterminism may be also necessary. 
However, that refinement cannot be applied for test 
sequence generation in some particular context 
specifications. In such specifications, therefore, test 
sequences would most likely have nondeterminism. 
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Example 2. Consider the following possible test sequence 
for the context of Fig.2. The edge information of this 
context is described in Table 3. Note that Table 3 is 
identical to Table 1 except the edges e1, e6, and e13. 
 
 e10, e7, e2, e1, e2, e4, e11, e1, e9, e6, e14, e13, e3, e4, e12, e5, e9 
 

Table 3 The edge information of Fig.2 for Example 2 
Edge Input Output Edge Input Output 

e1 C?x1 M2!o2,1 e8 C?x8 M1!o1,2 
e2 M1?a1,2 M1!o1,2 e9 M2?a2,1 C!y9 
e3 M1?a1,1 M2!o2,1 e10 C?x10 C!y10 
e4 M2?a2,1 C!y4 e11 M1?a1,2 C!y11 
e5 C?x5 C!y5 e12 C?x12 M2!o2,1 
e6 C?x6 M1!o1,1 e13 M1?a1,1 M1!o1,1 
e7 C?x7 M1!o1,2 e14 C?x14 C!y14 

 
The underlined portion of the above test sequence first 
traverses e2, which causes input a1,2 to be buffered at I1 and 
the context to move to state v2 where that buffered input 
a1,2 cannot be consumed. Since transitions e4 and e13 
requires inputs a2,1 and a1,1 to be applied to the context 
from M1 and M2 respectively, transition e1 can be uniquely 
traversed from the current state v2. Transition e1 moves the 
state of the context into v1 with input a2,1 buffered at I2. As 
a1,2 was generated earlier than a2,1, the second e2 is 
expected to be triggered ahead of e9 . Actually, due to the 
unknown response time of the interfaces, a1,2 may be 
applied to the context at an arbitrary time: earlier than, 
later than, or simultaneously with a2,1. In this situation, the 
refinement condition "at most one input at only one of the 
context's inaccessible interface utilized at any time" is not 
fulfilled and nondeterministic behaviors may happen, 
which may result in that test sequence invalid. 
 
4. Extension for Context Testing 
 
4.1 Condition for avoiding nondeterminism 
 
In order to eliminate nondeterminism in context testing, 
the specification of the context in an embedded system 
should satisfy the refinement condition. For presenting our 
modified method for context testing to avoid 
nondeterminism, we introduce the following concept. 
 
Definition 2. An edge ei (∈ E) is an independent edge if ei 
∈ Tφ, and a path p = e1e2 … em, is an independent path if 
and only if ei is an independent edge for all i (1 ≤ i ≤ m). 
 
Example 3. In Example 1, e5 is an independent edge, and 
e5e14e13 is an independent path. 
 
Definition 3. T_SET(i, j) (⊆V) and U_SET(i, j) (⊆V) are 
defined as { head(e) | e ∈ Ti,j } and { tail(e) | e ∈ Ui,j } 

respectively. B_SET(i, j) (⊆V) and C_SET(i, j) (⊆V) are 
defined as { v | v ∈ U_SET(i, j) ∧ v ∉ T_SET(i, j) } and { v 
| v ∈ T_SET(i, j) ∧ v ∉ U_SET(i, j) } respectively. 
 
Example 4. In Example 1, T_SET(1,1) = { v3 }, 
T_SET(1,2) = { v1, v3 }, and T_SET(2,1) = { v2, v1 }. 
U_SET(1,1) = { v1 }, U_SET(1,2) = { v2, v1, v3 }, and 
U_SET(2,1) = { v2, v3 }. B_SET(1,1) = { v1 }, B_SET(1,2) 
= { v2 }, and B_SET(2,1) = { v3 }. C_SET(1,1) = { v3 }, 
C_SET(1,2) = φ, and C_SET(2,1) = { v1 }. 
 
Proposition 1. A test sequence can be generated which 
does not cause multiple inputs pending in interface buffers 
during testing if the following two conditions are satisfied: 
− Condition A: for each input ai,j ∈ Ai, if B_SET(i, j) is not 

empty, then T_SET(i, j) is also nonempty; and for each v 
∈ B_SET(i, j), ∃v' ∈ T_SET(i, j) such that there is at least 
one independent path from v to v'. 

− Condition B: for each input ai,j ∈ Ai, if C_SET(i, j) is not 
empty, then B_SET(i, j) is also nonempty; and for each v 
∈ C_SET(i, j), ∃v' ∈ B_SET(i, j) such that there is at 
least one independent path from v' to v. 

Proof) For each v ∈ V, there are four classes related to 
U_SET(i, j) and T_SET(i, j). 
• Class 1: { v | v ∉ U_SET(i, j) and v ∉ T_SET(i, j) }. For 

each state v in this class, no outgoing transitions can 
trigger the input ai,j to be buffered, so it is impossible 
to occur multiple inputs pending in buffers for ai,j. 

• Class 2: { v | v ∈ U_SET(i, j) and v ∉ T_SET(i, j) }. For 
each state v in this class, v ∈ B_SET(i, j). According to 
the condition A, there is an independent path from v' to 
v. Therefore, in any state v, ai,j is consumed before 
another input is buffered. 

• Class 3: { v | v ∉ U_SET(i, j) and v ∈ T_SET(i, j) }. For 
each state v in this class, v ∈ C_SET(i, j). The 
condition B makes sure that the transition Ti,j for state v 
can be traversed without multiple inputs pending in 
buffers for ai,j. 

• Class 4: { v | v ∈ U_SET(i, j) and v ∈ T_SET(i, j) }. For 
each state v in this class, obviously, input ai,j is 
consumed immediately; no multiple inputs can be 
pending in buffers for ai,j.■ 

 
Example 5. Consider the context of Fig.2 with its 
specification in Table 3. We have: 
 
• T_SET(1,1) = { v2, v3 }, T_SET(1,2) = { v1, v3 }, 

T_SET(2,1) = { v1, v2 }. 
• U_SET(1,1) = { v1, v3 }, U_SET(1,2) = { v1, v2, v3 }, 

U_SET(2,1) = { v1, v2, v3 }. 
• B_SET(1,1) = { v1 }, B_SET(1,2) = { v2 }, B_SET(2,1) = 

{ v3 }. 
• C_SET(1,1) = { v2 }, C_SET(1,2) = φ, C_SET(2,1) = φ. 
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 For input a1,2, B_SET(1,2) has an element v2 and 
T_SET(1,2) has v1 and v3, however, there are no 
independent path from v2 to v1 nor to v3. Therefore, the 
proposition 1 cannot be satisfied for that context and 
accordingly the multiple pending inputs cannot be avoided 
during testing. 
 
4.2 Transition addition for better testability 
 
A well-designed context of an embedded system would 
utilize safe and sound inaccessible interfaces between the 
context and the embedded components. We expect that, in 
such well-designed contexts, proposition 1 will be satisfied 
and thus a safe test sequence can be found for the context 
without nondeterminism. On the contrary, there may be 
some contexts where proposition 1 is not fulfilled like the 
context of example 5. 
 In order to solve that problem, we propose an intuitive 
digraph transform algorithm which checks the given 
context whether it satisfies proposition 1, and then 
attempts to add special transitions for test in the context if 
proposition 1 is not satisfied. Owing to those additional 
transitions a safe test sequence can be generated without 
the nondeterminism problem. Algorithm 2 shows how to 
transform an original graph G(V, E) to a new graph G''(V'', 
E''). 
 
Algorithm 2. Graph conversion from G to G'' 
Step.1: For each vertex vj (∈V), create a set of vertices 

}{}{ ,1, ,...,, inii a
j

a
jj vvvφ  in V''. 

Step.2: For each edge ej,k = (vj, vk, x/y) (∈E), create the 
following edge(s) in E'': 

 − )/,,( yxvv kj
φφ  and a set of dashed edges, 

   )/,,(),...,/,,( }{}{}{}{ ,,1,1, yxvvyxvv iniiniii a
k

a
j

a
k

a
j , if ej,k∈Tφ 

 − )/,,( yxvv kj ′′ , if ej,k∉Tφ, such that: 

 • }{ , inia
jj vv =′ , if x∈Ai and 

iniax ,= ; 

otherwise, φ
jj vv =′ . 

 • }{ , imia
kk vv =′ , if y∈Oi and y = trigger input 

imia , ; 

otherwise, φ
kk vv =′ . 

Step.3: For each vertex }{ , jia
kv (∈V'') which has solid 

incoming edges, add a set of transitions eφ = 
)/,,( }{}{ ,,

φφ yxvv jiji a
l

a
k  such that vl ∈ T_SET(i, j), if 

}{ , jia
kv  has no outgoing edges. 

Step.4: For each vertex v (∈V'') which has solid outgoing 
edges, remove from E'' all dashed outgoing edges of v. 

Step.5: For each vertex v (∈V'') which has no outgoing 
edges, remove all incoming edges of v both from V'' 
and from E''. 

 
 Since algorithm 2 requires to modify the context by 
adding some transitions eφ = (vj, vk, xφ/yφ), it is 
recommended to be applied during the design phase of the 
context when its modification will not cost high.  
 
Example 6. Consider the context of Fig.2 with its 
specification in Table 3. When algorithm 2 is applied so as 
to solve the nondeterminism problem, a new digraph G'' 
are generated as shown in Fig.4. In that figure, the solid 
edges are mandatory edges and the dashed edges are 
optional. The minimum-length test sequence for G'' are 
shown in Table 4. 
 

 
Fig. 4 New digraph generated by the algorithm 2 for example 6 

 
Table 4 Minimum-length test sequence for example 6 

Step Edge Input Output Step Edge Input Output

→1 e10 C?x10 C!y10 →10 e11 M1?a1,2 C!y11 
→2 e6 C?x6 M1!o1,1 →11 e1 C?x1 M2!o2,1

→3 e14 C?x14 C!y14 →12 e9 M2?a2,1 C!y9 
→4 e13 M1?a1,1 M1!o1,1 →13 e12 C?x12 M2!o2,1

→5 e3 M1?a1,1 M2!o2,1 →14 e5 C?x5 C!y5 
→6 e4 M2?a2,1 C!y4 15 e9 M2?a2,1 C!y9 
→7 e7 C?x7 M1!o1,2 16 e5 C?x5 C!y5 
→8 e2 M1?a1,2 M1!o1,2 →17 e8 C?x8 M1!o1,2

9 eφ C?xφ C!yφ 18 e11 M1?a1,2 C!y11 
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5. Concluding Remarks 
 
In an embedded system, where the embedded components 
interact with the environment through the context, a tester 
cannot directly control the interfaces between the context 
and the embedded components. Therefore, race conditions 
and/or nondeterministic behaviors may happen during 
testing. This paper first showed a basic solution technique 
generated for handling semi-controllable interface and also 
its incompleteness due to no considerations on the 
nondeterminism condition. This paper then presented a 
complimentary technique to identify the possibility of 
nondeterminism in the context and to add some transitions 
to eliminate possible nondeterminism in test sequences. 
This technique might be also very useful to refine context 
specifications during the context design phase for the 
development of safer embedded systems. 
 How to relax the refinement condition for avoiding 
nondeterminism is our major interest for further study of 
this work in order to apply to various types of embedded 
systems. Another interesting issue is test generation for the 
embedded systems under multiple testers for easier testing, 
which may address synchronization problems [12]. 
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