
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

204

Manuscript received November 5, 2007

Manuscript revised November 20, 2007

 Generating Nested XML DTD from Non Normalized Relational Views
Mohammed Nasser1 Hamidah Ibrahim*

Ali Mamat* Md. Nasir Sulaiman*
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia

43400 Serdang, Malaysia

Abstract
Document Type Definition (DTD) is very important because it
contains a set of rules that specifies and captures the structure of
XML (eXtensible Markup Language) document. Most of the
current approaches for generating DTD from relational views do
not support nested elements for DTD. Furthermore, these
approaches may not generate automatically DTD from flat
relational views where they depend on what is submitted by
users. This paper investigates how nested XML DTD that
support nested elements can be automatically generated from flat
relational view. The proposed approach is based on the number
of data values for each column in nested view that is generated
from flat relational view. The data values for each column of
nested view are counted to classify the columns into groups.
Each group has the columns with the same number of values.
The generated groups represent the DTD elements where the
element that has a bigger number of data values is nested into the
element that has a smaller number of data values. According to
the experimental results, the proposed approach can reduce the
storage size of generated DTD by around 31% compared to the
other approaches.
Keywords:
 flat relational view, nested view, DTD, nested element

1. Introduction

XML has been accepted as the universal standard for data
interchange and publication on the web. Because of its
flexible syntax, XML allows the same data to be
represented in many different ways. Some XML
documents may be better designed than other. The need
for predefined XML document with DTD is evident in,
e.g., data exchange, security views and data integration
[2]. The purpose of DTD is to define the structure of a
document encoded in XML [6].

Usually, DTD consists of many elements and attributes.
The flat relational view is considered as schema but it
contains data from multi tables. The columns of nested
view are classified into groups based on the number of
data values for each column. The mapping of nested
relation view into DTD means that each group of columns
is defined as an element in DTD. Each column or attribute
of the nested view is defined as attribute of elements in
DTD.
The rest of this paper is organized as follows. Section
2 presents some definitions about relational views,

XML elements and XML attributes. Section 3
presents the related works. Section 4 presents the
comparison between DTD and XSD according to the
storage size. Section 5 presents and discusses the
proposed approach. Section 6 presents the
implementation of the proposed approach. Section 7
presents and discusses the results of the experiments.
The final section includes the conclusion and the
future work.

2. Backgrounds

This section presents some definitions for relational views,
XML elements, and XML attributes.

2.1 Relational Views

A relational view is a virtual table made up of a subset of
the actual tables. A relational view is a named result set of
an SQL query. A view allows to display different
perspectives of the same database. Views are stored in the
database and the view query defines database table's
columns and rows that are viewed [10].

2.2 DTD Elements

Elements are the most common form of XML. The first
element of XML document must be a root element that
must be one. An element can contain other (sub) elements.
An element begins with a start-tag and ends with end-tag
such as <name> and </name>.
Element content model is the logical structure of the
element contents based on the regular expressions such as
\?" (0 or 1 instance), *" (0 or many instances), or \+" (1 or
many instances) [11]. In the following example, the
element paper contains only one instance of sub-element
title, one or many instances of sub-element author, and
zero or many instances of sub-element citation:
<! ELEMENT paper (title, author+, citation*)>

2.3 Attributes of DTD

Attributes are name-value pairs that contain descriptive
information about an element. The attribute is placed

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

205

inside the start-tag after the corresponding element name
with the attribute value enclosed in quotes [11]. Each
attribute declaration has three parts: a name, a type, and an
optional default value.
In DTD, elements and attributes are defined by the
keywords <!ELEMENT>
and <!ATTLIST>, respectively.
<!ELEMENT> <elem-name> <elem-content-model>
<!ATTLIST> <attr-name> <attr-type> <attr-option>

There are several advantages for elements over attributes,
among them [4]:
(i) Elements have order semantics while attribute does

not have it.
(ii) Elements can express multiple occurrences better than

attributes. Elements and attributes both support a
string type.

2.4 Document Type Definition (DTD)

A DTD as in [7] is defined to be D = (E, A, P, R, r)
where: E 　El is a finite set of elements, A 　Att is a
finite set of attributes, P is a mapping from E = {e | e　E }
to element type definitions, P(e) is defined as the
following regular expression : ::= S | | 　 　 　 e’ | | 　　　

, | * where 　 　 　 e’ 　E, “ ” denotes un　 ion, “,” denotes
concatenation, and “*” denotes Kleene closure, R is a
mapping from E to the power set of A. Each @a 　 A can
appear in only one R(e). If @a 　R (e), @a is defined for
e, r 　E is the element type for the root.

3. Related Works
The work in [1] introduced a prototype that named DTD-
Miner. It is an automatic structure mining tool for XML
documents. Using a Web-based interface, the mining DTD
depends on the user who submits a set of similarity
structured XML documents and the tool will suggest a
DTD. The DTD-Miner does not support the generation of
attribute types and entity references and does not generate
a DTD for relational database format.
 [2] proposed Transformation Engine for XML (TREX), a
middleware system for DTD-conforming XML to XML
transformations. TREX is based on the novel notion of
XML Transformation Grammar (XTG), which extends a
DTD by incorporating XML queries into element type
definitions. This allows one to specify how to extract
relevant data from a source XML document via the
queries, and to construct a target XML document directed
by the embedded DTD. TREX efficiently evaluates XTGs
by implementing several optimization techniques. XTGs
and TREX provide the first systematic method and
practical system to support DTD-conforming XML
transformations.

[3] presents a frame work for publishing relational
database into XML. This frame work provides a language
for defining views that are guaranteed to be DTD-
conformant, as well as middleware for evaluating these
views. It is based on a novel notion of attribute translation
grammars (ATGs). An ATG extends a DTD by associating
semantic rules via SQL queries.
The work in [4] introduces Nested-based Translation
(NET) approach which was designed to remedy the
problems of FT approach, one need to utilize various
element content models of XML. The idea is to find a best
element content model that uses “*” or “+ ““using the nest
operator. Firstly, the nest operator is defined. Informally,
for a table t with a set of columns C, nesting on a non-
empty column X to C collects all tuples that agree on the
remaining columns C into a set. NeT approach has many
limitations among them :(i) It is only applicable to a
single table at a time, and cannot obtain a big picture of a
relational schema where many tables are interconnected
with each other. (ii) It performs only single attribute
nesting. Multiple attribute nesting is another interesting
research direction. (iii) The translation by using NeT
approach will be a flat XML structure [5].
 Also there are many tools for generating DTD from either
relational database or XML documents such as Allora,
DbToXML, and Alltova. These tools generate DTD
without considering the nesting of elements. They convert
each column of relational view to element or to attribute
for DTD based on the user's specifications.

4. DTD vs. XSD for Storage Space

This section presents the comparison between the two
XML schemas: Document Type Definition (DTD), and
XML Schema Definition (XSD) for the spreading and the
storage size.

The elements, attributes and the data types are defined
only one time in the body of XML DTD. In contrast, XSD
is needed to define the type of data and write the "xsd" or
"xd" (based on the type of XSD) before each tag in the
schema and the whole of document. This matter leads to a
redundancy and costs a high space for storage of XML
document. Cleary, XML Schema is too complex to
provide even an overview of all its features [16].
According to the comparisons between DTD and XSD in
[15], averages of nodes number are 26%, 29% from the
nodes for XSD based on number of depth, number of
element type, respectively. Rather than, averages of
storage size for DTD are 14%, 22% from the storage size
for XSD based on the number of depth, and the number of
elements type, respectively.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

206

5. The Proposed Method for Generating
Nested DTD

This section presents the proposed method for generating
DTD that includes elements, attributes and rules. The
proposed method is based on the count of data values for
columns in nested view. The first step of this method is
converting the flat relational view into nested view using
functional and multi-valued dependencies. The second
step is counting the number of data values for each column
of nested view. The third step is classifying the columns
into groups based on the same number of data values. The
columns that have the same number of data values belong
to the same group. The number of DTD elements will be
the number of groups. The attributes of each group also
will be defined as attributes for related elements of DTD.

5.1 Converting Flat Relational View into Nested

View
The flat relational view is converted into nested view to
extract DTD. We need nested view for XML DTD for
many reasons:
(i) A normal form for nested relational view aims not only

to group attributes into related sets of attributes, but
also to choose a nested structure with a good
representations of the set of semantic connections that
already exist in the real world [8].

(ii) The nested relational view is hierarchical structure that
is closely related to the hierarchical structure of XML
[9].

(iii) The nested normal form is closely related to the XML
normal form [9].

The method of converting the flat relational view into
nested view is based on the analysis of functional and
multi-valued dependencies taking into account the
frequency of data values. We assume that the tuples of flat
relational view are grouped based on the first column that
includes the most frequency of values. Given a flat
relational view FRV, B is a block that includes a set of
tuples based on the frequency of the data values for the
first column. Let n the number of blocks B, i=1, 2, 3..,n
there for FRV= Bi . IF t is a tuple ∈Bi, m is a number
of tuples for Bi there for Bi = t j for j=1, 2, 3…m. Let
ti, tj are tuples ∈Bi for i ≠ j and x, y are values. If ti(x)
= ti+1(x) and ti(y) = ti+1(y) then remove ti+1(x) and ti+1(y)
based on functional dependency constraint. If t1(x) = t2(x)
= t3(x)...=ti(x) then remove t2(x), t3(x)=,…,ti(x) based on
multi-valued dependency constraint.

5.2 Generating Nested DTD from the Nested View

Given a Nested Relational View(NRV) from FRV, Group
G is a set of sequenced columns ⊆ NRV, n is the number
of columns in NRV, i=1, 2, 3,…n. This implies that
nested view NRV= Gi. Let cv is a function for
counting of not null values for each column cl. IF cv(cli)
= cv(clj) for i ≠ j therefore cli, clj ∈ Gk where k=1, 2,
3,…m. For each group Gi there is an element Ei for DTD.
If m is the number of groups, the number of elements is m.
The attributes of Gi are the attributes of Ei where Ei =
att1,att2,…attn. IF Ei, Ej are two elements ∈ DTD, Ej is
nested into Ei where cv(Gi) of Ei > cv(Gj) of Ej for i ≠
j.

Example

Given a flat relation view as shown in Fig.1, we want to
extract the elements, attributes and rules such that the
nesting of elements of XML DTD based on this flat view.
Several steps will be done as follows:

 Fig. 1. Flat relational view for customers

Step 1: Convert flat relational view into nested view
shown as in Fig.2.

∪n

i 1=

∪ m

j 1=

CID Comp-

Name

City OrdID

Order-

Date

Pro-

ID

Qty Dis

.

ALFKI Alfreds Berlin 10643 1-1-2004 28 15 0.2

5

ALFKI Alfreds Berlin 10643 1-1-2004 39 21 0.2

5

ALFKI Alfreds Berlin 10643 1-1-2004 46 2 0.2

5

ALFKI Alfreds Berlin 10952 7-4-2005 6 16 0.0

5

ALFKI Alfreds Berlin 10952 7-4-2005 28 2 0.0

ALFKI Alfreds Berlin 10692 15-8-2005 63 20 0.0

ANATR Ana Tru México 10759 20-8-2005 32 10 0.0

ANATR Ana Tru México 10760 15-9-2005 11 2 0.1

0

ANATR Ana Tru México 10760 15-9-2005 13 10 0.0

ANATR Ana Tru México 10760 15-9-2005 19 7 0.2

0

∪n

i 1=

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

207

Fig. 2. Nested view for customers

Step 2: Count the not null values for each column in the
nested view. The result is shown as in Fig. 3.

 Fig.3. Number of values for each column with 3 groups

Step 3: Classify the columns into groups based on the
same number of values of the columns as shown in Fig.2.
There will be three groups. Group 1 includes three
columns Cid, ComName, and City. Group 2 includes two
columns that are OrderID, and OrderDate. Group 3
includes three columns that are ProID, Qty, and Disco.

Step 4: Create an element of DTD for each group where
the elements of DTD will be three elements and each
element includes many attributes such that element 1 is
Customers that includes Cid, CompnyName, City attributes,
and element 2 is Orders that includes OrderID, Orderdate
attributes. Thirdly, Products represents element 3 that
includes ProID, Qty, and Disco attributes.

Step 5: Arrange the elements of DTD by considering the
element nesting such that the element that has the bigger
number of data values is nested into the element that has
the smaller number of values. Fig. 4 shows the nesting of
elements based on the number of data values.

 Fig. 4. Nested elements with the attributes

 DTD for the above example is as shown in Fig. 5.

 Fig. 5. DTD for nested view of customers

The above DTD contains three elements: Customers,
Orders, and Products. Orders element is nested into
Customers element where Customers element has 2 values
whereas Orders element has 5 values. Products element is
nested into Orders element because it has data values
more than Orders element.

5.3 The Algorithm for Generating DTD from

Nested View

The algorithm for generating DTD from nested view is
shown in Fig. 6.

CID Comp

Name

City OrdID Order

date

Prod

ID

Qty Disco.

ALFKI Alfreds Berlin 10643 1-1-2004 28 15 0.25

 39 21 0.25

 46 2 0.25

 10952 7-4-2005 6 16 0.05

 28 2 0.0

 10692 15-8-2005 63 20 0.0

ANATR Ana Tru México 10759 20-8-2005 32 10 0.0

 10760 15-9-2005 11 2 0.10

 13 10 0.0

 19 7 0.20

Cid Comp

Name

City OrdI

D

Order

Date
ProID Qty Disco.

2 2 2 5 5 10 10 10

2 5 10

E2

Customers

Products

2

Cid CompName

10

ProID Qty DiscountD

Orders

5

OrderDate OrderID

E3

E1

DocType NVR[
<! ELEMENT NVR(Customers+)>
<!ELEMENT Customers(Orders*)>
 <! ATTLIST Customers
 CID ID CDATA#REQUIRED>
 CompanyName CDATA #REQUIRED >
 City CDATA# REQUIRED >
<!ELEMENT Orders(Products*)>
 <! ATTLIST Orders
 OrderID CDATA# REQUIRED >
 OrderDate CDATA #REQUIRED >
 <! ELEMENT Products Empty>
 <! ATTLIST Products
 ProID CDATA# REQUIRED >
 Qty CDATA# REQUIRED >
 Discount CDATA# REQUIRED >]

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

208

 Fig.6. The algorithm for generating DTD from nested view

6. Implementation of the Proposed Algorithm

The proposed algorithm is implemented using Java
language via JBuilder6 for enterprise tool with Windows
XP. We used Northwind database for the experiments and
Altova XML SPY 2006 for parsing the output of the
proposed algorithm.

7. Experimental Results

In this section, we compare the preliminary results of the
proposed approach that is expressed by PA with what of
other tools such as Altova, Allora, and DbtoXML. This
comparison considered 4 samples of views and two
metrics of measurement that are the length of DTD and
DTD storage size [13, 14] Fig. 7 shows the result of
comparisons of DTD lengths in bytes.

Fig. 7. DTDs Lengths with different approaches

The results shown in Fig. 7 can be shown graphically in
Fig. 8.

 Fig. 8. DTDs lengths for different views in bytes

For the storage size of DTD in bytes, the results are shown
in Fig. 9.

 Fig. 9. Storage size of DTD for different views in bytes

The results for Fig. 9 are shown graphically in Fig. 10.

 Fig. 10. Storage sizes of DTDs in bytes

Based on the above results of the proposed approach and
the other three approaches, the proposed approach reduced
the length by 35.42% compared to Allroa, 35.49%
compared to Altova, and 28.74% compared to DbToXML.
Regarding the storage size, the percentages of the
reduction are 32.78%, 31.74%, and 26.87% respectively.
It is apparent that the proposed approach generates a
nested DTD with lesser length and smaller storage size
than that generated by other approaches.

8. Conclusions and Future Work

This paper proposes an approach for generating a nested
DTD from flat relational view. This approach is efficient
for generating a nested DTD with smaller storage size and
lesser length of DTD compared to the other approaches.
Using this approach, DTD is generated automatically

Input: Nested View
Output: XML DTD
Steps:
1. Count the not null values for each column of nested view.
2. Classify the columns into groups based on the number of not null

values such that each group has the columns with same number of
not null values.

3. Create an element for each group.
4. Create DTD name with the same name of the nested view.
5. Put the elements of the groups into DTD such that the element for

the bigger number of data values is nested into the element for the
smaller number of values.

6. Write ‘+’ beside the first element that should be at least one
generated element in DTD and write ‘*’ beside the element that
has a nested element except the last element that is written
‘empty’ beside it.

7. Write the attributes for each group into DTD such that each
element of DTD is followed by its attributes.

XML DTD Allora Altova
DBto
XML PA

Customers orders
products 590 594 488 412

Employees orders 536 510 501 331
Employees orders
products 767 762 759 537
Products of orders 693 737 725 393

0

200

400

600

800

1000

Allora Altova DBtoXML PA

Generated Approaches

Le
ng

th
s

of
 D

TD
s

in
 B

yt
es

Customerorderproduct

Employeeorders

Employeeordersproducts

productorderssuppliers

XML DTD
Allor
a Altova DBtoXML PA

Customerorderproduct 624 626 519 448

Employeeorders 562 538 531 361

Employeeordersproducts 805 802 801 581

productorderssuppliers 791 775 773 480

0
100
200
300
400
500
600
700
800
900

St
or

ag
e

Si
ze

s
of

 D
TD

s
in

 B
yt

es

Allora Altova DBtoXML PA

Generated Approaches for DTD

Customerorderproduct
Employeeorders
Employeeordersproducts
productorderssuppliers

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

209

without any specifications for users. The element model
and the attribute model are included together in this
approach. It is unlike the other approaches that include
either element model or attribute model based on the
specifications of users. Also this approach is useful for
increasing the semantic of XML documents where it
supports the nesting of elements. For future work, we
hope to generate nested XML schema instead of DTD
from flat relational view.

References
[1] Aoying Zhou, Qing Wang, Zhimao Guo, Xueqing Gong,

Shihui Zheng. ‘TREX: DTD Conforming XML to XML
Transformations’. ACM, 2003.

[2] Chuang-Hue, Moh Ee-Peng Lim ,Wee-Keong Ng. ‘DTD-
Miner: A Tool for Mining DTD from XML Documents’.
IEEE, 2000.

[3] M. Benedikt, C. Y. Chan, W. Fan, R. Rastogi, S. Zheng, and
A. Zhou. ’DTD-directed publishing with attribute
translation grammars’. VLDB, 2002.

[4] Dongwon Lee, Murali Mani. ’NeT & CoT: Translating
Relational Schemas to XML Schemas using Semantic
Constraints’. ACM, 2002.

[5] Angela Cristian, Ken Barker, Reda Alhajj. ‘Converel:
Relationship Conversation to XML Nested Structures’.
ACM, 2004.

[6] John W. Shipman. 'Constructing a Document Type
Definition (DTD) for XML'. New Mexico Computer Center,
2006.

[7] Wenfei Fan. 'On XML Integrity Constraints in the Presence
of DTDs'. ACM, 2001.

[8] Mark A Roth and Henry F Korth. ‘Design of 1NF
Relational Databases into Nested Normal Form'. ACM
Transactions on Database Systems, 1987, pp. 143-159.

[9] Marcelo Arenas. 'Design Principles for XML Data'. PhD
dissertation, University of Toronto, 2005.

[10] Ian Gilfillan. ’Introduction to Relational Databases’.
Database journal, June 24, 2002.

[11] http://www.rpbourret.com/xml/xmldtd.htm
[12] http://www.XML.com
[13] H. Qureshi, M.H. Samadzadeh. ‘Determining the

Complexity of XML Documents'. IEEE Conference on
Information technology: Coding and Computing (ITCC'o5),
IEEE, 2005.

[14] Rebecca J. Cathey, Steven M. Beitzel, Eric C. Jensen,
Angelo J. Pilotto. 'Measuring the Scalability of Relationally
Mapped Semi structured Queries'. Proceedings of the
International Conference on Information Technology:
Coding and Computing (ITCC’04), IEEE, 2004.

[15] Erwin Leonardi, Tran T. Hoai, Sourav S. Bhowmick,
Sanjay Madria. ‘DTD-DIFF: A change detection
algorithm for DTDs’. Data & Knowledge Engineering
61 (384–402), 2007.

[16] Chunyan Wang. ‘COCALEREX: An Engine for
Converting Catalog-based and Legacy Relational
Databases into XML’. Master Thesis, The University
of Calgary, USA, Nov. 2004.

[17] Irena Mlynkova, Kamil Toman, and Jaroslav
Pokorny. ‘Statistical Analysis of Real XML Data
Collections’. Proceeding of the 13th International
Conference on Management of data (COMAD2006),
Delhi, India, 2006.

