
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007

216

Manuscript received November 5, 2007

Manuscript revised November 20, 2007

Simulator for Software Maintainability

P. K. Suri1, Bharat Bhushan2

1Department of Computer Science & Applications, Kurukshetra University, Kurukshetra (Haryana) India,
2Department of Computer Science & Applications, Guru Nanak Khalsa College, Yamuna Nagar (Haryana), India

Abstract
According to IEEE Standard Glossary of Software Engineering
Terminology: maintainability is the ease with which a software
system or component can be modified to correct faults, improve
performance or other attributes, or adapt to a changed
environment. [1]. Maintainability can also be defined as the
probability that a specified maintenance action on a specified
item can be successfully performed (putting the item into a
specified state) within a specified time interval by personnel of
specified characteristics using specified tools and procedures
[2].
Software under maintenance consists of finite number of states.
The states have a specific operating efficiency. The
maintenance process can bring the software from one sate to
another within a specific time slot allotted to the software
maintenance engineers. The software fails or reaches its
maximum efficiency depends upon the nature of maintenance
problems. In this paper an attempt has been made to develop a
simulator to compute n–step transition probabilities
successively until the software reaches steady state. This
process is very much depicted by Markov analysis [3]. The
software simulation tool designed here will be helpful for the
software project managers in judging the maintenance efforts of
the software.

.
Keywords:
Software Maintenance, Markov process, Operating Efficiency,
Transition probabilities,Software complexity

 INTRODUCTION
The purpose of software maintenance is to assure the
quality of performance of the respective software. But
design errors, undiscovered faults, & installing new
applications can cause the software degradation [4].
There are two aspects of maintainability: serviceability
(the probability of returning the item to normal service)
and reparability (the probability of repairing the actual or
impending fault). Whenever we talk about software
maintainability, our discussions are usually about
reparability. In software engineering, the main emphasis
of maintenance is change or the modification of a
software product after delivery to correct faults, to
improve performance or other attributes, or to adapt the
product to a modified environment.
Rajiv D. Banker j Gordon B. Davis j Sandra A.
Slaughter[5] estimated the impact of development
activities in a more practical time frame. They developed

a two-stage model in which software complexity is a key
intermediate variable that links design and development
decisions to their downstream effects on software
maintenance. They analyzed the data collected from
various software enhancement projects and software
applications in a large IBM COBOL environment.
Results indicated that the use of a code generator in
development is associated with increased software
complexity and software enhancement project effort. The
use of packaged software is associated with decreased
software complexity and software enhancement effort.

Pfleeger [6] describes maintainability as the probability
that a maintenance activity can be carried out within a
stated time interval, it ranges from 0 to 1.

Rikard Land [4] investigates how the maintainability of a
piece of software changes as time passes and it is being
maintained by performing measurements on industrial
systems.

F. Niessink [7] discussed the perspectives on improving
software maintenance. He described process
improvement of software maintenance from two
perspectives: measurement-based improvement and
maturity-based improvement.

Y. Kataoka, T. Imai .H. Andou T. Fukaya [8] discussed
program refactoring as a technique to enhance the
maintainability of a program. They proposed a
quantitative evaluation method to measure the
maintainability enhancement effect of program
refactoring. They used coupling metrics to evaluate the
refactoring effect. By comparing the coupling before and
after the refactoring, they evaluated the degree of
maintainability enhancement. Their results showed that
their method was really effective to quantify the
refactoring effect.

The software to be maintained may be considered to be
in a number of states of deterioration .The maintenance
(repair) work of the software is inspected after a regular
interval of time say weekly and is classified as being in
one of the states.. Each state is considered as functionally

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007 217

independent. The evaluation is carried out using Markov
analysis which looks at a sequence of states and analyses
the tendency of one state to be followed by another, after
each repair the software restored to a state having
‘increased’ operating efficiency. Using this analysis one
can generate a new sequence of random but related states
which look similar to the original. This Markov process
is stochastic in nature which has the property that the
probability of transition from a given state to any future
state depends only on the present state and not on the
manner in which it was reached

If t0 < t1 < t2 <………< tn represents the points in time
scale then the family of random variables {X(tn)} is said
to be a Markov process provided it holds the Markovian
property :

P {X (tn) = xn | X (tn-1) = xn - 1, X (t0) = x0 } = P{ X (tn) =
xn | X(tn-1) = xn-1}
 V X (t0), X (t1),….,X(tn)

Markov process is a sequence of n experiments in which
each experiments has n possible outcomes x1, x2,……,xn.
Each individual outcome is called a state and probability
(that a particular outcome occurs) depends only on the
probability of the outcome of the preceding experiment.
The simplest of the Markov processes is discrete and
constant over time. It is used when the sequence of
experiment is completely described in terms of its states
(possible outcomes). There is a finite set of states
numbered 0,1, 2, 3, ….n and this process can be only in
one state at a prescribed time. The system is said to be
discrete in time if it is examined at regular intervals eg.
Daily, weekly, monthly or yearly.

Transition Probability

The probability of moving from one state to another or
remaining in the same state during a single time period is
called transition probability.
 Mathematically, the probability

P xn-1, xn = P{X(tn)= xn | X(tn-1)= xn-1}

 is called the transition probability. This represents the
conditional probability of the system which is now in
state xn at time tn provided that it was previously in state
xn-1 at time tn-1. This probability is known as transition
probability because it describes the system during the
time interval (tn-1, tn). Since each time a new result or
outcome occurs, the process is said to have stepped or
incremented one step. Each step represents a time period
or any other condition which would result in another
possible outcome. The symbol n is used to indicate the
number of steps or increments.

The transition probability can be arranged in a square
matrix form denoted by

 p00 p01 p02…………………..p1n
 p10 p11 p12…………………..p1n

 . . .
 P = . . .
 . . .
 . . .
 Pn0 p n1 pn2…………..……..pnn

 n
Such that ∑ pij =1; i=0, 1, 2, 3…..n and 0≤ pij ≤1
 J=0
n-step stationary transition probabilities

The n-step stationary transition probabilities are defined
to be

prs

(n) = P(Xi+n = s|Xi = r) = P(Xn = s|X0 = r)
prs

(n)≥0 for all states r and s ; n=1, 2, ………

 n
 ∑ prs

(n) = 1 for all states r; n=1, 2,….
s = 0

The above equation assumes there is N+ 1 possible state.
Note that if the system is currently in state r, it must be in
some state n steps from now. Thus

 n
 ∑ prs

(n) = 1
s = 0

In general, the n-step stationary transition probabilities
can be calculated as follows:

 n
prs

(n) = ∑ prj* pjs(n-1)
 j=0

Where the possible states are 1, 2,…..N. That is, the
probability of going from state r to state s in n steps is the
probability of going from state r to state j in one step,
times the probability of going from state j to state s in n-
1 steps, summed over all j=0, 1, 2,……, N.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007 218

Steady state stationary transition
probabilities

Suppose a given system has N+1 state, 0, 1, 2,….., N. if
for some value of n,

 prs

(n) > 0 for r = 0, 1, 2,….., N
 s = 0, 1, 2,….., N
 and if

 prr > 0 for r = 0, 1, 2,….., N

 then

 lim prs

(n) = as for s = 0, 1, 2,….., N
 n→∞
The quantity as is the steady state stationary transition
probability of being in state s after a large number of
steps. That is to say, if every state can eventually be
reached from every other state (possibly in a large
number of steps), and if the system can be in any given
state on two consecutive steps, then the probability of
being in any given state after a large number of steps is a
constant. This constant is called the steady state
probability for the given state.
The N+1 steady state probabilities satisfy the N+2 linear
steady state equation

 N

 as = ∑ ar*prs for s=0, 1, 2,….., N
 r = 0

 N

 ∑ as = 1
 s=0
Thus, if we form a system of N+1 linear equations in N+
1 unknown by using any N of the equations in the above
equation the solution of the system will be the N+1
steady state probabilities.

Proposed model

The proposed model assumes that by ‘maintainability’ of
the software we mean a quantitative characteristic called
‘operating efficiency’ , which from user point of view is
maximum in the beginning and deteriorates
progressively with the passage of time in view of ever
increasing user expectations that evolve constantly over
time .

The operating efficiency of the software at specific
interval of time is computed using Bux Muller
transformation .
Software under consideration for maintenance must be in
one and only one state of deterioration at specific point
of time. The software that is currently in state r must be
in some state n steps from now. Under fairly general
conditions, if the one-step stationary transition
probabilities are available, we can determine. n-step
stationary transition probabilities until the software
reaches steady state.

Assumptions

• The software to be maintained may be
considered in one of the five states of
deterioration. Say Xi = { 0, 1, 2, 3, 4 }
represents the state of deterioration of the
software at the end of ith week.

• The operating efficiency is simulated for each

state using Bux Muller transformation. e.g. 95%
to 100% for the state=0 and below 70% for state
=4 and in-between for other states.

• The one-step stationary transition probabilities

may be given or may be determined from the
past data.

• n-step transition probabilities are calculated

successively until the system reaches steady-
state or n = 100 which ever occurs first.

• In the absence of a steady-state a message

stating such is printed..

Terms and Notations

N : Number of n-step probabilities.
NS : Number of states of
 Deterioration for the software
 to be maintained.
PROB (X0=I) : Probability of being in state I
 initially (operating efficiency)
P (I, J) : One step stationary transition
 probability
PN (I, J) : n steps stationary transition
 probability
PN (NS, J) : steady-state transition
 probability
MAT (I, J) : probabilities of being in
 state J after I steps.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007 219

Algorithm to compute n-step probabilities
using Markov analysis

Step 1: Start
 Step 2.(a) [Input number of states for software
maintenance]

 Read NS
(b) [Read the probabilities of being in
state I initially]
For I= 1 to NS do
Read PROB {I}
Or
Compute the probabilities (operating

efficiency)of each state of deterioration
initially operating efficiency using Bux Muller
transformation (with the help of random
numbers generation, computation of their mean
and standard deviation and normalizing the
function.)
(c) [Read one step stationary transition

probabilities]
 For I=1 to NS do

 For J = 1 to NS do
 Read P (I, J)

Step3. [Calculate n step stationary transition probabilities
for n = 1, 2, 3, ….. using the relation]
 n
 prs

(n) = ∑ prj* pjs(n-1)

 j=0

Step4. [Compute steady state transition
 probability using the relation]

 N

 as= ∑ ar*prs for s=0, 1, 2,….., N

 r=0

Step 5. [Compute probabilities of being in state j
 after I steps.]

Step 6. [Write Results]
 Step 7.[Stop]

Input: Read the values of NS and compute operating
efficiency say 0.95, 0.87, 0.79, 0.75 and 0.70 as initial
state of deterioration
The table 1 acts as input for one step stationary transition
probabilities for software maintenance.

 To State

From
State

0 1 2 3 4

0 0.50 0.45 0.03 0.02 0
1 0 0.56 0.4 0.03 0.01
2 0 0 0.45 0.50 0.05
3 0 0 0 0.60 0.40
4 0 1.0 0 0 0

 Table 1
Output:

 State Steady state stationary

transition probabilities

0 0
1 0.3173
2 0.2308
3 0.3123
4 0.1396

 Table 2

 Discussion and conclusion

 It is well known that software maintenance claims a
large proportion of organizational resources.
Poorly developed software creates a ‘performance
anxiety’ in the user’s mind on one hand and adds to risk
cost in terms of reduced efficiency on the part of the
organization that uses it. On the other hand, poor
software design on the part of the developers results in
loss of man hours of persons using it when the later fails
to achieve desired analysis and result out of its use.
Though it is difficult to quantify the actual maintenance
efforts at different point of time of our choice, but its
impact is fairly realized over the software life cycle. A
precise measure of software maintainability can help
better manage the maintenance phase effort.
 A gradual ‘eye’ on upkeeps of the software would reveal
that with the passage of time the ‘operating efficiency’
decreases and the level of maintainability effort increases.
The initial state of software’s operating efficiency
proceeds to a state after passing through ‘n’ steps where
the operating efficiency noose dives to the lowest level
refers to as ‘steady state’ after which there will
conceptually be no retardation of software efficiency any
further and the concerned software may be branded as
‘unfit for use’ i.e. no further maintainability is desirable
and no effort should be made to modify the software.
This is achieved after a large number of steps and as such
the transition probabilities remain fairly constant for each

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007 220

state as shown in the table 2. This state is the terminal
stage where upon the user has to adapt the strategy of
either invest in a new alternate software or go for an
improved version of the same.

References

[1] IEEE, IEEE Standard Glossary of Software

Engineering Terminology, report IEEE Std 610.12-
1990, IEEE, 1990.

[2]Jarrett Rosenberg “Can We Measure
Maintainability?”, Sun Microsystems, 901 San
Antonio Road, Palo Alto, CA 94303

[3] Gillite Billy E.,”Operations Research”, Tata Mc
Graw Hill Publishing
Company Limited, 2004

[4] Rikard Land, “Measurements of Software
Maintainability” Mälardalen University, Department
of Computer Engineering, Box 883, SE-721 23
Vasteras, Sweden rikard.land@mdh.se

[5] Rajiv D. Banker j Gordon B. Davis j Sandra A.”
Slaughter Software Development Practices, Software
Complexity, and Software Maintenance
Performance: A Field Study”

School of Management, University of Texas at Dallas,
Richardson, Texas 75083

[6] Pfleeger S. L., Software Engineering, Theory and
Practice, Prentice-Hall, Inc., 1998

[7] Niessink ,F. “Perspectives on improving software
maintenance”, Proceedings of IEEE International
Conference on Software Maintenance, pp. 553-556,
2001

 [8] Y . Ka taoka , T . I ma i .H . Andou T . Fukaya
“A Quantitative Evaluation of Maintainability
Enhancement by Refactoring” 18th IEEE
International Conference on Software
Maintenance, pp. 0576, 2002

P.K. Suri received his Ph.D.
degree from Faculty of
Engineering, Kurukshetra
University, Kurukshetra, India and
Master’s degree from Indian
Institute of Technology, Roorkee
(formerly known as Roorkee
University), India. He is working
as Professor in the Department of

Computer Science & Applications, Kurukshetra
University, Kurukshetra - 136119 (Haryana), India since
Oct. 1993. He has earlier worked as Reader, Computer
Sc. & Applications, at Bhopal University, Bhopal from
1985-90. He has supervised five Ph.D.’s in Computer
Science and thirteen students are working under his
supervision. He has more than 100 publications in
International / National Journals and Conferences. He is

recipient of 'THE GEORGE OOMAN MEMORIAL
PRIZE' for the year 1991-92 and a RESEARCH
AWARD –“The Certificate of Merit – 2000” for the
paper entitled ESMD – An Expert System for Medical
Diagnosis from INSTITUTION OF ENGINEERS,
INDIA. His teaching and research activities include
Simulation and Modeling, SQA, Software Reliability,
Software testing & Software Engineering processes,
Temporal Databases, Ad hoc Networks, Grid
Computing , and Biomechanics.

Bharat Bhushan received the M Sc.
(Physics), from Panjab Univ.
Chandigarh and M.Sc. (Comp. Sc.),
MCA degrees from Guru
Jambeshwar University.
Respectively. Presently working as
Head, Department of Computer
Science and Applications, Guru

Nanak Khalsa College, Yamuna Nagar (affiliated to
Kurukshetra University, Kurukshetra- Haryana, India)
and senior most teacher of computer science in Haryana
since 1984. He is a member of Board of Studies of
Computer Science, Kurukshetra University and member
of Advisory Board of educational programme
(EDUSAT) launched by Govt. of Haryana to impart
online education. His research interest includes Software
engineering, Digital electronics, networking and
Simulation Experiments.

