On Order-convexity Of Syntopogenous Structures (X,S, \leq)

Hong Wang

College of Science, Southwest University of Science and Technology Mianyang 621000, Sichuan, P.R.China

Summary

In this paper, fuzzy syntopogenous spaces is introduced. First, the *-increasing and *-decreasing spaces have been studied. Second,order-convexity on syntopogenous structures (X,S, \leq) has been defined. Third, the equivalent description of order-convexity has been given. Finally, some important properties of order-convexity have been obtained.

Key words:

Fuzzy topology, Order, Algebra, Convexity

1. Preliminaries

In this paper, L=<L, \land , \lor , \lor , '> always denotes a completely distributive lattice with order–reversing involution "'". Let 0 be the least element and 1 be the greatest one in L. Suppose X is a nonempty (usual) set, an L-fuzzy set in X is a mapping A: X→L, and L^x will denote the family of all L-fuzzy sets in X. It is clear that L^x=<L^x, \leq , \land , \lor , '> is a fuzzy lattice ,which has the least element <u>0</u> and the greatest one <u>1</u>, where <u>0</u> (x)=0, <u>1</u>(x)=1, for any x \in X.

Definition1.1. A binary relation $\langle \langle \text{ on } L^x \text{ is called an } L^x$ fuzzy semi-topogenous order if it satisfies the following axiom: (1) $\underline{0} \langle \langle \underline{0} \text{ and } \underline{1} \langle \langle \underline{1}; (2) A \langle \langle B \text{ implies } A \leq B; (3) \rangle$ $A_1 \leq A \langle \langle B \leq B_1 \text{ implies } A_1 \langle \langle B_1. \text{ The complement of an } L^x \text{ L-fuzzy semi-topogenous order } \langle \langle \text{ is the } L^x \text{ L-fuzzy semi-topogenous order } \langle \langle \text{ is the } L^x \text{ defined by } A \langle \langle \ ^c B \text{ iff } B' \langle \langle A'. \text{ An } L^x \text{ L-fuzzy semi-topogenous order } \langle \langle \text{ is called: (I)} \rangle$ symmetrical if $\langle \langle = \langle \ ^c \ ; (\Pi) \text{ topogenous if } A_1 \langle \langle B_1 \text{ and } A_2 \langle \langle B_2 \text{ implies } A_1 \wedge A_2 \langle \langle B_1 \wedge B_2 \text{ and } A_1 \vee A_2 \langle \langle B_1 \vee B_2 ; (\Pi) \text{ perfect if } Aj \langle \langle Bj \ , j \in J \text{ implies } \langle Aj \ \langle \wedge Bj \ ; (V) \text{ biperfect if perfect and co-perfect.}$

Suppose that $\langle \langle 1, \langle \rangle_2$ are L-fuzzy semi-topogenous order on X, we call $\langle \langle 1 \rangle_1$ is finer than $\langle \langle 2 \rangle_2$ (i.e. $\langle \langle 2 \rangle_2$ is coarser than $\langle \langle 1 \rangle_1$) if for any A, B \in L^x, A $\langle \langle 2 \rangle_2$ B implies A $\langle \langle 1 \rangle_1$ B, denoted by $\langle \langle 2 \rangle_2 \leq \langle \langle 1 \rangle_1$. For a given L-fuzzy semitopogenous order $\langle \langle \rangle_1$, we define $\langle \langle P, \langle Q \rangle_1$ as follows: A $\langle \langle Q \rangle_2$ P B iff there exist Ai, i \in I, suth that A= \vee Ai, for any i \in I, Ai $\langle\!\langle B; A \rangle\!\langle i^{-1} B \rangle$ iff there exist Bj , $j \in J$ such that $B = \wedge Bj$ and A $\langle\!\langle Bj \rangle$, for each $j \in J$.

Definition1.2. An L-fuzzy syntopogenous structure on X is a nonempty family S of L-fuzzy semi-topogenous order on X having the following two properties:(LFS1) S is directed in the sense that given any two members of S there exist a member of S finer than both;(LFS2) For each $\langle \langle$ in S there exist $\langle \langle \rangle_1$ in S such that A $\langle \langle \rangle$ B implies the existence of an L-fuzzy set C with A $\langle \langle \rangle_1$ C $\langle \langle \rangle_1$ B.

If S is an L-fuzzy syntopogenous structure on X, then the pair (X,S) is called an L-fuzzy syntopogenous space. An L-fuzzy syntopogenous structure S consisting of a single semi-topogenous order is called a topogenous structure and the pair (X,S) is called an L-fuzzy topogenous space. S is called perfect (resp. biperfect) if each member of S is perfect (resp. biperfect). An L-fuzzy syntopogenous structure S_1 is called finer than another one S_2 , if for each $\langle\!\langle$ in S_2 there exist a member of S_1 finer than $\langle\!\langle$. In this case we also say that S_2 is coarser than S_1 , denoted by S_2 \leq S₁. If S₁ is finer than S₂ and S₂ is finer than S₁, then S_1 , S_2 are called equivalent, denoted by $S_1 \sim S_2$. To every L-fuzzy syntopogenous structure corresponds an L-fuzzy topology τ (S) given by the interior operator μ^{0} = sup $\{ \rho : \rho \ll \mu \text{ for some } \ll \in S \}$. If $\{ \ll \alpha : \alpha \in \land \}$ is a family of L-fuzzy semi-topogenous order on X then $\langle \langle = \rangle$ $a \in A$ $\ll a$ is the L-fuzzy semi-topogenous order defined by $\mu \ll \rho$ iff $\mu \ll \rho$ for some $\alpha \in A$. If S is a L-fuzzy syntopogenous structure, then it is easy to see that $\langle \langle s \rangle = \vee$ $\{ \langle \langle : \langle \langle \in S \rangle \} \text{ is an L-fuzzy topogenous order and } \{ \langle \langle \rangle \} \}$ s} is an L-fuzzy topogenous structure. Moreover, $\mu \in \tau$ (S) iff $\mu \ll p_{s} \mu$. To every fuzzy topology τ on X corresponds a perfect L-fuzzy topogenous structure $S_{\tau} =$ $\{ \langle \langle \rangle \}$, where $\mu \langle \langle \rho \rangle$ iff there exists $\sigma \in \tau$ with $\mu \leq \tau$ $\sigma \leq \rho$. Moreover, $\tau = \tau$ (S). Conversely, to every perfect L-fuzzy topogenous structure $S = \{ \langle \langle \rangle \}$ corresponds the L-fuzzy topology $\tau = \tau$ (S), where $\mu \in$ τ iff $\mu \ll \mu$. To two different L-fuzzy topologies correspond different perfect L-fuzzy topogenous structure[1][2].

Manuscript received November 5, 2007

Manuscript revised November 20, 2007

2. *-increasing and *-decreasing spaces

A preorder on X is a binary relation " \leq " on X which is reflexive and transitive. preorder on X which is also anti-symmetric is called a partial order or simply an order. By a preordered (resp. an ordered) set we mean a set with a preorder (resp. a partial order) on it

Definition2.1. (Katsaras [4]) Let (X,\leq) be a preorder set, $A \in L^x$ is called: (i) * -increasing if $x \leq y$ implies $A(x) \leq A(y)$; (ii) *-decreasing, if $x \leq y$ implies $A(y) \leq A(x)$; (iii) order-convex, if $y \leq x \leq z$ implies $A(y) \land A(z) \leq A(x)$.

Definition2.2. Let (X, \leq) be a preorder set, define mappings p,a,c: $L^x \rightarrow L^x$ as follows: for any $A \in L^x, x \in X$, $p(A)(x) = \bigvee \{A(y): y \leq x; a(A)(x) = \land \{A(y): x \leq y; c (A) = p(A) \land a(A).$

Theorem2.1. Let (X,S) be an L-fuzzy syntopogenous space, define a binary relation $\leq s$ on X as follows: for any x, $y \in X$, $x \leq sy$ iff for $A \in L^x$, $\langle \zeta \in S, \lambda \in L, \lambda \neq 0$ and $x_{\lambda} \langle \zeta A$ implies $y_{\lambda} \leq A$, then " $\leq s$ " is a preorder on X, it is called the preorder generated by S on X.

proof.(1) (Reflexivity) We can get immediately from x_{λ} $\langle \langle A \text{ implies } x_{\lambda} \leq A.$

(2) (Transitivity) Suppose $x \le {}_{s} y, y \le {}_{s} z$ and for $A \in L^{x}$, $\langle \langle \in S, \lambda \in L, \lambda \neq 0, x_{\lambda} \rangle \langle \langle A \rangle$. By (LFS₂) there exist $\langle \langle {}_{1} \in S, B \in L^{x}$, such that $x_{\lambda} \langle \langle {}_{1} B \rangle \langle {}_{1} A$. Since $x \le {}_{s} y$, thus $y_{\lambda} \le B \langle \langle {}_{1} A, so y_{\lambda} \rangle \langle {}_{1} A$. Also because $y \le {}_{s} z$, hence $z_{\lambda} \le A$, i.e. $x \le {}_{s} z$.

Definition2.3. Let (X, \leq) be a preorder set, S be an L-fuzzy syntopogenous structure on X, then (X,S,\leq) is called *-increasing (*-decreasing) if for $x,y \in X$, $x \leq y$ implies $x \leq {}_{sy} (y \leq {}_{s} x)$.

Proposition2.2. (1) Let S_1 , $S_2 \in S(X)$ and if $S_2 \leq S_1$, then for x, $y \in X$, $x \leq {}_{S1} y$ implies $x \leq {}_{S2} y$. And if $S_1 \sim S_2$, then $\leq {}_{S1} = \leq {}_{S2} .$ (2) If (X,S_1,\leq) is *-increasing (*-decreasing) and $S_2 \leq S_1$, then (X,S_2,\leq) is *-increasing (*-decreasing).

Proof. (1) Obvious. (2) If $x \le y$, $S_{\le} = \{ \& \}$ [6], for $A \in L^x$, $\lambda \in L$, $\lambda \neq 0$ and $x_{\lambda} \& A$ implies $x_{\lambda}(x) \le A(y)$, i.e. $y_{\lambda} \le A$. thus $x \le s_{\le} y$, by Definition 2.3 (X, S_{\le}, \le) is *-increasing. (3)" \Longrightarrow "If $S \le S_{\le}$, by (2) (X, S_{\le}, \le) is *-increasing, from

Proposition 2.2(2) then (X,S, \leq) is *-increasing.

" \leftarrow "Suppos $\langle \langle 1 \in S, S_{\leq} = \{ \langle \langle \rangle \}, A \rangle \langle \langle 1 B \text{ and } x \leq y, \text{ if } A(x)=0, \text{easily } A(x) \leq A(y). \text{ If } A(x) \neq 0, \text{ because } x_{A(x)} \leq A \rangle \langle \langle 1 B, \text{ then } x_{A(x)} \rangle \langle \langle 1 B, \text{ as } (X,S, \leq) \text{ is } *\text{-increasing, so } y_{A(x)} \rangle \leq B, \text{ i.e.} A(x) \leq B(y), \text{ thus } A \rangle \langle \langle B, S \leq S_{\leq} \rangle.$

Corollary2.4. Let (X, \leq) be a preorder set, $H_i = \{E \in L^x: E \text{ is increasing on } (X, \leq)\}$, define binary relation $\langle \langle H_i \text{ as follows: } A \langle \langle H_i B \text{ iff there exists } E \in H_i \text{ such that } A \leq E \leq B$. Then $S \in S(x)$, (X, S, \leq) is *-increasing iff $S \leq \{\langle \langle H_i \}\}$. **proof.** Easily by Theorems 3.8[6] and 2.3.

Theorem2.5. The supremum of any mumber of *increasing (*-decreasing) L-fuzzy syntopogenous structures on X is also *-increasing (*-decreasing) The proof is omitted.

Corollary2.6. S^{u} (S¹) is the finest one of all *-increasing (*-decreasing) L-fuzzy syntopogenous structures which is coarser than S on S(X). Where $S^{u} = \bigvee \{S' \in S(X):(X, S', \leq) *$ -increasing, $S' \leq S\}$; $S^{1} = \bigvee \{S' \in S(X):(X, S', \leq) *$ -decreasing, $S' \leq S\}$. And (1) $S_{1} \leq S$ implies $S^{u}_{1} \leq S^{u}$, $S^{1}_{1} \leq S^{1}$; (2) $S_{1} \sim S$ implies $S_{1}^{u} \sim S^{u}$, $S^{1}_{1} \sim S^{1}$.

Proposition2.7. (1) If f: $(X, \leq) \rightarrow (Y,S, \leq')$ is an increasing mapping, (Y,S, \leq') is *-increasing (*-decreasing), then $(X,f^{1}(S), \leq)$ is *-increasing (*-decreasing); (2)If f is a decreasing mapping, (Y,S,\leq') is *-increasing (*-decreasing), then $(X, f^{1}(S), \leq)$ is *-decreasing (*-increasing).

Theorem2.8. If $\{(X_{\lambda}, S_{\lambda}, \leq_{\lambda}): \lambda \in \wedge\}$ is a family of *increasing (*-decreasing) L-fuzzy syntopogenous space, then the prodact $(\prod_{\lambda \in \wedge} X_{\lambda}, \prod_{\lambda \in \wedge} S_{\lambda}, \leq)$ is *-increasing (*-decreasing), where $\{x_{\lambda}\} \leq \{y_{\lambda}\}$ iff for any $\lambda \in \wedge, x_{\lambda} \leq_{\lambda} y_{\lambda}$.

Proof. By Corollary 2.6 (1) and Def. 7.1 .([4]).

3. order-convexityity

Definition3.1. Let S be an L-fuzzy syntopogenous structure on (X, \leq) , (X,S, \leq) will be said to be order-convexity iff $S \ (S^u \lor S^1)^a$, for $a \in \{i,p,b\}$ where i is identity.

Proposition 3.1 If (X,S,\leq) is order-convexity, then $S \ S^a$. **Proof.** If (X,S,\leq) is order-convexity, then $S^a \ (S^u \lor S^1)^{aa} = (S^u \lor S^1)^a \ S$, so $S \ S^a$. **Theorem 3.2.** (X,S,\leq) is order-convexity iff $S \ (S_1 \lor S_2)^a$, where (X,S_1,\leq) $((X,S_2,\leq))$ is *-decreasing (*-increasing).

Proposition3.3. If (X,S,\leq) is order-convexity, $a' \in \{i,p,b\}$ is an elementary operation such that aa' is also an elementary operation, then $(X,S^{a'},\leq)$ is aa'-order-convex. **Proof.** If $S ~ (S^u \vee S^1)^a$, then $S^{a_i} ~ (S^u \vee S^1)^{aa'}$. From Theorem 3.2 have (X, S^{a_i},\leq) is aa'-order-convex.

Theorem3.4. If (X,S,\leq) is order-convexity, then (X,S^{ta},\leq) is also order-convexity.

Proof. If (X,S,\leq) is order-convexity, then $S^{ta} \sim (S^u \vee S^1)^{ata} = (S^u \vee S^1)^{ta} \sim (S^u \vee S^1)^a \sim (S^{tu} \vee S^{t1})^a$, by Theorem 3.2 (X,S^{ta},\leq) is order-convexity..

Theorem3.5. Let $\{S_i : i \in I \neq \Phi\}$ be a family of orderconvexity L-fuzzy syntopogenous structure on the preorder set (X, \leq) , then $(\bigvee_{i \in I} S_i)^a$ is also order-convexity on (X, \leq) .

Proof. Put $S = (\vee_{i \in I} S_i)^a$, $S_1 = \vee_{i \in I} S_i^u$ and $S_2 = \vee_{i \in I} S_i^1$, then S_1 is *-increasing, S_2 is *-decreasing on (X, \leq) . As $S_i ~ (S_i^u \vee S_i^1)^a$, then $(\vee_{i \in I} S_i)^a ~ (\vee_{i \in I} (S_i^u \vee S_i^1)^a)^a ~ ((\vee_{i \in I} S_i^u) \vee (\vee_{i \in I} S_i^1))^a ~$ $(S_1 \vee S_2)^a$, $S ~ (S_1 \vee S_2)^a$, by Theorem 3.2 $(\vee_{i \in I} S_i)^a$ is also

Theorem3.6. Let (X, \leq) , (X', \leq') be preordered set, f is a preorder preserving mapping from X to X'. If (X', S', \leq') is order-convexity, then $(X, f^{1}(S'), \leq)$ is also order-convexity.

Proof. If (X', S', \leq') is order-convexity, then $f^{-1}(S') \tilde{f}^{-1}((S'^{u} \vee S'^{1})^{a}) = f^{-1}(S'^{u} \vee S'^{1})^{a} = (f^{-1}(S'^{u}) \vee f^{-1}(S'^{1}))^{a}$, by Proposition 2.7, $f^{-1}(S'^{u})$ is *-increasing, $f^{-1}(S'^{1})$ is *-decreasing on (X, \leq) . Also by Theorem 3.2 then $(X, f^{-1}(S'), \leq)$ is also order-convexity.

References

order-convexity on (X, \leq) .

- [1] C.L.Chang, 1968. Fuzzy topological spaces, J. Math. Anal. Appl. 24,182-190.
- [2] A.K.Katsaras, 1981. Ordered fuzzy topological space, J.Math .Anal.Appl. 84 44-58.
- [3] A.K.Katsaras, 1985.On fuzzy syntopogenous structures, Rev. Roumaine Math. PureAppl. 30 419-431.

- [4] Mo Zhi Wen ,Su Lan, 1995. Syntopogenous structure on completely distributive lattice and its connectedness, Fuzzy Sets and Systems, 72, 365-371.
- [5] Mo Zhi Wen ,Su Lan, 1997. On fuzzy Syntopogenous structure and preorder(I), Fuzzy Sets and Systems, 90, 355-359.
- [6] Wang Hong, 2001.On fuzzy Syntopogenous structure and algebraic structure, The journal of fuzzy math. 1,245-250.
- [7] L.A. Zadeh, 1965. Fuzzy Set, Inform. and Control 8,338-353.