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Abstract— In this paper a comprehensive survey and empirical 
study of the Quicksort algorithm is provided. The survey examines 
in detail all the different variations of Quicksort starting with the 
original   version developed by Hoare in 1961 and ending with 
some of the most recent ones. The paper also investigates some new 
sorting algorithms and compares their performances to the various 
versions of Quicksort.  The study compared each algorithm in terms 
of the number of comparisons performed and the running times 
when used for sorting arrays of integers that were already sorted, 
sorted in reverse order, and generated randomly.  

 
Keywords—Empirical, Quicksort, Sorting, Survey. 

1. Introduction 

The Quicksort algorithm developed by Hoare [9] is one of 
the most efficient internal sorting algorithms and is the 
method of choice for many applications.  The algorithm is 
easy to implement, works very well for different types of 
input data, and is known to use fewer resources than any 
other sorting algorithm [22]. All these factors have made it 
very popular. Quicksort is a divide-and-conquer algorithm. 
To sort an array A of elements, it partitions the array into 
two parts, placing small elements on the left and large 
elements on the right, and then recursively sorts the two 
subarrays. Sedgewick studied Quicksort in his Ph.D. thesis 
[19] and it is widely described and studied in [12], [5], [6], 
[20] and [24].  
 

 In addition to Quicksort, the paper also examines two new 
sorting algorithms and compares their performances to the 
different versions of Quicksort. Previous surveys only 
studied select variations of the algorithm, and used them for 
sorting small sized arrays, so this work will prove to be 
invaluable to anyone interested in studying and 
understanding the algorithm and it’s different versions.  
 Since its development in 1961 by Hoare, the Quicksort 
algorithm has experienced a series of modifications aimed at 

 
 

improving the )( 2nO  worst case behavior. The 

improvements can be divided into four categories: 
improvements on the choice of pivot, algorithms that use  
another sorting algorithm for sorting sublists of certain 
smaller sizes , different ways of partitioning lists and sublists, 

and adaptive sorting that tries to improve on the )( 2nO  

behavior of the Quicksort algorithm when used for sorting 
lists that are sorted or nearly sorted. This fourth category was 
proposed as a research area by [27]. The Quicksort versions 
that fall into  the first category include Hoare’s original 
Quicksort algorithm which uses a random pivot [9], [10], 
Scowen’s Quickersort algorithm developed in 1965, which 
chooses the pivot as the middle element of the list to be 
sorted [21]. Also included is Singleton’s algorithm which 
chooses the pivot using the median-of-three method [23]. 
 The second category includes all algorithms that use 
another sorting algorithm, normally Insertion sort [22].for 
sorting small sublists. [9] was the first to suggest this method 
for improving the performance of Quicksort. [24] suggested 
a technique for small sublists, whereby sublists of sizes < M 
should be ignored and not partitioned. After the algorithm 
finishes, the list will be nearly sorted, and the entire list is 
sorted using Insertion sort. According to Sedgewick the best 
value for M is between 6 and 15. 

 

 The third improvement is achieved by considering 
different partitioning schemes. [24] suggested a scheme that 
uses two approaching indices. Bentley [3] proposed a 
scheme where two indices start at the left end of the 
list/sublist and move towards the right end. This scheme is 
based on work by Nico Lomuto of Alsys Inc. Another 
variation that falls into this category is one that uses 
three-way partitioning instead of two-way partitioning, first 
suggest by [22] as a way for handling duplicate keys in 
sublists.  [33] sorts an array of numbers by finding a pivot 
(using any strategy) and then recursively applies a “partial 
quicksort” technique to the sub-arrays. So if the pivot is 
smaller than m, the left sub-array ,is sorted  and partial 
quicksort is applied  to the right sub-array. If the pivot is 
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greater than m, then partial quicksort’ is applied to the left 
sub-array. 
The most recent category, adaptive sorting, deals with 
algorithms that try to improve on the worst case behavior of 
Quicksort when the list of elements is sorted or nearly sorted.  
Adaptive sorting algorithms are algorithms that take into 
consideration the already existing order in the input list [15]. 
Insertion sort is an adaptive sorting algorithm. [26] 
developed Bsort, an adaptive sorting algorithm, designed to 
improve the average behavior of Quicksort and eliminate the 
worst case behavior for sorted or nearly sorted lists. Another 
algorithm, Qsorte, also developed by [27], performs as well 
as Quicksort for lists of random values, and breaks the worst 
case behavior of Quicksort by performing O(n) comparisons 
for sorted or nearly sorted lists. 

 
The rest of the paper is organized as follows: in section II the 
sorting algorithms to be studied are presented by providing a 
detailed description of each, in section III the new sorting 
algorithms are described. The results are presented in 
section IV. 

2. Sorting Algorithms 

The original Quicksort algorithm was developed by Hoare in 
1961 [9]. It is an in-place algorithm (uses a small auxiliary 
stack), and has an average sorting time proportional to 

)log( 2 nnO  to sort n items. It is considered to be the most 

efficient internal sorting algorithm. The algorithm has been 
analyzed and studied extensively in [12], [5], [6], [20], [24], 
and [19]. The only drawback of the algorithm is its worst 

case time complexity of )( 2nO , which occurs when the list 

of values is already sorted or nearly sorted, or sorted in 
reverse order [26]. Quicksort is a divide-and-conquer 
algorithm. To sort a list of n values represented by a one 
dimensional array A indexed from 1 to n, the algorithm 
chooses a key called the pivot and then partitions the array 
into two parts, a left subarray and a right subarray. The keys 
in the array will be reordered such that all the elements in the 
left subarray are less than the pivot and all the elements in 
the right subarray are greater than the pivot. Then the 
algorithms proceeds to sort each subarray independently.  
The efficiency of Quicksort ultimately depends on the choice 
of the pivot [22]. The ideal choice for the pivot would a value 
that divides the list of keys near the middle. Different 
choices for the pivot result in different variations of the 
Quicksort algorithm. In Hoare’s [9] original algorithm the 
pivot was chosen at random, and Hoare proved that choosing 
the pivot at random will result in 1.386nlgn expected 
comparisons [10]. 
 

void quicksort(int A[ ], int L, int R) 
{  
 int i; 
 
 if (R <= L) return; 
 i = partition(A, L, R); 
  quicksort(A, L, i-1); 
  quicksort(A, i+1, R); 
 } 
 
 void partition(int first,int last, int& pos) 
 { 
     int p,l,r; 
   
     l = first; 
     r = last; 
     p = l; 
     swap(l,rand()%(last-first+1)+first); 
     while (l < r) 
       { 
          while ((l < r)&& (ar[p] <= ar[r])) { 
     r--; 
   } 
         swap(p,r); 
         p = r; 
         while ((l < r)&&(ar[p] >= ar[l])){ 
    l++; 
    } 
         swap(p,l); 
         p = l; 
        } 
     pos = p; 
 } 
 
 Another variation of Quicksort is one in which the pivot is 
chosen as the first key in the list. This version is often found 
in algorithms textbooks. The following is a C++ 
implementation of the partition function, where the pivot is 
chosen as the first element in the array: 
 
 void partition( int low, int high, int& pivotpoint) 
 {  
   int i , j; 
   int pivotitem; 
 
   pivotitem = S[low];   // choose first item for 
pivotitem. 
   j = low; 
   for ( i = low + 1; i <= high; i++){ 
        if ( S[ i ] < pivotitem) { 
      j++; 
      exchange(i,j ); 
       } 
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   } 
   pivotpoint = j; 
   //Put pivotitem at pivotpoint 
   exchange(low, pivotpoint);  
 } 
In 1965 Scowen [18] developed a Quicksort algorithm called 
Quickersort in which the pivot is chosen as the middle key in 
the array of keys to be sorted. If the array of keys is already 
sorted or nearly sorted, then the middle key will be an 
excellent choice since it will split the array into two 
subarrays of equal size.  
 
void partition(int A[ ],  int i, int j) 
{ 
 int pivot =  A[(i+j)/2]; 
 int p = i – 1; 
 int q = j + 1; 
 
 for(;;) 
 { 
  do  q = q – 1; while A[q] > pivot; 
  do  p = p – 1; while A[p] < pivot; 
  if (p < q)  
   exchange (A[p], A[q]); 
  else  
   return q; 
 } 
} 
Choosing the pivot as the middle key, the running time on 

sorted arrays becomes )log( 2 nnO  because the array and 

subarrays will always be partitioned evenly. 
 
Another improvement to Quicksort was introduced by 
Singleton in 1969 [23], in which he suggested the 
median-of-three method for choosing the pivot. One way of 
choosing the pivot would be to select the three elements from 
the left, middle and right of the array. The three elements are 
then sorted and placed back into the same positions in the 
array. The pivot is the median of these three elements. The 
median-of-three method improves Quicksort in three ways 
[22]: First, the worst case is much more unlikely to occur.  
Second, it eliminates the need for a sentinel key for 
partitioning, since this function is served by one of the three 
elements that are examined before partitioning. Third, it 
reduces the average running time of the algorithm by about 
5%. A Quicksort algorithm that partitions around a median 
that is computed in cn comparisons sorts n elements in cn lg 
n + O(n) comparisons [5]. In [25] a worst-case algorithm is 
given that establishes the constant c = 3, while [30] gives an 
expected-time algorithm that establishes the constant c = 3/2. 
The following is a C++ implementation for the Quicksort 

algorithm that uses the median-of-three method for 
choosing the pivot: 
 
void Singleton( long unsigned a[], int left, int right )  
{ 
   int i, j; 
   long unsigned pivot; 
   if (left + CUTOFF <= right) {    /* CUTOFF = 20 */ 
      pivot = median3( a, left, right ); 
      i = left; j = right-1;               
      for (;;) { 
         while (a[++i] < pivot);  
         while (a[--j] > pivot);  
         if (i < j)  
            swap( i, j ); 
       else 
          break; 
    } 
    swap( i, right-1 );         
    q_sort( a, left, i-1 ); 
    q_sort( a, i+1, right); 
  } 
} 
 
Quicksort with three way partitioning has been suggested as 
the method for handling arrays with duplicate keys [22].  
Basically, the array of keys is partitioned into three parts: 
one part contains keys smaller than the pivot, the second part 
contains keys equal to the pivot, and the third part contains 
all keys that are larger than the pivot. Let S be the array of 
keys to be sorted. The partitioning process would split the 
array S into three parts: keys smaller than the pivot 
S[1],…,S[j]; keys equal to the pivot S[j+1],…S[i-1]; and 
keys larger than the pivot S[i],…,S[r]. After the three way 
partitioning, the sort is completed after two recursive calls. 
The following is a C++ implementation of the algorithm 
based on the algorithm provided in [22]: 
 
void Median3way (int low, int high) 
{  
 int k; 
 int l = low; 
 int r = high; 
 long unsigned v = S[r]; 
 if ( r <= l) return; 
 int i = l-1, j = r, p = l-1, q = r; 
 for(;;){ 
  while (S[++i] < v); 
  while (v < S[--j]) if (j == l) break; 
  if (i >= j) break; 
  exchange(i,j); 
  if (S[i] == v) { p++; exchange(p, i);} 
  if (v == S[j]) {q--; exchange(q, j);} 
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 } 
 exchange(i, r); 
 j = i-1; 
 i = i+1; 
 for (k = l; k <= p; k++, j--) 
  exchange(k, j); 
 for (k = r-1; k >= q; k--, i++) 
  exchange(k, i); 
 quicksort(l, j); 
 quicksort(i, r) 
} 
 
[24] suggested a version of Quicksort that minimizes the 
number of swaps by scanning in from the left of the array 
then scanning in from the right of the array then swapping 
the two numbers found to be out of position. This algorithm 
is called SedgewickFast in this paper. This was declared to 
be a fast implementation of Quicksort. In fact, results in this 
paper show that for random data and data sorted in reverse, 

the algorithm makes )log( 2 nnO comparisons, while for 

sorted data the number of comparisons is linear. [14] 
provides a Pascal implementation for the algorithm. The 
following is a C++ implementation of the partition 
algorithm: 
 
void Partition(int low, int high, int& pos) 
{ 
  int i, j; 
  int pivot; 
   
  i = low-1; 
  j = high; 
  pivot = ar[high]; 
  for(;;) 
  { 
   while (ar[++i] < pivot); 
   while (pivot < ar[--j]) if (j == low) break; 
   if (i >= j) break; 
   swap(i, j); 
  } 
  swap(i, high); 
  pos = i; 
} 
 
Bentley [3] developed a version of Quicksort based on an 
algorithm suggested by Nico Lomuto, in which the partition 
function uses a for loop to roll the largest keys in the array to 
the bottom of the array.  To partition the array around the 
pivot T (chosen at random) a simple scheme attributed to 
Nico Lomuto of Alsys, Inc is used. Given the pivot T, an 
index called LastLow is computed and used to rearrange the 
array X[A]…X[B] such that all keys less than T are on one 

side of LastLow, while all other keys are on the other side. 
Their original implementation achieves this using a simple 
for loop that scans the array from left to right, using the 
variables I and LastLow as indices to maintain the following 
invariant in array X: 
 

< T >= T ? 

 

 

 A                    LastLow                                  I                    B 
 
If  X[I] >= T then the invariant is still valid . However, if 
X[I]<T, the invariant is regained by incrementing LastLow 
by 1  and then swapping  X[I] and X[Lastlow]. The original 
algorithm was implemented in Pearl. The algorithm will be 
referred to as Nico in the paper. The following is a C++ 
implementation [14] of the partition function: 
 
void Partition(int low, int high, int& pos) 
{ 
   int i, j; 
   int pivot; 
   swap(low,rand()%(high-low+1)+low); 
   pivot = ar[low];   
  
 i = low; 
 for (j = low+1; j <= high; j++)  //j = I 
 { 
  if (ar[j] < pivot)  
  { 
   i = i +1;          // i = Lastlow 
   swap(i, j); 
  } 
 } 
 swap(low, i); 
 pos = i; 
} 
 
Bsort is a sorting algorithm developed by [26] which is a 
variation of Quicksort. It is designed for nearly sorted lists as 
well as lists that are nearly sorted in reverse order. The 

author claimed that it requires )log( 2 nnO comparisons 

for all distribution of keys. This claim has been disproved in 
[32] where examples are given that show that the algorithm 

exhibits )( 2nO  behavior. The author also claimed that for 

lists that are sorted or sorted in reverse order, the algorithm 

makes )(nO  comparisons. The author later corrected his 

statements in [32]. Our empirical study shows that for data 
sorted in reverse order, the algorithm makes 

)log( 2 nnO comparisons. The algorithm combines the 
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interchange technique used in Bubble sort with the 
Quicksort algorithm. The algorithm chooses the middle key 
as the pivot during each pass, then it proceeds to use the 
traditional Quicksort method. Each key that is placed in the 
left subarray will be placed at the right end of the subarray. If 
the key is not the first key in the subarray, it will be 
compared with its left neighbor to make sure that the pair of 
keys is in sorted order. If the new key does not preserve the 
order of the subarray, it will be swapped with its left 
neighbor. Similarly, each new key that is placed in the right 
subarray, will be placed at the left end of the subarray and if 
it is not the first key, it will be compared with its right 
neighbor to make sure that the pair of keys is in sorted order, 
if not the two keys will be swapped. This process ensures that 
at any point during the execution of the algorithm, the 
rightmost key in the left subarray will be the largest value, 
and the leftmost key in the rightmost subarray will be the 
smallest value. The original algorithm in [26] provided an 
implementation of the algorithm in Pascal. In this paper the 
algorithm was implemented in C++. The original Bsort 
algorithm [26] was implemented in Pascal.  
 
Qsorte is a quicksort algorithm with an early exit for sorted 
arrays developed by Wainright in 1987 [27]. It is based on 
the original Quicksort algorithm with a slight modification 
in the partition phase, where the left and right sublists are 
checked to see if they are sorted or not. The algorithm 
chooses the middle key as the pivot in the partitioning phase. 
Initially, the left and right sublists are assumed to be sorted.  
When a new key is placed in the left sublist, and the sublist is 
still sorted, then if the sublist is not empty, the new key will 
be compared with its left neighbor. If the two keys are not in 

sorted order then the sublist is marked as unsorted, and the 
keys are not swapped. Similarly, when a new key is placed in 
the right sublist, and the sublist is still sorted, then if the 
sublist is not empty, the new key will be compared with its 
right neighbor. If the two keys are not in sorted order then 
the sublist is marked as unsorted, and the keys are not 
swapped. At the end of the partitioning phase, any sublist 
that is marked as sorted will not be partitioned. Qsorte still 

has a worst case time complexity of )( 2nO . This occurs 

when the chosen pivot is always the smallest value in the 
sublist. Qsorte will repeatedly partition the sublist into two 
sublists where one of the sublists only contains one key. The 
original Qsorte algorithm [27] was implemented in Pascal. 
The following is a C++ implementation of the algorithm: 
 
 void Qsorte (int m, int n) 
 { 
  int k, v; 
  bool lsorted, rsorted; 
 

  if ( m < n ){ 
   FindPivot (m, n, v); 
   Partition (m, n, k, lsorted, rsorted); 
   if (! lsorted)   Qsorte(m, k-1); 
   if (! Rsorted) Qsorte(k, n); 
  } 
 } 
 
McDaniel [14] provided variations on Hoare’s original 
partition algorithm. In one version called the Rotate version, 
the pivot is compared with the value in the bottom’th 
position.  If the pivot is less than that value, then the bottom 
index is decremented. Otherwise a rotate left operation is 
performed using the call Rotate_Left(bottom,pivot+1,pivot). 
McDaniel’s original code was written in Pascal. The 
original version has been rewritten in C++. The codes for the 
Rotate_Left and partition functions follow: 
 

void Rotate_Left(int a,int b,int c) 
{   
     int t; 
     t = ar[a]; 
     ar[a] = ar[b]; 
     ar[b] = ar[c]; 
     ar[c] = t; 
} 
 
void Partition(int left,int right, int& pos) 
{ 
   int pivot, bottom; 
   pivot = left; 
   bottom = right; 
   while (pivot < bottom) 
   { 
       if (ar[pivot] > ar[bottom]) 
    { 
           Rotate_Left(bottom,pivot+1,pivot); 
           pivot = pivot + 1; 
    } 
       else 
         bottom = bottom - 1; 
   } 
   pos = pivot; 
} 
 
After the index bottom is decremented the following 
assertions are true: 
 
<=  ar[pivot] = ar[pivot] ?? > ar[pivot] 

 
 
left           pivot-1                       pivot+1      bottom            right 
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3. New Sorting Algorithms Based on Quicsort 

3.1 qsort7 

Benteley and Mcilroy [4] developed a fast variant of 
Quicksort (qsort7) based on the existing qsort function that 
comes with the C library. The choice of the pivot is 
determined by the size of the array. For small sized arrays 
(size = 7) the pivot is chosen as the middle key, for mid-sized 
arrays the pivot is chosen using the median-of-three method, 
and finally for large sized arrays the pivot is chosen as the 
pseudomedian of 9. Their algorithm uses a fat partition that 
divides the input array into three parts (Tripartite 
partitioning): 
 
 

< = > 

 
After partitioning, recur on the two subarrays at the left and 
right ends, and ignore the equal elements in the middle. 
Tripartite partitioning is equivalent to Dijkstra’s ‘Dutch 
National Flag’ problem [7].To make their algorithm more 
efficient a better fat partition version is used as shown below: 
 

= < ? > 

 
 
After partitioning, the equal keys are brought to the middle 
by swapping the outer ends of the two left portions. A 
symmetric version of this partitioning process is used in 
their algorithm as shown below: 
 

= < ? > = 

 
                     
                    a                     b              c                 d 
The main partitioning loop has two inner loops. The first 
inner loop moves up the index b. It scans over lesser 
elements, swapping equal elements to the element pointed to 
by a. The scanning stops at a greater element. The second 
inner loop moves down the index c in a similar manner. It 
scans over greater elements, swapping equal elements to the 
element pointed to by d. The scanning stops at a lesser 
element. The main loop then swaps the elements pointed to 
by b and c, increments b and decrements c, and continues 
until b and c cross paths. Afterwards, the equal keys on the 
edges are swapped back to the middle of the array. The pivot 
is chosen using the median-of-three method. The algorithm 
combines split-end partitioning with an adaptively sampled 
partitioning element. Speed up and portability is achieved by 
using Insertion sort to sort small arrays (7 keys). The C++ 
implementation of their algorithm has been adapted by [11].  

3.2 FlashSort 

In 1997 Neubert  developed a new sorting algorithm, Flash 
sort [17],   that is based on the classification of elements  [29], 
[28], [20]  instead of comparisons. In [8] it is reported that 
classification based sorting algorithms require O(n) time to 
sort n elements thereby achieving the absolute lowest time 
complexity for sorting n elements, and that the only 
disadvantage of classification based sorting algorithms is the 
fact that they require considerable auxiliary memory space. 
Flashsort requires less than 0.1n auxiliary memory to sort n 
elements. This is achieved by using a classification step to do 
the long-range ordering with in-place permutation, then the 
algorithm uses a simple comparison method for the final 
short-range ordering of each class.  

The algorithm consists of three stages: classification, 
permutation, and straight insertion. The Classification stage 
determines the size of each class of elements. In the 
Permutation stage long-range reordering is performed to 
collect elements of each class together, and in the straight 
insertion stage final short-range ordering is done. The 
elements to be sorted are assumed to be stored in an array A 
indexed from 0 to n-1. The algorithm uses a vector L of 
length M called the class pointer vector. In the classification 
stage the elements of the array A are counted according to 
their key for each of the m classes. After the completion of  
the L VECTOR, each L[k]  is  equal  to  the  cumulative  
number  of elements A[i] in all the classes 0 through k. The 
last element in L. namely, L[m-1] is equal to n-1. Flashsort 
assumes that the elements A[i] are about evenly distributed, 
therefore the approximate final position of an element can be 
directly computed from the element value, with no 
comparisons. If the maximal element is Amax and the 
minimal element is Amin, the class of element A[i] can be 
computed as follows: 

 

min))max/(min)][)(1((1])[( AAAiAmIntiAK ---+=

 

where K(A[i]) is a value between 1 and m. On average, there 
will approximately be n/m elements in each class. The class   
K = m only has elements equal to Amax, and the remaining 
classes are slightly larger. 

In the first stage of the algorithm, classification, the actual 
number of elements per class is computed by scanning the 
input. The vector L is used to store the class information. 
Initially, each L(K) indicates the upper end of the section 
that will contain the elements in class K. For example, L[1] 
is  the number of elements in class 1, and L[m] is equal to n.  
The scanning process takes time O(n). After the scanning 
process, the class sizes are added to determine the initial 
L[K] values, this process takes time O(m). The classification 
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stage is followed by the permutation stage.  In this stage the 
elements are moved into the correct class. To accomplish 
this, the class index K for element A[i] is computed and A[i] 
is placed in L[K], and L[K] is decremented. This process 
ends when the first class has been filled up. Each item is 
moved exactly once. This process takes time O(n). The end 
result of the permutation stage is a partially sorted array. 
Straight Insertion sort is used to sort this array, and 
assuming that the class sizes are approximately the same, 
this sort will take O((n/m)2) time for each class. Neubert 
compared the running times of Flash sort and Quickersort 
using sequences of uniform random numbers. His results 
indicate that the running time of Flash sort increases linearly 
with n. Flash sort is faster than Quicker sort for m=0.1n and 
n > 80.  However, in this study it is sown that Flashsort is not 
always linear. In fact, when used for sorting random data 

and data sorted in reverse, the algorithm made )( 2nO  

comparisons. Only when used for sorting data that was 
already sorted, did it exhibit linear behavior. In [17] the 
algorithm was only used for sorting arrays of a maximum 
size of 10,000. In this work, sizes ranged from 3000, up to 
500,000. The original implementation of Flashsort was in 
Fortran. 

3.3 Algorithm SS06 

[31] suggests a new sorting algorithm based on Quicksort 
which uses an auxiliary array for holding array keys during 
sort. No analysis or testing was done by the authors for the 
algorithm. The results in this paper show that SS07 requires  

)( 2nO comparisons to sort n elements that are already 

sorted or sorted in reverse order. For random data it made 

)log( 2 nnO  comparisons. The algorithm follows: 

 
Algorithm SS06: 
 1.  pivot = a [first]        
 2.  Starting from the second element, compare it to the 
  
     pivot element. 

2.1. if pivot < element  then place the element in the 
last  

  unfilled position of a temporary array (of same 
size  
        as the original one). 
2.2.  if pivot > element then place the element in the 
first 
        unfilled position of the temporary array. 

    3. Repeat step 2 until last element of the array has been 
          processed. 

4. Finally place the pivot element in the blank position of  

   the temporary array (remark: the blank position is  
      created because one element of the original array 
was     taken out as pivot) 
    5. partition the array into two subarrays, based on the 
pivot 
        element's position. 
    6. Repeat steps 1-5 until the array is sorted.. 
This algorithm is basically Quicksort that uses an extra 
temporary array of the same size as the original array. 
Therefore, this algorithm is not an in-place algorithm.  

4. Emprical Testing and Results 

The performance of the sorting algorithms described in 
section II was studied by using these algorithms for sorting 
arrays of integers that were already sorted, sorted in reverse 
order, and generated randomly.  The experiments were 
conducted on a computer with an Intel Pentium M processor 
with a speed of 1500 MHz, and 512 MB of RAM. The sizes 
of the arrays ranged from N= 3,000 to N = 500,000 elements. 
To study the behavior of the algorithms on arrays of random 
elements, each algorithm was used to sort  three sequences of 
random numbers of a specific size N, and the average 
running time and the average number of comparisons were 
calculated. The sequences of random numbers were 
generated using the Mersenne Twister random number 

generator [13]. The generator has a period of 1219937 - . 
The C++ implementation provided in [2] was used. Figs. 1 
and 2 below show the running times for the sorting 
algorithms when used to sort arrays of random numbers of 
different sizes. It is evident that the sorting algorithm of 
Benteley and Mcilroy [4] (qsort7) is the fastest, giving the 
best performance for sorting arrays of random integers. 
Quickersort and Qsorte are comparable for values of N 
ranging from 3000, up to 200,000. For values of N greater 
than 200,000, Quickersort becomes slightly slower than 
Qsorte. Qsorte outperformed both Hoare’s algorithm and 

QuickFirst for N>=9000. The new sorting algorithm  SS07 
developed by [31] is comparable to SedgewickFast, 
Singleton and Bsort, for values of N ranging from 3000 up to 
200,000. Bsort is faster than  Rotate, Nico, QuickFirst and 
Hoare for values of N ranging from 10,000 up to 500,000. 
QuickFirst is much slower than Hoare’s algorithm, Nico and 
Rotate, see fig. 2. The worst performers for sorting random 
numbers were the Flashsort algorithm and  Median3way, see 
fig. 3.  
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Fig. 1 Average Running Times for Random Data 
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Fig. 2 Average Running Times for Random Data 
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  Fig. 3 Average Running Times for Random Data 

 
 

Looking at the number of comparisons, Flashsort required 

)( 2NO  (0.25
2N  exactly) comparisons to sort N integers, 

see fig. 4 below. This contradicts the results in [17] which 
show that the running time of Flashsort increases linearly 
with N. The results in [17] were computed for N<=10,000. 
By looking at the number of comparisons for values of N 
larger than 10,000, it is evident that Flashsort increases 
quadratically in N when used for sorting arrays of random 
numbers.  
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Fig. 4  Average Number of Comparisons for Random Data 

 
The number of comparisons performed by Bsort and Hoare 

were of order )log( 2 NNO , with Bsort requiring more 

comparisons than Hoare at an average rate of 1.6, see fig. 5. 
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Fig. 5. Average Number of Comparisons for Random 

Data. 

 
For Median3way, Nico and Qsorte the number of 

comparisons are comparable and are of order 

)log( 2 NNO , and they are collectively better than Bsort 

and Hoare, see fig. 6. 
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Fig. 6. Average Number of Comparisons for Random 

Data 

 
qsort7 requires the smallest number of comparisons 

among all the algorithms and is of order )log( 2 NNO , 

this is followed by SedgewickFast and Singleton  which also 

exhibit )log( 2 NNO  behavior, and are both better than 

Median3way, see fig. 7. 
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Fig. 7 Average Number of Comparisons for Random Data 

 

From fig. 8 it is apparent that QuickFirst, SS07, Nico, 
Rotate and Quickersort have very similar performance in 

terms of the number of comparisons and are all of order 

)log( 2 NNO . They are collectively better than Qsorte. 
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Fig. 8 Average Number of Comparisons for Random Data 

 

For data that is already sorted, Qsorte and Bsort have the 
same running times and proved to be the fastest. Flashsort is 
faster than Median3way, Singleton, qsort7, and Quickersort 
which are all comparable for values of N between 3,000 and 
300,000. and faster than Hoare’s algorithm, which in turn is 
faster than Nico, see fig. 9. The worst performer was SS07 
resulting in stack overflow for values of N >= 10,000. 
SedgewickFast, Rotate and QuickFirst were much slower 
than Nico and all resulted in stack overflow for values of 
N>=100,000, see fig. 10. The running time for Median3way 
is on average 4% less than the running time of Hoare, while 
Singleton resulted in an average reduction of approximately 
5% and qsort7 gave an average reduction of 6% compared to 
Hoare. In terms of the number of comparisons, Bsort and 
Qsorte required the smallest number of comparisons which 
is of order O(N). This is the expected behavior of Bsort and 
Qsorte for sorted lists. Singleton and Flashsort also exhibit 
linear behavior and require more comparisons than Bsort 
and Qsorte, see fig. 11. Quickersort and qsort7 are 

comparable and have an order of )log( 2 NNO . 

Median3way requires fewer comparisons than both 

Quickersort and qsort7 and is also of order )log( 2 NNO . 
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Fig. 9. Running times for Sorted Data 

                                                                               
.SedgewickFast and Bsort are very similar in terms of the 
number of comparisons for N <= 10,000. For N >10,000, 
SedgewickFast results in stack overflow.  Comparing Nico 
and Hoare, it is apparent that Nico requires fewer 
comparisons than Hoare and both are of order 

)log( 2 NNO .  QuickFirst, Rotate and SS07 are of order 

)( 2NO .  



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007 
 

 

63 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3,000 9,000 100,00 262,14 500,00

R
u

n
n

in
g

 T
im

e
s
 i

n
 S

e
c

o
n

d
s

QuickFirst

SedgewickFast

Nicco

Rotate

SS07

 
Fig. 10. Running times for Sorted Data 
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Fig. 11. Number of Comparisons for Sorted Data 
 

For data sorted in reverse order, the fastest running times 
were achieved by both Bsort and Qsorte. Quickersort is 
faster than qsort7 which in turn is faster than Singleton for 
N>=100,000. Bsort, Qsorte and Quickersort are all faster 
than Hoare for N >= 9000. Nico is on average 2.6 times 
slower than Hoare for N >= 100,000. SedgewickFast and 
Rotate are much slower than Nico and both result in stack 
overflow for N >= 100,000. SS07 resulted in stack overflow 
for N>= 10,000 and was much slower than Rotate for N 
between 3000 and  9000, and faster than QuickFirst which 
also resulted in stack overflow for N >= 9000. See figs 12, 13, 
14. 
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Fig. 12. Running times for Data Sorted in Reverse. 
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Fig. 13. Running times for Data Sorted in Reverse. 

The worst performers were Median3way and Flashsort 
which had very similar running times, see fig. 14. Qsorte 
performed the smallest number of comparisons followed by 
Bsort, and then Singleton. For N <= 10,000  the number of 
comparisons performed by SedgewickFast is very close to 
the number of comparisons done by Qsorte, however, for N > 
10,000 SedgewickFast results in stack overflow, see fig. 15   
Quickersort and qsort7 are  comparable. All of the 

aforementioned algorithms are of order )log( 2 NNO . 
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Fig. 14. Running times for Data Sorted in Reverse. 
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Fig. 15. Number of Comparisons for Data Sorted in Reverse. 

Rotate and SS07 perform the same number of comparisons, 
with Rotate resulting in stack overflow for N> 10,000, while 
SS07 results in stack overflow for N > 9000. The number of 
comparisons performed by Rotate and SS07 is of order 

)( 2NO . Flashsort is very similar to Rotate and SS07 before 

they result in stack overflow. The number of comparisons 

performed by Flashsort is also of order )( 2NO , which 

contradicts the claim made by  the author in [17] that the 
algorithm is linear. 
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