
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

54

Manuscript received December 5, 2007

Manuscript revised December 20, 2007

Abstract— In this paper a comprehensive survey and empirical
study of the Quicksort algorithm is provided. The survey examines
in detail all the different variations of Quicksort starting with the
original version developed by Hoare in 1961 and ending with
some of the most recent ones. The paper also investigates some new
sorting algorithms and compares their performances to the various
versions of Quicksort. The study compared each algorithm in terms
of the number of comparisons performed and the running times
when used for sorting arrays of integers that were already sorted,
sorted in reverse order, and generated randomly.

Keywords—Empirical, Quicksort, Sorting, Survey.

1. Introduction

The Quicksort algorithm developed by Hoare [9] is one of
the most efficient internal sorting algorithms and is the
method of choice for many applications. The algorithm is
easy to implement, works very well for different types of
input data, and is known to use fewer resources than any
other sorting algorithm [22]. All these factors have made it
very popular. Quicksort is a divide-and-conquer algorithm.
To sort an array A of elements, it partitions the array into
two parts, placing small elements on the left and large
elements on the right, and then recursively sorts the two
subarrays. Sedgewick studied Quicksort in his Ph.D. thesis
[19] and it is widely described and studied in [12], [5], [6],
[20] and [24].

 In addition to Quicksort, the paper also examines two new
sorting algorithms and compares their performances to the
different versions of Quicksort. Previous surveys only
studied select variations of the algorithm, and used them for
sorting small sized arrays, so this work will prove to be
invaluable to anyone interested in studying and
understanding the algorithm and it’s different versions.
 Since its development in 1961 by Hoare, the Quicksort
algorithm has experienced a series of modifications aimed at

improving the)(2nO worst case behavior. The

improvements can be divided into four categories:
improvements on the choice of pivot, algorithms that use
another sorting algorithm for sorting sublists of certain
smaller sizes , different ways of partitioning lists and sublists,

and adaptive sorting that tries to improve on the)(2nO

behavior of the Quicksort algorithm when used for sorting
lists that are sorted or nearly sorted. This fourth category was
proposed as a research area by [27]. The Quicksort versions
that fall into the first category include Hoare’s original
Quicksort algorithm which uses a random pivot [9], [10],
Scowen’s Quickersort algorithm developed in 1965, which
chooses the pivot as the middle element of the list to be
sorted [21]. Also included is Singleton’s algorithm which
chooses the pivot using the median-of-three method [23].
 The second category includes all algorithms that use
another sorting algorithm, normally Insertion sort [22].for
sorting small sublists. [9] was the first to suggest this method
for improving the performance of Quicksort. [24] suggested
a technique for small sublists, whereby sublists of sizes < M
should be ignored and not partitioned. After the algorithm
finishes, the list will be nearly sorted, and the entire list is
sorted using Insertion sort. According to Sedgewick the best
value for M is between 6 and 15.

 The third improvement is achieved by considering
different partitioning schemes. [24] suggested a scheme that
uses two approaching indices. Bentley [3] proposed a
scheme where two indices start at the left end of the
list/sublist and move towards the right end. This scheme is
based on work by Nico Lomuto of Alsys Inc. Another
variation that falls into this category is one that uses
three-way partitioning instead of two-way partitioning, first
suggest by [22] as a way for handling duplicate keys in
sublists. [33] sorts an array of numbers by finding a pivot
(using any strategy) and then recursively applies a “partial
quicksort” technique to the sub-arrays. So if the pivot is
smaller than m, the left sub-array ,is sorted and partial
quicksort is applied to the right sub-array. If the pivot is

QuickSort
A Historical Perspective and Empirical Study

Laila Khreisat
Dept. of Computer Science, Math and Physics

Fairleigh Dickinson University
285 Madison Ave, Madison NJ 07940

USA

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

55

greater than m, then partial quicksort’ is applied to the left
sub-array.
The most recent category, adaptive sorting, deals with
algorithms that try to improve on the worst case behavior of
Quicksort when the list of elements is sorted or nearly sorted.
Adaptive sorting algorithms are algorithms that take into
consideration the already existing order in the input list [15].
Insertion sort is an adaptive sorting algorithm. [26]
developed Bsort, an adaptive sorting algorithm, designed to
improve the average behavior of Quicksort and eliminate the
worst case behavior for sorted or nearly sorted lists. Another
algorithm, Qsorte, also developed by [27], performs as well
as Quicksort for lists of random values, and breaks the worst
case behavior of Quicksort by performing O(n) comparisons
for sorted or nearly sorted lists.

The rest of the paper is organized as follows: in section II the
sorting algorithms to be studied are presented by providing a
detailed description of each, in section III the new sorting
algorithms are described. The results are presented in
section IV.

2. Sorting Algorithms

The original Quicksort algorithm was developed by Hoare in
1961 [9]. It is an in-place algorithm (uses a small auxiliary
stack), and has an average sorting time proportional to

)log(2 nnO to sort n items. It is considered to be the most

efficient internal sorting algorithm. The algorithm has been
analyzed and studied extensively in [12], [5], [6], [20], [24],
and [19]. The only drawback of the algorithm is its worst

case time complexity of)(2nO , which occurs when the list

of values is already sorted or nearly sorted, or sorted in
reverse order [26]. Quicksort is a divide-and-conquer
algorithm. To sort a list of n values represented by a one
dimensional array A indexed from 1 to n, the algorithm
chooses a key called the pivot and then partitions the array
into two parts, a left subarray and a right subarray. The keys
in the array will be reordered such that all the elements in the
left subarray are less than the pivot and all the elements in
the right subarray are greater than the pivot. Then the
algorithms proceeds to sort each subarray independently.
The efficiency of Quicksort ultimately depends on the choice
of the pivot [22]. The ideal choice for the pivot would a value
that divides the list of keys near the middle. Different
choices for the pivot result in different variations of the
Quicksort algorithm. In Hoare’s [9] original algorithm the
pivot was chosen at random, and Hoare proved that choosing
the pivot at random will result in 1.386nlgn expected
comparisons [10].

void quicksort(int A[], int L, int R)
{
 int i;

 if (R <= L) return;
 i = partition(A, L, R);
 quicksort(A, L, i-1);
 quicksort(A, i+1, R);
 }

 void partition(int first,int last, int& pos)
 {
 int p,l,r;

 l = first;
 r = last;
 p = l;
 swap(l,rand()%(last-first+1)+first);
 while (l < r)
 {
 while ((l < r)&& (ar[p] <= ar[r])) {
 r--;
 }
 swap(p,r);
 p = r;
 while ((l < r)&&(ar[p] >= ar[l])){
 l++;
 }
 swap(p,l);
 p = l;
 }
 pos = p;
 }

 Another variation of Quicksort is one in which the pivot is
chosen as the first key in the list. This version is often found
in algorithms textbooks. The following is a C++
implementation of the partition function, where the pivot is
chosen as the first element in the array:

 void partition(int low, int high, int& pivotpoint)
 {
 int i , j;
 int pivotitem;

 pivotitem = S[low]; // choose first item for
pivotitem.
 j = low;
 for (i = low + 1; i <= high; i++){
 if (S[i] < pivotitem) {
 j++;
 exchange(i,j);
 }

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

56

 }
 pivotpoint = j;
 //Put pivotitem at pivotpoint
 exchange(low, pivotpoint);
 }
In 1965 Scowen [18] developed a Quicksort algorithm called
Quickersort in which the pivot is chosen as the middle key in
the array of keys to be sorted. If the array of keys is already
sorted or nearly sorted, then the middle key will be an
excellent choice since it will split the array into two
subarrays of equal size.

void partition(int A[], int i, int j)
{
 int pivot = A[(i+j)/2];
 int p = i – 1;
 int q = j + 1;

 for(;;)
 {
 do q = q – 1; while A[q] > pivot;
 do p = p – 1; while A[p] < pivot;
 if (p < q)
 exchange (A[p], A[q]);
 else
 return q;
 }
}
Choosing the pivot as the middle key, the running time on

sorted arrays becomes)log(2 nnO because the array and

subarrays will always be partitioned evenly.

Another improvement to Quicksort was introduced by
Singleton in 1969 [23], in which he suggested the
median-of-three method for choosing the pivot. One way of
choosing the pivot would be to select the three elements from
the left, middle and right of the array. The three elements are
then sorted and placed back into the same positions in the
array. The pivot is the median of these three elements. The
median-of-three method improves Quicksort in three ways
[22]: First, the worst case is much more unlikely to occur.
Second, it eliminates the need for a sentinel key for
partitioning, since this function is served by one of the three
elements that are examined before partitioning. Third, it
reduces the average running time of the algorithm by about
5%. A Quicksort algorithm that partitions around a median
that is computed in cn comparisons sorts n elements in cn lg
n + O(n) comparisons [5]. In [25] a worst-case algorithm is
given that establishes the constant c = 3, while [30] gives an
expected-time algorithm that establishes the constant c = 3/2.
The following is a C++ implementation for the Quicksort

algorithm that uses the median-of-three method for
choosing the pivot:

void Singleton(long unsigned a[], int left, int right)
{
 int i, j;
 long unsigned pivot;
 if (left + CUTOFF <= right) { /* CUTOFF = 20 */
 pivot = median3(a, left, right);
 i = left; j = right-1;
 for (;;) {
 while (a[++i] < pivot);
 while (a[--j] > pivot);
 if (i < j)
 swap(i, j);
 else
 break;
 }
 swap(i, right-1);
 q_sort(a, left, i-1);
 q_sort(a, i+1, right);
 }
}

Quicksort with three way partitioning has been suggested as
the method for handling arrays with duplicate keys [22].
Basically, the array of keys is partitioned into three parts:
one part contains keys smaller than the pivot, the second part
contains keys equal to the pivot, and the third part contains
all keys that are larger than the pivot. Let S be the array of
keys to be sorted. The partitioning process would split the
array S into three parts: keys smaller than the pivot
S[1],…,S[j]; keys equal to the pivot S[j+1],…S[i-1]; and
keys larger than the pivot S[i],…,S[r]. After the three way
partitioning, the sort is completed after two recursive calls.
The following is a C++ implementation of the algorithm
based on the algorithm provided in [22]:

void Median3way (int low, int high)
{
 int k;
 int l = low;
 int r = high;
 long unsigned v = S[r];
 if (r <= l) return;
 int i = l-1, j = r, p = l-1, q = r;
 for(;;){
 while (S[++i] < v);
 while (v < S[--j]) if (j == l) break;
 if (i >= j) break;
 exchange(i,j);
 if (S[i] == v) { p++; exchange(p, i);}
 if (v == S[j]) {q--; exchange(q, j);}

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

57

 }
 exchange(i, r);
 j = i-1;
 i = i+1;
 for (k = l; k <= p; k++, j--)
 exchange(k, j);
 for (k = r-1; k >= q; k--, i++)
 exchange(k, i);
 quicksort(l, j);
 quicksort(i, r)
}

[24] suggested a version of Quicksort that minimizes the
number of swaps by scanning in from the left of the array
then scanning in from the right of the array then swapping
the two numbers found to be out of position. This algorithm
is called SedgewickFast in this paper. This was declared to
be a fast implementation of Quicksort. In fact, results in this
paper show that for random data and data sorted in reverse,

the algorithm makes)log(2 nnO comparisons, while for

sorted data the number of comparisons is linear. [14]
provides a Pascal implementation for the algorithm. The
following is a C++ implementation of the partition
algorithm:

void Partition(int low, int high, int& pos)
{
 int i, j;
 int pivot;

 i = low-1;
 j = high;
 pivot = ar[high];
 for(;;)
 {
 while (ar[++i] < pivot);
 while (pivot < ar[--j]) if (j == low) break;
 if (i >= j) break;
 swap(i, j);
 }
 swap(i, high);
 pos = i;
}

Bentley [3] developed a version of Quicksort based on an
algorithm suggested by Nico Lomuto, in which the partition
function uses a for loop to roll the largest keys in the array to
the bottom of the array. To partition the array around the
pivot T (chosen at random) a simple scheme attributed to
Nico Lomuto of Alsys, Inc is used. Given the pivot T, an
index called LastLow is computed and used to rearrange the
array X[A]…X[B] such that all keys less than T are on one

side of LastLow, while all other keys are on the other side.
Their original implementation achieves this using a simple
for loop that scans the array from left to right, using the
variables I and LastLow as indices to maintain the following
invariant in array X:

< T >= T ?

 A LastLow I B

If X[I] >= T then the invariant is still valid . However, if
X[I]<T, the invariant is regained by incrementing LastLow
by 1 and then swapping X[I] and X[Lastlow]. The original
algorithm was implemented in Pearl. The algorithm will be
referred to as Nico in the paper. The following is a C++
implementation [14] of the partition function:

void Partition(int low, int high, int& pos)
{
 int i, j;
 int pivot;
 swap(low,rand()%(high-low+1)+low);
 pivot = ar[low];

 i = low;
 for (j = low+1; j <= high; j++) //j = I
 {
 if (ar[j] < pivot)
 {
 i = i +1; // i = Lastlow
 swap(i, j);
 }
 }
 swap(low, i);
 pos = i;
}

Bsort is a sorting algorithm developed by [26] which is a
variation of Quicksort. It is designed for nearly sorted lists as
well as lists that are nearly sorted in reverse order. The

author claimed that it requires)log(2 nnO comparisons

for all distribution of keys. This claim has been disproved in
[32] where examples are given that show that the algorithm

exhibits)(2nO behavior. The author also claimed that for

lists that are sorted or sorted in reverse order, the algorithm

makes)(nO comparisons. The author later corrected his

statements in [32]. Our empirical study shows that for data
sorted in reverse order, the algorithm makes

)log(2 nnO comparisons. The algorithm combines the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

58

interchange technique used in Bubble sort with the
Quicksort algorithm. The algorithm chooses the middle key
as the pivot during each pass, then it proceeds to use the
traditional Quicksort method. Each key that is placed in the
left subarray will be placed at the right end of the subarray. If
the key is not the first key in the subarray, it will be
compared with its left neighbor to make sure that the pair of
keys is in sorted order. If the new key does not preserve the
order of the subarray, it will be swapped with its left
neighbor. Similarly, each new key that is placed in the right
subarray, will be placed at the left end of the subarray and if
it is not the first key, it will be compared with its right
neighbor to make sure that the pair of keys is in sorted order,
if not the two keys will be swapped. This process ensures that
at any point during the execution of the algorithm, the
rightmost key in the left subarray will be the largest value,
and the leftmost key in the rightmost subarray will be the
smallest value. The original algorithm in [26] provided an
implementation of the algorithm in Pascal. In this paper the
algorithm was implemented in C++. The original Bsort
algorithm [26] was implemented in Pascal.

Qsorte is a quicksort algorithm with an early exit for sorted
arrays developed by Wainright in 1987 [27]. It is based on
the original Quicksort algorithm with a slight modification
in the partition phase, where the left and right sublists are
checked to see if they are sorted or not. The algorithm
chooses the middle key as the pivot in the partitioning phase.
Initially, the left and right sublists are assumed to be sorted.
When a new key is placed in the left sublist, and the sublist is
still sorted, then if the sublist is not empty, the new key will
be compared with its left neighbor. If the two keys are not in

sorted order then the sublist is marked as unsorted, and the
keys are not swapped. Similarly, when a new key is placed in
the right sublist, and the sublist is still sorted, then if the
sublist is not empty, the new key will be compared with its
right neighbor. If the two keys are not in sorted order then
the sublist is marked as unsorted, and the keys are not
swapped. At the end of the partitioning phase, any sublist
that is marked as sorted will not be partitioned. Qsorte still

has a worst case time complexity of)(2nO . This occurs

when the chosen pivot is always the smallest value in the
sublist. Qsorte will repeatedly partition the sublist into two
sublists where one of the sublists only contains one key. The
original Qsorte algorithm [27] was implemented in Pascal.
The following is a C++ implementation of the algorithm:

 void Qsorte (int m, int n)
 {
 int k, v;
 bool lsorted, rsorted;

 if (m < n){
 FindPivot (m, n, v);
 Partition (m, n, k, lsorted, rsorted);
 if (! lsorted) Qsorte(m, k-1);
 if (! Rsorted) Qsorte(k, n);
 }
 }

McDaniel [14] provided variations on Hoare’s original
partition algorithm. In one version called the Rotate version,
the pivot is compared with the value in the bottom’th
position. If the pivot is less than that value, then the bottom
index is decremented. Otherwise a rotate left operation is
performed using the call Rotate_Left(bottom,pivot+1,pivot).
McDaniel’s original code was written in Pascal. The
original version has been rewritten in C++. The codes for the
Rotate_Left and partition functions follow:

void Rotate_Left(int a,int b,int c)
{
 int t;
 t = ar[a];
 ar[a] = ar[b];
 ar[b] = ar[c];
 ar[c] = t;
}

void Partition(int left,int right, int& pos)
{
 int pivot, bottom;
 pivot = left;
 bottom = right;
 while (pivot < bottom)
 {
 if (ar[pivot] > ar[bottom])
 {
 Rotate_Left(bottom,pivot+1,pivot);
 pivot = pivot + 1;
 }
 else
 bottom = bottom - 1;
 }
 pos = pivot;
}

After the index bottom is decremented the following
assertions are true:

<= ar[pivot] = ar[pivot] ?? > ar[pivot]

left pivot-1 pivot+1 bottom right

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

59

3. New Sorting Algorithms Based on Quicsort

3.1 qsort7

Benteley and Mcilroy [4] developed a fast variant of
Quicksort (qsort7) based on the existing qsort function that
comes with the C library. The choice of the pivot is
determined by the size of the array. For small sized arrays
(size = 7) the pivot is chosen as the middle key, for mid-sized
arrays the pivot is chosen using the median-of-three method,
and finally for large sized arrays the pivot is chosen as the
pseudomedian of 9. Their algorithm uses a fat partition that
divides the input array into three parts (Tripartite
partitioning):

< = >

After partitioning, recur on the two subarrays at the left and
right ends, and ignore the equal elements in the middle.
Tripartite partitioning is equivalent to Dijkstra’s ‘Dutch
National Flag’ problem [7].To make their algorithm more
efficient a better fat partition version is used as shown below:

= < ? >

After partitioning, the equal keys are brought to the middle
by swapping the outer ends of the two left portions. A
symmetric version of this partitioning process is used in
their algorithm as shown below:

= < ? > =

 a b c d
The main partitioning loop has two inner loops. The first
inner loop moves up the index b. It scans over lesser
elements, swapping equal elements to the element pointed to
by a. The scanning stops at a greater element. The second
inner loop moves down the index c in a similar manner. It
scans over greater elements, swapping equal elements to the
element pointed to by d. The scanning stops at a lesser
element. The main loop then swaps the elements pointed to
by b and c, increments b and decrements c, and continues
until b and c cross paths. Afterwards, the equal keys on the
edges are swapped back to the middle of the array. The pivot
is chosen using the median-of-three method. The algorithm
combines split-end partitioning with an adaptively sampled
partitioning element. Speed up and portability is achieved by
using Insertion sort to sort small arrays (7 keys). The C++
implementation of their algorithm has been adapted by [11].

3.2 FlashSort

In 1997 Neubert developed a new sorting algorithm, Flash
sort [17], that is based on the classification of elements [29],
[28], [20] instead of comparisons. In [8] it is reported that
classification based sorting algorithms require O(n) time to
sort n elements thereby achieving the absolute lowest time
complexity for sorting n elements, and that the only
disadvantage of classification based sorting algorithms is the
fact that they require considerable auxiliary memory space.
Flashsort requires less than 0.1n auxiliary memory to sort n
elements. This is achieved by using a classification step to do
the long-range ordering with in-place permutation, then the
algorithm uses a simple comparison method for the final
short-range ordering of each class.

The algorithm consists of three stages: classification,
permutation, and straight insertion. The Classification stage
determines the size of each class of elements. In the
Permutation stage long-range reordering is performed to
collect elements of each class together, and in the straight
insertion stage final short-range ordering is done. The
elements to be sorted are assumed to be stored in an array A
indexed from 0 to n-1. The algorithm uses a vector L of
length M called the class pointer vector. In the classification
stage the elements of the array A are counted according to
their key for each of the m classes. After the completion of
the L VECTOR, each L[k] is equal to the cumulative
number of elements A[i] in all the classes 0 through k. The
last element in L. namely, L[m-1] is equal to n-1. Flashsort
assumes that the elements A[i] are about evenly distributed,
therefore the approximate final position of an element can be
directly computed from the element value, with no
comparisons. If the maximal element is Amax and the
minimal element is Amin, the class of element A[i] can be
computed as follows:

min))max/(min)][)(1((1])[(AAAiAmIntiAK ---+=

where K(A[i]) is a value between 1 and m. On average, there
will approximately be n/m elements in each class. The class
K = m only has elements equal to Amax, and the remaining
classes are slightly larger.

In the first stage of the algorithm, classification, the actual
number of elements per class is computed by scanning the
input. The vector L is used to store the class information.
Initially, each L(K) indicates the upper end of the section
that will contain the elements in class K. For example, L[1]
is the number of elements in class 1, and L[m] is equal to n.
The scanning process takes time O(n). After the scanning
process, the class sizes are added to determine the initial
L[K] values, this process takes time O(m). The classification

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

60

stage is followed by the permutation stage. In this stage the
elements are moved into the correct class. To accomplish
this, the class index K for element A[i] is computed and A[i]
is placed in L[K], and L[K] is decremented. This process
ends when the first class has been filled up. Each item is
moved exactly once. This process takes time O(n). The end
result of the permutation stage is a partially sorted array.
Straight Insertion sort is used to sort this array, and
assuming that the class sizes are approximately the same,
this sort will take O((n/m)2) time for each class. Neubert
compared the running times of Flash sort and Quickersort
using sequences of uniform random numbers. His results
indicate that the running time of Flash sort increases linearly
with n. Flash sort is faster than Quicker sort for m=0.1n and
n > 80. However, in this study it is sown that Flashsort is not
always linear. In fact, when used for sorting random data

and data sorted in reverse, the algorithm made)(2nO

comparisons. Only when used for sorting data that was
already sorted, did it exhibit linear behavior. In [17] the
algorithm was only used for sorting arrays of a maximum
size of 10,000. In this work, sizes ranged from 3000, up to
500,000. The original implementation of Flashsort was in
Fortran.

3.3 Algorithm SS06

[31] suggests a new sorting algorithm based on Quicksort
which uses an auxiliary array for holding array keys during
sort. No analysis or testing was done by the authors for the
algorithm. The results in this paper show that SS07 requires

)(2nO comparisons to sort n elements that are already

sorted or sorted in reverse order. For random data it made

)log(2 nnO comparisons. The algorithm follows:

Algorithm SS06:
 1. pivot = a [first]
 2. Starting from the second element, compare it to the

 pivot element.

2.1. if pivot < element then place the element in the
last

 unfilled position of a temporary array (of same
size
 as the original one).
2.2. if pivot > element then place the element in the
first
 unfilled position of the temporary array.

 3. Repeat step 2 until last element of the array has been
 processed.

4. Finally place the pivot element in the blank position of

 the temporary array (remark: the blank position is
 created because one element of the original array
was taken out as pivot)
 5. partition the array into two subarrays, based on the
pivot
 element's position.
 6. Repeat steps 1-5 until the array is sorted..
This algorithm is basically Quicksort that uses an extra
temporary array of the same size as the original array.
Therefore, this algorithm is not an in-place algorithm.

4. Emprical Testing and Results

The performance of the sorting algorithms described in
section II was studied by using these algorithms for sorting
arrays of integers that were already sorted, sorted in reverse
order, and generated randomly. The experiments were
conducted on a computer with an Intel Pentium M processor
with a speed of 1500 MHz, and 512 MB of RAM. The sizes
of the arrays ranged from N= 3,000 to N = 500,000 elements.
To study the behavior of the algorithms on arrays of random
elements, each algorithm was used to sort three sequences of
random numbers of a specific size N, and the average
running time and the average number of comparisons were
calculated. The sequences of random numbers were
generated using the Mersenne Twister random number

generator [13]. The generator has a period of 1219937 - .
The C++ implementation provided in [2] was used. Figs. 1
and 2 below show the running times for the sorting
algorithms when used to sort arrays of random numbers of
different sizes. It is evident that the sorting algorithm of
Benteley and Mcilroy [4] (qsort7) is the fastest, giving the
best performance for sorting arrays of random integers.
Quickersort and Qsorte are comparable for values of N
ranging from 3000, up to 200,000. For values of N greater
than 200,000, Quickersort becomes slightly slower than
Qsorte. Qsorte outperformed both Hoare’s algorithm and

QuickFirst for N>=9000. The new sorting algorithm SS07
developed by [31] is comparable to SedgewickFast,
Singleton and Bsort, for values of N ranging from 3000 up to
200,000. Bsort is faster than Rotate, Nico, QuickFirst and
Hoare for values of N ranging from 10,000 up to 500,000.
QuickFirst is much slower than Hoare’s algorithm, Nico and
Rotate, see fig. 2. The worst performers for sorting random
numbers were the Flashsort algorithm and Median3way, see
fig. 3.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

61

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

3,000 9,000 100,000 262,144 500,000

Number of elements N

R
u

n
n

in
g

 T
Im

e
s
 i

n
 S

e
c
o

n
d

s

Bsort

Qsorte

qsort7

Quickersort

Singleton

SedgewickFast

SS07

Fig. 1 Average Running Times for Random Data

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3,000 9,000 100,000 262,144 500,000

Number of elements N

R
u

n
n

in
g

 T
Im

e
s

 i
n

 S
e

c
o

n
d

s

Bsort

Rotate

Nico

QuickFirst

Hoare

Fig. 2 Average Running Times for Random Data

0

100

200

300

400

500

600

700

3,000 9,000 100,000 262,144 500,000

Number of elements N

R
u

n
n

in
g

 T
Im

e
s
 i
n

 S
e
c
o

n
d

s Median3way

FlashSort

 Fig. 3 Average Running Times for Random Data

Looking at the number of comparisons, Flashsort required

)(2NO (0.25
2N exactly) comparisons to sort N integers,

see fig. 4 below. This contradicts the results in [17] which
show that the running time of Flashsort increases linearly
with N. The results in [17] were computed for N<=10,000.
By looking at the number of comparisons for values of N
larger than 10,000, it is evident that Flashsort increases
quadratically in N when used for sorting arrays of random
numbers.

0

10000000000

20000000000

30000000000

40000000000

50000000000

60000000000

70000000000

3,000 9,000 100,000 262,144 500,000

Number of elements N

A
v

e
ra

g
e
 N

u
m

b
e
r

o
f

C
o

m
p

a
ri

s
o

n
s

Flashsort

O(N 2̂)

Fig. 4 Average Number of Comparisons for Random Data

The number of comparisons performed by Bsort and Hoare

were of order)log(2 NNO , with Bsort requiring more

comparisons than Hoare at an average rate of 1.6, see fig. 5.

0

5000000

10000000

15000000

20000000

25000000

30000000

1 3 5 7 9

Number of elements N

A
v
e

ra
g

e
 N

u
m

b
e
r

o
f

C
o

m
p

a
ri

s
o

n
s

NlogN

Hoare

Bsort

Fig. 5. Average Number of Comparisons for Random

Data.

For Median3way, Nico and Qsorte the number of

comparisons are comparable and are of order

)log(2 NNO , and they are collectively better than Bsort

and Hoare, see fig. 6.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

62

0

5000000

10000000

15000000

20000000

25000000

30000000

1 3 5 7 9

Number of elements N

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
C

o
m

p
a

ri
s
o

n
s

Nico

NlogN

Hoare

Bsort

Qsorte

Median3w ay

SS07

Fig. 6. Average Number of Comparisons for Random

Data

qsort7 requires the smallest number of comparisons

among all the algorithms and is of order)log(2 NNO ,

this is followed by SedgewickFast and Singleton which also

exhibit)log(2 NNO behavior, and are both better than

Median3way, see fig. 7.

0

2000000

4000000

6000000

8000000

10000000

12000000

3,000 9,000 100,000 262,144 500,000
Number of elements N

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

C
o

m
p
a
ri

s
o

n
s

SedgewickFast

Singleton

Median3way

qsort7

NlogN

Fig. 7 Average Number of Comparisons for Random Data

From fig. 8 it is apparent that QuickFirst, SS07, Nico,
Rotate and Quickersort have very similar performance in

terms of the number of comparisons and are all of order

)log(2 NNO . They are collectively better than Qsorte.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

3,000 9,000 100,000 262,144 500,000

Number of elements N

A
v

e
ra

g
e
 N

u
m

b
e

r
o

f
C

o
m

p
a
ri

s
o

n
s

QuickFirst

Nico

Rotate

Singleton

Median3way

Qsorte

Quickersorte

SS07

NlogN

Fig. 8 Average Number of Comparisons for Random Data

For data that is already sorted, Qsorte and Bsort have the
same running times and proved to be the fastest. Flashsort is
faster than Median3way, Singleton, qsort7, and Quickersort
which are all comparable for values of N between 3,000 and
300,000. and faster than Hoare’s algorithm, which in turn is
faster than Nico, see fig. 9. The worst performer was SS07
resulting in stack overflow for values of N >= 10,000.
SedgewickFast, Rotate and QuickFirst were much slower
than Nico and all resulted in stack overflow for values of
N>=100,000, see fig. 10. The running time for Median3way
is on average 4% less than the running time of Hoare, while
Singleton resulted in an average reduction of approximately
5% and qsort7 gave an average reduction of 6% compared to
Hoare. In terms of the number of comparisons, Bsort and
Qsorte required the smallest number of comparisons which
is of order O(N). This is the expected behavior of Bsort and
Qsorte for sorted lists. Singleton and Flashsort also exhibit
linear behavior and require more comparisons than Bsort
and Qsorte, see fig. 11. Quickersort and qsort7 are

comparable and have an order of)log(2 NNO .

Median3way requires fewer comparisons than both

Quickersort and qsort7 and is also of order)log(2 NNO .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3,000 9,000 100,000 262,144 500,000

R
u

n
n

in
g

 T
im

e
s
 i
n

 S
e
c
o

n
d

s Hoare

Nicco

Singleton

Median3way

qsort7

Bsort

Qsorte

Quickersort

Flashsort

Fig. 9. Running times for Sorted Data

.SedgewickFast and Bsort are very similar in terms of the
number of comparisons for N <= 10,000. For N >10,000,
SedgewickFast results in stack overflow. Comparing Nico
and Hoare, it is apparent that Nico requires fewer
comparisons than Hoare and both are of order

)log(2 NNO . QuickFirst, Rotate and SS07 are of order

)(2NO .

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

63

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3,000 9,000 100,00 262,14 500,00

R
u

n
n

in
g

 T
im

e
s
 i

n
 S

e
c

o
n

d
s

QuickFirst

SedgewickFast

Nicco

Rotate

SS07

Fig. 10. Running times for Sorted Data

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

3000 9000 100000 262144 500000

N
u

m
b

e
r

o
f

C
o

m
p

a
ri

s
o

n
s

Singleton

Median3way

qsort7

Bsort

Quickersort

Flashsort

Fig. 11. Number of Comparisons for Sorted Data

For data sorted in reverse order, the fastest running times
were achieved by both Bsort and Qsorte. Quickersort is
faster than qsort7 which in turn is faster than Singleton for
N>=100,000. Bsort, Qsorte and Quickersort are all faster
than Hoare for N >= 9000. Nico is on average 2.6 times
slower than Hoare for N >= 100,000. SedgewickFast and
Rotate are much slower than Nico and both result in stack
overflow for N >= 100,000. SS07 resulted in stack overflow
for N>= 10,000 and was much slower than Rotate for N
between 3000 and 9000, and faster than QuickFirst which
also resulted in stack overflow for N >= 9000. See figs 12, 13,
14.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

3,000 9,000 100,000 262,144 500,000

Number of elements N

R
u

n
n

in
g

 T
Im

e
s
 i
n

 S
e
c
o

n
d

s

Bsort

Qsorte

qsort7

QuickerSort

Singleton

Hoare

Rotate

Fig. 12. Running times for Data Sorted in Reverse.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3,000 9,000 100,000 262,144 500,000

Number of elements N

R
u

n
n

in
g

 T
Im

e
s
 i
n

 S
e
c
o

n
d

s

Singleton

Hoare

SedgewickFast

Nico

Newsort

Rotate

QuickFirst

Fig. 13. Running times for Data Sorted in Reverse.

The worst performers were Median3way and Flashsort
which had very similar running times, see fig. 14. Qsorte
performed the smallest number of comparisons followed by
Bsort, and then Singleton. For N <= 10,000 the number of
comparisons performed by SedgewickFast is very close to
the number of comparisons done by Qsorte, however, for N >
10,000 SedgewickFast results in stack overflow, see fig. 15
Quickersort and qsort7 are comparable. All of the

aforementioned algorithms are of order)log(2 NNO .

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

64

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

3000 9000 100000 262144 500000

Number of elements N

R
u

n
n

in
g

 T
Im

e
s

 i
n

 S
e

c
o

n
d

s

Median3way

Flashsort

Fig. 14. Running times for Data Sorted in Reverse.

0

10000000

20000000

30000000

40000000

50000000

60000000

3000 9000 1E+0

5

3E+0

5

5E+0

5

Number of Elements N

N
u

m
b

e
r

o
f

C
o

m
p

a
ri

s
o

n
s
 Hoare

QuickFirst

SedgewickFast

Nico

Rotate

Singleton

Median3way

qsort7

Bsort

Qsorte

Quickersort

SS07

Fig. 15. Number of Comparisons for Data Sorted in Reverse.

Rotate and SS07 perform the same number of comparisons,
with Rotate resulting in stack overflow for N> 10,000, while
SS07 results in stack overflow for N > 9000. The number of
comparisons performed by Rotate and SS07 is of order

)(2NO . Flashsort is very similar to Rotate and SS07 before

they result in stack overflow. The number of comparisons

performed by Flashsort is also of order)(2NO , which

contradicts the claim made by the author in [17] that the
algorithm is linear.

References
 [1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data structures

and algorithms. Reading, Mass: .Addison-Wesley, 1983.
[2] www.agner.org/random/theory/.
[3] J. Bentley, “Programming Pearl: How to sort”, Com.. ACM,

Vol. 27 Issue 4, April 1984.
[4] J. L. BENTLEY, M. D. McILROY, “Engineering a Sort

Function” SOFTWARE—PRACTICE AND EXPERIENCE,
Vol. 23(11), Nov. 1993, pp 249 – 1265 .

[5] J. L. Bentley and R. Sedgewick, “Fast algorithms for sorting and
searching strings”, In Proc. 8th annual ACM-SIAM

symposium on Discrete algorithms, New Orleans, Louisiana,
USA, 1997, pp 360 - 369 .

[6] R. Chaudhuri and A. C. Dempster, “A note on slowing
Quicksort”, SIGCSE Vol . 25, No . 2, Jane 1993.

[7] E. W. Dijkstra, A discipline of programming., Englewood
Cliffs, NJ Prentice-Hall, 1976.

[8] W. Dobosiewicz, “Sorting by distributive partitioning,”
Information Processing Letters 7, 1 – 5., 1978.

[9] C.A.R. Hoare, “Algorithm 64: Quicksort,” Comm. ACM 4, 7 ,
321, July 1961.

[10] C. A. R. Hoare, “Quicksort,” Computer Journal, 5, pp 10 - 15
1962.

[11] http://lampsvn.epfl.ch/svn-repos/scala/scala/tags/R_2_5_0
RC1/src/library/scala/util/Sorting.scala.

[12] R. Loeser, “Some performance tests of :quicksort: and
descendants,” Comm. ACM 17, 3 , pp 143 – 152, Mar. 1974.

[13] M. Matsumoto, and T. Nishimura, "Mersenne Twister: A
623-dimensionally equidistributed uniform pseudorandom
number generator,” ACM Trans. on Modeling and Computer
Simulation Vol. 8, No. 1, January pp.3-30, 1998.

[14] B. McDaniel, “Variations on Put First,” Conference on
Applied Mathematics , University of Central Oklahoma,
Spring 1991.

[15] K. Mehlhorn, Data Structures and Algorithms, Vol. 1,
Sortzng and Searchzng, 1984 EATCS Monographs on
Theoretical Computer Science, Berlin/Heidelberg:
Springer-Verlag.

[16] D. Motzkin, “Meansort,” Comm. ACM 26, 4, pp 250-251, Apr.
1983.

[17] K.D. Neubert, “The FlashSort algorithm,” In Proc. of the
euroFORTH'97 –Conf., Oxford, England, Sept. pp 26 – 28,
1997.

[18] R.S. Scowen, “Algorithm 271: Quickersort,” Comm. ACM 8,
11, pp 669-670, Nov. 1965.

[19] R. Sedgewick, “Quicksort,” PhD dissertation, Stanford
University, Stanford, CA, May 1975. Stanford Computer
Science Report STAN-CS-75-492.

[20] R. Sedgewick, “The Analysis of Quicksort Programs,” Acta
Informatica 7, pp 327 – 355,, 1977.

[21] R. S. Scowen, “Algorithm 271: quickersort,” Comm. of the
ACM, 8, pp 669 – 670, 1965.

[22] R. Sedgewick, Algorithms in C++, 3rd edition, Addison
Wesley, 1998.

[23] R. C. Singleton, “Algorithm 347: An efficient algorithm for
sorting with minimal storage,” Comm. ACM 12, 3, pp
186-187, Mar. 1969.

[24] R. Sedgewick, “Implementing Quicksort programs,” Comm.
of ACM, 21(10), pp 847 – 857, Oct. 1978.

[25] A.M. Schoenhage, M. Paterson, and N. Pippenger, “Finding
the median,” Journal of Computer and Systems Sciences 13,
pp 184 - 199, 1976.

[26] R. L. Wainwright, “A class of sorting algorithms based on
Quicksort,” Comm. ACM, Vol. 28 Number 4, April 1985.

[27] R. L Wainright, “Quicksort algorithms with an early exit for
sorted subfiles,” Comm. ACM, 1987.

[28] N. Wirth, Algorithm und Datenstrukturen, B. G. Teubner,
1983 .

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

65

[29] D. E. Knuth, The Art of Computer Programming, Vol. 3:
Sorting and Searching, Addison Wesley Publ. Co., 1973.

[30] R.W. Floyd, and R. L Rivest, “Expected time bounds for
selection,” Comm. of the ACM 18, 3, pp 165 - 172., March
1975.

[31] K. K. Sundararajan, and S. Chakraborty, “ A new sorting
algorithm”, InterStat, Statistics on the Internet, 2006.

[32] Technical Correspondence, Comm. ACM, Vol. 29, No. 4,
April 1986.

[33] C. Martinez, Partial quicksort. In Proceedings of the First
ACM-SIAM Workshop on Analytic Algorithmics and
Combinatorics (ANALCO), 2004.

