
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

90

Manuscript received December 5, 2007

Manuscript revised December 20, 2007

Materialized Views in Data Mining

Vahida Attar and Vandana Inamdar

College of Engineering , Pune, India

Summary — Relational views are used both as a specification
technique and as an execution plan for the derivation of the
warehouse data. Currently available mining algorithms suffer
from long processing times depending mainly on the size of
the dataset. One observation is that the results of consecutive
data mining queries are usually very similar. This observation
leads to the idea of reusing materialized results of previous
data mining queries in order to improve performance of the
system.The views created are used by the data mining
algorithms to accelerate the process of analysis on the data.
In this paper, we summarize relational views, how the results
stored in these views can be used to accelerate processing of
data mining queries. Looking at a major issue which deals
with refreshing of the views which are needed to maintain
accuracy that may cost some time to maintain the updates
view.
Keywords: Materialized Views, Data Mining, Query
Execution, OLAP,

1. Introduction

Data mining aims at discovery of useful patterns from
large databases or warehouses. It is a non-trivial process
of identifying valid, novel, potentially useful, and
ultimately understandable patterns in large volumes of
data.

The basic problem in data mining is the processing
time of data mining queries. Data mining algorithms
often require minutes or hours to answer a simple query.
On the other hand, mining practice shows that the
majority of data mining queries are only minor
modifications of previous queries. Given these
circumstances, data mining systems should try to exploit
the results of previous queries, instead of running a
complete mining algorithm for each query.
The results of the previous queries along with the queries
are stored as a materialized view which is reused to
answer the datamining queries, theses views need to be
maintained with the corresponding objects.
In this paper we discuss relational views and their various
forms along with processing of views. We will look at
creation of datamining views.
Refreshing is an important concept for maintaining
accuracy, it deals with the refreshing or sync of views to
their objects. The ability to sync with the object increases

the accuracy but it may cause delays to answer queries, so
a trade off must be established for optimal results

2. Related Work

The work on materialized views started in the 80s. The
basic concept was to use materialized views as a tool to
speed up queries and serve older copies of data.
The problem of association rule discovery was introduced
in [1]. In the paper, discovery of frequent itemsets was
identified as the key step in association rule mining. In [2],
the authors proposed an efficient frequent itemset
discovery algorithm called Apriori that became the basis
for many other mining algorithms. The idea of sequential
pattern discovery was first presented in [3]. In [4], time
constraints were incorporated into the problem and a
sequential pattern discovery algorithm called GSP was
introduced.
Incremental mining was first discussed in [5] in the
context of association rules. A novel algorithm called FUP
was proposed to efficiently discover frequent itemsets in
an incremented dataset, exploiting previously discovered
frequent itemsets. Incremental mining was also analysed
in the context of sequential patterns (e.g. [8]). The notion
of interactive and iterative knowledge discovery first
appeared in [7]. The authors postulated to create a
knowledge cache that would keep recently discovered
frequent itemsets along with their support value. Besides
presenting the notion of knowledge cache the authors
introduced several maintenance techniques for such cache,
and discussed using the cache contents when answering
new frequent set queries.
To facilitate interactive and iterative sequential pattern
discovery, [8] proposed to materialize patterns discovered
with the least restrictive selection criteria, and answer
incoming queries by filtering the materialized pattern
collection.
The concept of Knowledge and Data Management
Systems was first introduced in [6]. In the opinion of the
authors, KDMS should replace contemporary database
management systems by integrating data and knowledge
related activities in one central place. The authors also
defined the notion of a data mining query and suppressed
the need to tightly integrate knowledge discovery systems

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

91

with the existing database and data warehouse
infrastructure to provide a framework for advanced
applications

2.1 Form of Views

Relational views have several forms:
Pure program: an unmaterialized view is a program
specification, “the intension” that generates data. Query
modifications and compiled queries were the first
techniques exploiting views- their basic difference is that
the first is used as macro that does not optimize until run-
time while the second stores optimized execution plans.
Such a view form is a pure program with no extensional
attachments. Each time the view program is invoked, it
generates (materializes) the data at a cost that is roughly
the same for each invocation.

Derived Data: A materialized view is “the extension” of
pure program form and has the characteristics of data like
any other relational data. Thus, it can be further queried
to build views-on-views or collectively grouped to build
super-views. The derivation operations are attached to
materialize views. These procedural attachments along
with some “delta” relational algebra are used to perform
incremental updates on the extension.

Pure Data: When materialized views are converted to
snapshots, the derivation procedure is detached and the
views become pure data that is not maintainable (pure
data is the opposite end of the spectrum from pure
program).

Pure Index: View indexes and View Caches illustrate this
flavour of views. Their extension has only pointers to the
underlying data which are de referenced when the values
are needed. Like all indexing schemes, the importance of
indexes lies in their organization, which facilitates easy
manipulation of pointers and efficient single-pass
dereferencing, and thus avoids thrashing.

Hybrid Data & Index: A partially materialized view stores
some attributes as data while the rest are referenced
through pointers. This combines data and indexes. B-trees,
Join indexes, star-indexes and most of the other indexing
schemes belonging to this category, with appropriate
schema mapping for translating pointers to record field
values. Note that in this form, the data values are drawn
directly from the underlying relations and no
transformation to these values is required.

OLAP aggregate/indexing: A data cube is a set of
materialized or indexed views. They correspond to

projections of the multi-dimensional space data to leser
dimensionality subspaces and store aggregate values in it.
In this form, the data values are aggregated from a
collection of underlying relation values. Summary tables
and Star Schema belong in this form (the latter belongs
here as much as in the previous category).

2.2 Processing of Views

Let's examine view processing for all the view forms
except for the pure data (snapshots) which are not
maintainable. View processing involves view scanning,
incremental update, or both applied simultaneously.
Scanning and incremental update of views imply special
locks, locking protocols, authorization, and consistency
protocols for asynchronous updates from multiple sources.
We will concentrate here on performance issues. View
scanning in the pure program view form is typically the
same as re-execution of the query that created the view.
There is no performance benefit for unmaterialized views
other than predicting re-execution cost more accurately
after the first time. The performance is bad but
predictable. Scanning a materialized view has a cost that
depends on the ratio of the useful tuples in it to answer a
given query, called density of the view. For a 100% ratio,
scanning a materialized view is optimal because it has all
the data for answering the query compacted in a tight
storage space. If the density is low, the noise can be more
than the amount of useful data. For the index view form,
scanning cost can range from near optimal, when the
pointers are aligned and point to a tight space, to very
high, when pointer dereferencing causes thrashing
(similar to unclustering indexes in RDBMS or in
OODBMS). For this reason, in the index form, it is very
important that the pointers be well organized and use a
tailored buffer manager which avoids thrashing caused by
the multidimensionality of the view. ViewCache uses a
form of puzzle shaped packed R-trees and tailored cache
replacement strategies. Cube trees utilize
multi-dimensional compressed and packed R-trees. Again,
for performance, the organization is the only thing that
matters.
Incremental update techniques for views are mature, as
they go back for more than a decade of research. The
same techniques were the foundation for the management
of replicated data which found its way to the log-based
replication tools of commercial RDBMS.
Incremental update of a view depends again on its
underlying form. In its un-materialized form the cost of
an incremental update is the cost of re-execution. For
other forms we must distinguish two cases. The first case
occurs when the incremental update is done in real-time
during the query execution. In this case, the update is

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

92

combined with scanning and therefore, the cost of
incremental update is subsumed by the scanning cost.
This was the main objective of the one pass incremental
update algorithms of View Cache. The subsumed cost
savings are significant and this was shown by comparing
worst case analysis estimations against actual timed
experiments. This was especially true for views-on-views
because of the elimination of storing and accessing
intermediate results.
The second case is when the incremental update of a view
is done at times other than scanning. This is the typical
case in a data warehouse where updates from multiple
sources are applied asynchronously either when they
arrive or at scheduled (often off-line) times. The benefit of
combining scanning and updating is not a factor any more.
Therefore, minimal dereferencing is a good target
optimization. Partially materialized views which
materialize only the subset of the attributes useful for the
incremental update, outer joins instead of joins, or other
appropriate attribute caching techniques are best suited.
On the other hand, fully materialized views are
cumbersome and generate a lot of unnecessary I/O and
data movement for just updating views that are to be used
in the future.
It should be mentioned here that the issue of self
maintenance of views is important. However, the
additional information necessary for the incremental
update and its storage organization must be well designed
since this affects performance. For example, the storage
organization of the deltas may have equivalent adverse
effects to thrashing if their tuples are scattered in an
unclustered space.

2.3 Creation of Data Mining Views

Traditional views are used mainly to hide difficult query
structures from a user. Views also provide independence
of applications from the schema changes occurring in the
database. All changes must be reflected only in the
definition of the view and no modification is required in
end-user applications. Every access to the view triggers
the execution of the query that defines the view. Data
mining is an interactive and iterative process and data
mining queries tend to be fairly complicated. Data mining
views hide the complexity of the algorithm from an
application and simplify access to discovered patterns.
The following MineSQL statement creates a data mining
view V SEQ PATS. The view presents sequential patterns
discovered in the CUST TRANSACTIONS table, having
the support exceeding 0.2, using the following time
constraints: max-gap of 100, min-gap of 1, and no
window-size (the default value of 0 is used).

CREATE VIEW V SEQ PATS AS
MINE PATTERN MAXGAP 100 MINGAP 1
FROM (SELECT SEQUENCE(T TIME, ITEM)
FROM CUST TRANSACTIONS
GROUP BY C ID)
WHERE SUPPORT(PATTERN)>0.2;
Data mining views provide additional independency layer
between the database and the end-user application. Slight
modifications of algorithm parameters or explored dataset
are reflected only in the view definition while the
application does not notice any changes. Besides, the user
is separated from the technical details of the algorithm
and can perform repetitive data mining tasks without
knowing the details of syntax of the MINE statement. As
with traditional views, every access to the data mining
view triggers the execution of the underlying algorithm.

2.4 Refreshing of Materialized Views

The algorithms for pattern discovery are usually time-
consuming. Processing time of a data mining query could
easily become unacceptable from the point of interactive
mining. The solution to this problem is materialization of
previously obtained results of data mining queries. A
materialized data mining view is a database object storing
the results of a data mining query (frequent sets,
association rules, sequential patterns). With every
materialized view a time period can be associated, after
which the view is automatically refreshed. The following
statement creates the materialized data mining view MV
SEQ PATS. The view is to be refreshed automatically
once a week.

CREATE MATERIALIZED VIEW MV SEQ PATS
REFRESH 7 AS
MINE PATTERN MAXGAP 100 MINGAP 1
FROM (SELECT SEQUENCE(T TIME, ITEM)
FROM CUST TRANSACTIONS
GROUP BY C ID)
WHERE SUPPORT(PATTERN)>0.2;

Materialized data mining views can be refreshed either
automatically or on user’s demand. In most cases such
refresh can be performed by one of the incremental
mining algorithms instead of running the complete
discovery algorithm. Additional advantage of materialized
views is the fact that data mining usually takes place in a
data warehouse where changes to base relations (and thus
to the stored patterns) do not happen continually over
time but are accumulated and loaded to the data
warehouse during data warehouse refresh process. The
patterns discovered and stored in the materialized view
remain valid for a long period of time until next data

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

93

warehouse refresh. Validation of patterns can be
postponed until next warehouse refresh event

2.4.1 Refreshment According to Quality of Data

2.4.1.1 Accuracy
To attain maximum possible accuracy it is required to
refresh MV frequently. The frequency can be varied from
intervals between updating to several numbers of days
depending on the type of the database object.
eg. The data should be refreshed at least once in a day.

2.4.1.2 Quick Retrieval
To get the data available at the time when required, data
should be available as a Materialized View on time, by
increasing the refreshment interval parameter will
increase the availability of the materialized View. But in
this case accuracy will sustain inversely proportional to
the interval.

2.4.1.3 Optimized Retrieval
As per the network condition the refreshment parameter
should be moderate enough to accommodate accuracy and
availability. When speed matters, the time duration
between consecutive refreshment can be delayed
according to bandwidth status. So depending upon the
requirement we can sacrifice over accuracy, speed, burden
on network. According to property of database,
Number of read on database object corresponding to the
Materialized View = x
Number of write on database object corresponding to the
Materialized View = y
 Case 1: x >> y
In this situation we can use big interval for refreshment so
we can have more accuracy even with less refreshment.
So, in this case refreshment cost will be greatly reduced.
Case 2: x << y
Since updation on database exceeds so we need more
frequently refreshment it will greatly increase refreshment
cost but it is really necessary to maintain the accuracy.
Case 3: x =~ y
In this case as per our requirement we can vitiate
refreshment interval as per the accuracy or network
bandwidth. Refreshing time can be decided as per the
network traffic, for example in some e countries traffic in
day time is more than night hours, we can prefer nights to

have maximum possible network speed.

2.5 Concurrency

In generic concurrency control mechanisms, immediate
materialized aggregate join view maintenance becomes
extremely problematic—the addition of a materialized

aggregate join view can introduce many lock conflicts
and/or deadlocks that did not arise in the absence of this
materialized view.
The V locking protocol is designed to support concurrent,
immediate updates of materialized aggregate join views
without engendering the high lock conflict rates and high
deadlock rates that could result if two-phase locking with
S and X lock modes were used. This protocol borrows
from the theory of concurrency control for associative and
commutative updates, with the addition of a latch pool to
deal with insertion anomalies that result from some
special properties of materialized view updates. Perhaps
surprisingly, due to the interaction between locks on base
relations and locks on the materialized view, this locking
protocol, designed for concurrent update of aggregates,
also supports direct propagate updates and materialized
non aggregate join view maintenance.

2.6 Using Materialized View in Query Execution

In many cases contents of the materialized view can be
used to answer a query that is similar to the query
defining the view. For example, if the query defining the
view includes a given query Q then the latter can be
answered by simply reading the contents of the view and
pruning those patterns that do not meet the conditions
formulated in. The key issue is identification of syntactic
differences leading to situations in which one query can
be efficiently answered using the results of another query.
In our analysis we consider only materialized views
containing frequent sets and sequential patterns. Even if
the final goal is discovery of association rules, we propose
to materialize frequent sets for two reasons. As it was
also observed by other researchers: generation of rules
from item sets is straightforward, and materialized item
sets can be used to answer more item set and rule queries.

3. Conclusions

Views are the most important asset of the relational model.
They provide a uniform conceptual and implementation
model of relational programs, derived data, indexes, and
aggregated derived data. Selecting views to materialize is
one of the most important decisions in designing a data
warehouse. Materialized data mining views are physical
data warehouse structures, created explicitly or implicitly,
used to store pre computed results of selected data mining
queries. By assigning moderate value to refreshment
parameter we can make efficient data retrieval. Data
mining algorithms can utilize this concept to create
Materialized Views with maximum efficient retrieval in
favorable conditions.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

94

References
[1] R. Agrawal, T. Imielinski, A. Swami. Mining association rules

between sets of items in large databases. In Proc. Of the 1993
ACM SIGMOD Conference, 1993.

[2] R. Agrawal, R. Srikant. Fast Algorithms for Mining
Association Rules. In Proc. of the 20th VLDB Conference,
1994.

[3] R. Agrawal, R. Srikant. Mining Sequential Patterns. In Proc. of
the 11th ICDE Conference, 1995.

 [4] R. Agrawal, R. Srikant. Mining Sequential Patterns:
Generalizations and Performance Improvements. In Proc. of
the 5th EDBT Conference, 1996.

[5] D. W.-L. Cheung, J. Han, V. Ng, and C. Y. Wong.
Maintenance of discovered association rules in large databases:
An incremental updating technique. In Proc. of the 12th
ICDE Conference, 1996.

[6] T. Imielinski, H. Mannila. A Database Perspective on
Knowledge Discovery. Communications of the ACM, 39(11),
1996.

[7] B. Nag, P. Deshpande, D. J. DeWitt. Using a Knowledge
Cache for Interactive Discovery of Association Rules. In Proc.
of the 5th KDD Conference, 1999.

[8] S. Parthasarathy, M. J. Zaki, M. Ogihara, S. Dwarkadas.
Incremental and interactive sequence mining. In Proc. of the
1999 ACM CIKM Conference, 1999

