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Summary 
In this paper, we discuss stabilization problem for a class of 
switched nonlinear systems whose subsystem with trigonal 
structure. A backstepping switching control design is given. 
Based on backsteppping approach, stabilizer and a switching 
law are designed for such systems. The stabilization of the 
resulting closed-loop systems is proved via common Lyapunov 
function method. 
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1. Introduction 

The study of hybrid systems in control is motivated by 
the fundamentally hybrid nature of many modern-day 
control systems, which are characterized by the 
interaction of lower-level continuous dynamics and upper-
level discrete or logical components. In many of these 
systems, the continuous dynamics arise from the 
underlying physical laws such as mass, momentum, and 
energy conservation, and are usually modeled by 
continuous-time differential equations. Discrete events, on 
the other hand, can arise from a variety of sources, 
including inherent physicochemical discontinuities in the 
continuous dynamics, controlled transitions between 
different operating regimes, the use of discrete actuators 
and sensors in the control system, and the use of logic-
based switching for supervisory and safety control. It is 
well understood at this stage that the interaction of 
discrete events with even simple continuous dynamical 
systems can lead to complex dynamics and, possibly, to 
undesirable outcomes if not appropriately accounted for in 
the control system design. Even though theory for the 
analysis and control of purely continuous-time systems 
exists and, to a large extent, is well-developed, similar 
techniques for combined discrete-continuous systems are 
limited at present, primarily due to the difficulty of 
extending the available concepts and tools to treat the 
hybrid nature of these systems and their changing 
dynamics. Motivated by this and the abundance of 
situations where hybrid systems arise in practice, 
significant research work has focused on hybrid systems 

over the last decade. 
 
 
A switched system is a hybrid system that comprises 

a collection of subsystems together with a switching rule 
that specifies the switching among the subsystems. It is 
well known that different switching law would produce 
different behavior of system and hence lead to different 
system performances. For example, for the switched linear 
system that consists of two stable subsystems, it would be 
unstable if we apply unsuitable switching rule to this 
system. Conversely, if the two subsystems are unstable 
and we adopt suitable switching path, the switched system 
would be stable. As such, how to design a switching law 
so that the switched system achieves certain performance 
is indeed an important and well-motivated problem.  

During the last decades, there have been many 
studies on stability analysis and design for switched 
systems [1-11]. In [3], it is pointed out that how to 
construct a switching law that makes a switched system 
asymptotically stable is one of the three basic problems. 
There are a lot of papers addressing the topics of stability, 
quadratic stabilization for switched linear systems. In this 
paper, we focus on, based on backstepping method, the 
stabilization problem for a class of switched nonlinear 
systems whose subsystem with trigonal structure via 
designing switching strategy and associated state feedback 
stabilizer. It is assumed that the switching strategy used in 
this paper is picked in such a way that there are finite 
switches in finite time. Our goal is to design a switching 
law ( )ts and associated state feedback sub-controllers 

such that the resulting closed-loop system is 
asymptotically stable.  

The remainder of this paper is organized as follows: 
stabilization problem is stated in Section 2, while in 
Section 3 the stabilizer and switching law of switched 
nonlinear systems is constructed. Section 4 gives 
stabilizability result. Finally, some conclusions are drawn 
in Section 5. 
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2. System Description and Problem Statement 

In this paper, we will consider global stabilization of 
the following switched nonlinear systems: 
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where ( )1 2, , ,
T n

nx x x x= ÎL ¡  is the system state, 

( )1 2, , ,
T

i ix x x x= L , uÎ¡  is the continuous control input. 

The function ( ) : [0, ) {1,2, , }
def

Ns × +¥ ® =L ¥  denotes the 

piecewise constant switching law to be designed. 

Moreover, ( )t ks =  implies that the thk subsystem is 

active and the nonlinear functions 
( ),1 , 1 ,ikf i n k N× £ £ £ £  are known and smooth and 

satisfy 
(0,0, ,0) 0 (1 ,1 )ikf i n k N= £ £ £ £L             (2) 

We consider here the stabilization problem, i.e., the 
control objective is to globally asymptotically stabilize the 
equilibrium 0x =  by designing switching law and 

stabilizer. 

3. Switched Controller Design 

The design of stabilizer takes a same procedure as in, 
e.g., [8], that is, we first design state feedback controller 
for every subsystem by using backstepping approach, and 
then design a switching rule. 

3.1. Controller of Subsystem Design 

Consider the thk subsystem of switched nonlinear 

system (1) 
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We design the stabilizer of nonlinear system (3) 

( )nu xa=  in backstepping way. In this subsection, we 

assume that the positive integer kÎ¥  be fixed. 

Step 1: Let 1 1z x= . From (3), 

1 2 1 1( )kz x f x= +&                          (4) 

Since 1 ( )kf ×  is a smooth function, in view of (2), we can 

write 

1 1 1 1 1( ) ( )k kf z z g z=                       (5) 

where 1 1( )kg z  is a continuous function with respect to 1z . 

Define  

1 1 1 1( ) ( )k kh z g z=                         (6) 

We now view 2x  as a virtual control and design it for 

the following stabilizing function: 

1 1 1( )x nza = -                             (7) 

Define 

2 2 1 1( )z x xa= -                           (8) 

Then, the time derivative of 2
1 1

1

2
V z=  along to system (4) 

is given by 

1 1 1 1 2 1 1( ( ))kV z z z x f x= = +& &                   (9) 

Computed with (5)-(8) is given by 
2 2

1 1 1 1 1 1 2( )kV nz z h z z z£ - + +&                  (10) 

Step i (2 1)i n£ £ - : Let  

1 1z x=  and 1 1( ), 2, ,j j j jz x x j ia - -= - = L . 

From (3),  
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Setting  
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where ( )1, ,
def T

j jz z z= L , 1 1

def

x x= . 

By means of 1 (0, , 0) 0 ( 2, , )j j ia - = =L L  and (2), we 

have 

(0, ,0) 0, 2, ,jkf j i= =% L L                   (13) 

So, we can further write 

1
( ) ( ), 2, ,

j

jk j l jlk jl
f z z g z j i

=
= =å% L             (14) 

where the functions ( ), 1,2, ,jlk jg z l j= L , are continuous 

with respect to jz . Define  
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We now view 1ix +  as a virtual control and design it for 

the following stabilizing function: 

1( ) ( 2 )i i i ix z n i za -= - - + -                    (16) 

Define 

1 1 ( )i i i iz x xa+ += -                          (17) 

Then, the time derivative of 2 2 2
1 2

1
( )

2
i iV z z z= + + +L  

along to system (4) and (11) is given by 

1 2 1 1 12
( ( )) ( ( ))

i

i k j j jk jj
V z x f z z x f z+=

= + + +å %&        (18) 

Computed with (12)-(17) is given by 
2 2

11 1
( 1 ) ( )

i i

i j j jk j i ij j
V n i z z h z z z += =
£ - + - + +å å&      (19) 

Step n: According to 1 1( )n n n nz x xa - -= - , we have 
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we can further write 

1
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where the functions ( ), 1,2, ,nlkg z l n= L , are continuous 

with respect to z . Define  
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We now choose control u  as follows: 

1 2n nu z z-= - -                              (24) 

The time derivative of 2 2 2
1 2

1
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system (4), (11) and (20) is given by 
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By means of Lyapunov stability theory, it follows from 
( ) 1, 1,2, ,jk jh x j n< = L  that the system (3) is 

asymptotically stabilize the equilibrium 0x =  

3.2. Switching Strategy Design 

In this subsection, we will employ attenuation domain 
of each subsystem to design switching rule so that the 

overall closed-loop system is globally asymptotically 
stable.  

Suppose that 
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where ( )0 1 0 2 0 0( ) ( ), ( ), , ( )
T

i iz t z t z t z t= L , the symbol 

"arg min"  denotes the index that attains the minimum. If 

there is one more than such index, we just pick the 

smallest one. 

The first switching time instant is determined by 
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The corresponding switching index is chosen to be 

{ }1 1
1 1

( ) arg min max ( ( )ik i
k N i n

t h z ts
£ £ £ £

=  

Finally, we define the switching time/index sequences 

recursively by 
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4. Stability Analysis 

Theorem 4.1 Suppose the state feedback controller (24) 
and switching law developed in subsection 3.2 are applied 
to the switched nonlinear system (1). Then, for any initial 
conditions, the resulting closed-loop system is globally 
asymptotically stable at the equilibrium 0x = . If the 

following set formula holds. 
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Proof: Consider the following change of coordinates 
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The stabilizers ( ), 1,2, ,i ix i na = L  developed in 

subsection 3.1 are applied to switched system (1). Then 
the resulting system can be written as 
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Consider the Lyapunov function candidate 2

1

1

2

n

ii
V z

=
= å . 
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where 1 1 11 ( ) 1 1 ( ) 1, , ( ) ( )
m mn t tz z z z g z g zs s= = = . 
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Again in view of (11) and the switching law developed 

in the subsection 3.2, we have ( ) 0V t <& for every 

0[ , )t tÎ ¥ . Therefore by Lyapunov stability theorem, the 

conclusion holds. This is completes the proof.                 
à  

5. Conclusion 

Switching Stability problem for a class of switched 
nonlinear systems with trigonal structure was investigated 
in this paper. We construct stabilizer and a switching law 
for above mention switched systems in backsteppping way. 
Finally, the stabilizability of the closed-loop systems is 
proved via common Lyapunov function approach under 
the fact that the sum of attenuation domain for each 
subsystem covers with overall state space. 
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