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Summary 
 
Scientific data visualization is a process of transforming 
numerical data into a pictorial format conceivable by humans. 
The datasets generated by medical detectors and simulations is 
increasing in size and complexity. Additionally, the conventional 
desktop computers are not sufficient to process this datasets due 
to memory overwhelming phenomenon which causes the desktop 
to be in unresponsive state. The current implementation of 
remote visualization techniques specifically real time 
visualization takes the direction of reducing the size of the 
datasets which is known to give less details and precision of the 
visualization. On the top of that, the increasing size of datasets 
and the continuous demand for computational power results an 
urgent need for grid computing infrastructure for real time 
remote visualization. However, the current grid computing 
implantations introduce new challenges for remote real time 
visualization such as resources discovery and real time automatic 
resources selection. This paper investigates how the automatic 
resources selection mechanism could be used to support real time 
remote visualization of large medical datasets on the grid 
environment. We show our Adaptive resources selection 
framework for grid enabled visualization pipeline. Our results 
shows better performance of distributed parallel Isosurface of 
large partitioned datasets implemented as grid services. We 
support our findings with practical implementation of grid 
enabled visualization prototype, and our proposed grid mapping 
function algorithm for automatic resources selection to visualize 
large medical datasets, (circa 11 million polygons) on modest 
resources machine. 
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1. Introduction 

Scientific data visualization is a process of transforming a 
numerical data into a pictorial format understandable by 
humans. The datasets generated by medical detectors and 
digital scanners is normally large in size and 
algorithmically complex. Moreover, the large size of 

datasets introduces several challenges for visualization 
researchers where the computational powers required for 
visualizing this datasets exceeded the ability of 
conventional desktop machine provided to the researchers. 
The current access methods to large datasets remotely are 
also associated with several issues such as the nature and 
services of infrastructure provided to access the datasets. 
In addition to that, there are several technologies 
introduced to provide access methods such as client server 
architecture and remote access to a cluster of machines 
[1 ] [2][ 3] [4] and  recent studies focus on grid computing 
as an alternative to tackle the problem of data intensive 
applications. Grid computing as defined by OGSA [5] 
introduces the concept of sharing the resources of 
geographically distributed machines. This resulted through 
the utilization of current high speed networks therefore 
this grid infrastructure allows sharing of processing power 
memory and storage and forms like powerful virtual super 
computers. However, current grid implementation 
introduces new challenges especially for visualization 
community such as implementations of remote 
visualization on the grid. There is some introduced 
research studies focused on enabling existing visualization 
systems although these studies introduce solutions for 
specific systems but there are arising issues with the 
current implementation of these solutions specifically for 
real time visualization pipeline. This paper investigates 
how the resources discovery mechanism could be 
implemented to allow automatic formation of real time 
visualization pipeline on the grid environment. Our results 
show better performance of our grid mapping function in 
utilizing the discovered resources and making best use of 
the resources with comparison of current manual 
configuration of the pipeline. We support our findings 
with practical implementation of real time visualization 
pipeline prototype for large medical datasets. 
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2. Related work 

The scientific data visualization was sparked by landmark 
NSF report ‘Visualization in Scientific Computing’ by 
McCormick [6]. The introduced visualization concept was 
based on breaking down the dataflow of the visualization 
process to smaller distributed processes. The smaller 
processes can be placed on distributed locations which are 
interconnected by network to form a modular visualization. 
Each part can contribute as an independent modular to 
form the overall visualization process. However, the 
existing grid enabled visualization systems are in the 
direction of translating the existing dataflow concept 
presented by Haber and McNabb [7] as described in 
Figure [1].   

 

 
Figure [1] Haber-McNabb Visualization Pipeline 

 
The existing visualization systems such as AVS Express 
[8], VTK [9], IBM Data Explorer, OpenGL VizServer 
[10]  and IRIS Explorer [11] are generally available today 
and used to visualize a variety of large volume of data 
including medical data. For example, a system such as 
VTK is making use of wide range of visualization 
algorithms and VTK supports parallelism through the use 
of threads. However, these visualization systems are 
generally designed to work in single high capabilities 
hardware machine. Despite the fact that VTK was 
designed in an object oriented fashion, during the design 
of this system there were no considerations to be 
supported in the grid environment. Other projects are in a 
direction to extend the capabilities of these visualization 
systems. For instance, gViz project was designed to extend 
IRIS Explorer. However, the possible integration in grid 
environment should be based on the design of internal 
components of these systems. Therefore, the challenge 
now is in providing a flexible and effective mechanism to 
support remote access to the resources. Current 
implementations of grid enabled visualization are often 
tied to expensive hardware and powerful graphic support. 
In addition to that, the different network bandwidth and 
different output devices between the rendering location 
and presentation location produces output suitable for one 
device and not suitable for another. On the other hand, the 
existing grid visualization applications  often make 
assumptions on the available resources ‘render local and 
render remote methodologies’. The following are some of 
Grid enabled visualization applications and projects. 
RAVE [12] is a grid enabled visualization system that 
reacts and responds to available heterogeneous resources. 
RAVE implements techniques to make use of both remote 

and local resource according to the participating machines 
from high capabilities machines to Small PDA’s. The gViz 
project [13] is another grid enabled visualization 
application. The idea was to incorporate the grid in the 
internal components of the IRIS Explorer [11].  The E-
Demand [14] is another grid enabled visualization project 
focusing on the use of Grid services to support 
stereoscopic visualization in a distributed environment. 
The E-demand application considered as PSE “problem 
solving environment” on the grid. OGSA [5] presents each 
model as an entity. Multi rendering services can be 
deployed to form a collaborative environment. The 
SuperVise [15] is another grid implementation. In 
SuperVise Project, the phases of visualization pipeline 
such as filtering and geometry transformation are 
distributed across the grid. The user selects the data then 
the SuperVise selects the appropriate resources and form 
the visualization pipeline.  The Distributed Visualization 
System [16] is visualization application that uses frameless 
buffer for rendering to distribute the pixel images between 
several machines. Each machine receives subset of the 
pixels to render it and submit the rendered part to create 
the full image, but each machine must have the original 
copy of the full image.  Some other visualization 
applications do not rely totally on software in their 
implementations for instance Visapult [1] is a visualization 
framework with the ability to render a huge amount of 
datasets (of the order of 1-5 Tb).  Visapult uses parallel 
rendering hardware to carry out the high speed rendering 
processes. Using Cactus [17] the data are distributed 
amongst many parallel nodes for volume rendering, the 
rendered subset 2D image sent to the client for local 
rendering.  Engel_vis [18] is another application that 
combines Local and Remote Visualization Techniques for 
Interactive volume rendering in medical applications.  The 
application was implemented using java, java 2D and java 
3D based on the client which communicate with a server 
implemented in C++ and OpenInventor. The methodology 
followed is to load the datasets from the client side. 
Clients send the datasets to slicing tool. The slicing tool 
inspects slices in axial, coronal directions, and transfers 
the volume data to the server application. The server, a 
stand-alone application that utilizes 3D texture mapping 
hardware renders images off-screen and sends back 
compressed images to the clients. The methodology 
presented will not work well for clients with limited 
capabilities for local rendering and geometry 
transformation.  There are some other implementations of 
grid methods on visualization, such as stated in [19] the 
implementation was focused on developing a rendering 
pipeline and this implementation also utilizes Globus 
toolkits for interconnecting the pipeline components with 
support of Chromium technology for distributed rendering. 
Other recent implementation as mentioned in [20] where 
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they describe the integration of VTK with Globus to have 
parallel graphics rendering pipeline on grid environment.  
However, the mentioned grid enabled visualization 
applications are well structured and designed to solve 
specific problem. Some of the applications provide the 
participating machines with no ability to do the rendering 
processes such as COVISE. Others assume that the 
participating machines support the rendering resources 
such as OpenGL VizServer 3.1.  In addition, the other 
newly implemented techniques are trying to solve the 
rendering and resources support such as RAVE 
visualization application. RAVE is trying to develop a 
mechanism to figure out which machines support the 
rendering tasks and which machines have limited support 
for the rendering. Unlike other recent implementation [19] 
where the methods followed did not specifically focus on 
the issue of Isosurface rendering or volume rendering 
pipeline and how it could be done on a gird environment. 
Despite the fact that Isosurface rendering is one of the 
most important issues in remote or distributed 
visualization, our technical implementation shows the 
actual results of performing Isosurface on medical datasets 
located remotely and displays the results on modest 
resources machine. These findings are described with real 
implementation of grid computing environment 
particularly with Globus toolkit to provide transparent 
access to the available resources. Additionally, we present 
in this paper unique added functionality as small 
embedded Java programs for the resources discovery to 
suite our architecture. On other hand, and make best 
selection of the available discovered resources. 
 
3- A Framework for Volumetric Visualization 

on the Grid Environment 
 

3.1 Visualization Toolkit 

VTK [9] is an open source library for 3D computer 
graphics and image processing and visualization.   It is 
object oriented implementation of over 700 C++ classes 
and more than 350000 lines of code. The library created 
by Ken Martin, Will Schroeder and Bill Lorensen. This 
library organized in a form of kits. The kits are used to 
build application in sequential modules with related 
functionality. VTK supports a variety of dataset formats 
and visualization algorithms. The object oriented design of 
VTK allows the C++ library to be accessed with wrappers 
built in TCL, java or Python.  We are using two 
algorithms provided by VTK Marching Cubes [21] for 
extracting the Isosurface from the datasets to produce the 
polygons and Decimation algorithm [22] to simplify the 
mesh and reduce the number of polygons produced by 
Marching Cubes stage. 

3.2 Grid Services 

The motivation behind choosing Globus [23] as our 
hosting grid container comes from the useful components 
that make up its grid services despite the known 
difficulties in the Globus configuration specifically for 
real time visualization operations. Our architecture utilizes 
very important Globus components such as Globus MDS 
(Monitoring and Discovery Services) and GRAM (Grid 
Resources allocation Manager) to discover the resources 
available on the grid pool and to be able to send and 
receive data between the components of the visualization 
pipeline. However, the integrations of Globus and VTK is 
not new method for grid configuration where there has 
been several attempts in past a couple of years [19] [20]. 
The only issue is that these particular implementations did 
not take into consideration the real time visualization 
pipeline. Therefore, the visualization pipeline for real time 
visualization demands extra consideration to be taken into 
account.  Adjusting the visualization pipeline is a very 
difficult task especially when dealing with a very large 
datasets on one hand.  This is normally due to unreliable 
nature of the resources on the grid and one would not 
know which resources suitable for which job. On the other 
hand, visualization operations such as Isosurface demands 
more computational power and most cases conventional 
computer not capable of providing this power. From the 
above facts we have decided to use MDS and embed our 
java algorithm to collect information from MDS which 
also utilizes Ganglia to get detailed information about the 
nodes automatically by using UsefulRP Resource Property 
Providers. This information organized in a form of static 
data such as host name Memory size and the current 
processor load for every node in the environment. The 
issue now is how to map our visualization tasks to these 
discovered resources. This is where our java algorithm 
comes to work. This task is done immediately after having 
our visualization pipeline started and users press on map 
grid function to get VTK data reader calculate the size of 
datasets and checks the complexity of datasets then map 
the result to the algorithms to propose the resources 
needed for this particular datasets according to the MDS 
resources query results.  
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3.3 Visualization Pipeline Architecture 
 

The architecture is constructed from combination of two 
different components. First component   is VTK which is 
distributed based on the requirement of visualization 
operation. Additionally, we have VTK installed on every 

 

Figure 2 Automatic Formation of Visualization 
pipeline on the grid environment 

 
 
node except for the client machine where we do not expect 
enough resources such as memory, processing power and 
storage.  However, in order to utilize the existing VTK 
interactivity we must have VTK java classes compiled 
installed as vtk.jar on the client.  Additionally, we have 
GT4 which also installed on all the nodes participating in 
the architecture except for the display client. On The other 
hand, we have installed cogKt as jar file on the client to 
allow the queries to be passed and received by the client 
machine to The Globus MDS. The distribution of the 
architecture components is done based on grid services 
where we divide the architecture into several as follow 
Parallel Data Reader Service, Iso-surface extractor 
Services, Data Mapper, renderer and Display. 
 
 

3.3.1 Parallel Data Reader  
 
Data reader designed to read the selected datasets in 
parallel fashion, the datasets normally organized as slices 
specifically medical datasets. The architecture supports 
reading different types of datasets such as ASCII binary 
files or raw datasets formats and all the formats supported 
by VTK. The type of data reader is selected according to 

specified datasets and the data reader is able to read data 
from more than one location and append the data to one or 
more Iso-surface extractor.  The size of the datasets is 
calculated at this stage. The parallel capabilities adds very 
important advantages to the over all architecture 
performance by speeding up the reading and recognition 
of 
 

 
 

Figure 3 Grid Visualization Pipeline Architecture with Parallel 
Data reader and Redraw process requests of an Isosurface 

 
 
 
 
 
the specified datasets. In addition to that dividing the 
datasets into chunks allows the following stages of the 
pipeline which are Isosurface extraction to be distributed 
according to load and the discovered resources on the grid.  
The datasets partitioning process is carried out 
immediately after checking the attributes of the datasets. 
In our particular case for medical datasets which supplied 
as numbered slices each portion of the datasets is read in 
parallel and assigned to Isosurface extractor. Additionally, 
the number of Isosurface Extractors to participate in the 
datasets extraction operations depends on two conditions. 
First condition is on the discovered resources in the grid. 
Second condition is the attributes of the datasets such as 
size and the number of the slices. The datasets partitioning 
and parallel reading capabilities provide the architecture 
speedup and enhance the performance in comparison with 
sequential reading methods. Firstly, reading the datasets in 
parallel will shorten the time needed to read large datasets 
although there is a network delay but our practical 
implementation shows better performance in time needed 
to read the datasets using parallel reading comparing with 
sequential pipeline without parallelism. Secondly, 
assigning partitioned datasets to more than one Isosurface 
Extractor will also give better performance and speedup 
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the time need to extract polygons for later rendering stage. 
However, The Isosurface Extraction stage is known to 
take longer time when the entire datasets assigned to one 
single machine as our implementation show where with 
some Isosurface values resulted the memory overwhelmed 
and causes to machine to be in unresponsive state. 
 
3.3.2 Distributed Isosurface extractor 
The extraction process is geometry generation of the 
datasets and duration of this process is depending on the 
size, complexity of the datasets and in addition to the 
available resources (processing power, memory, storage) 
of the used machine. For these reasons dividing this 
process to be carried in more than one machine is 
necessary to avoid the memory overwhelming 
phenomenon which is considered the main problem when 
processing large datasets on one conventional desktop. 
Our implementation for extracting 3D grid from the 
datasets we used The Marching Cubes algorithm [21].  We 
have chosen this particular algorithm for geometry 
generation for several reasons. Firstly, modeling the 
dynamic changes of the visualization operations on the 
grid is a great challenge. However, for our particular 
Isosurface algorithm case, different Isovalue with the same 
datasets produces different number of generated polygons.  
Additionally, different quantities of polygons produced by 
the same Isovalue even with the same datasets with 
different time step.  The quantity of generated polygons 
causes different performance of the entire extraction 
process and over all the performance of the pipeline. 
Secondly, this scenario is providing dynamic changes in 
the environment where the load is not fixed throughout the 
distributed visualization pipeline. The visualization 
requirements (datasets location and Isovalue) passed from 
the user is located at remote location to the starting server 
of the pipeline. Then, the pipeline is formed according to 
selected dataset size and generated polygons. Figure 3, the 
initial Isosurface drawing requests contain datasets address 
location and Isovalue.   These parameters are passed to the 
starting pipeline server. The source of the datasets can be 
from static file or life feed from external programs. After 
reading and calculating the datasets size the server 
serialize the datasets to the assigned Isosurface extractors 
according to datasets size and the capacity of the 
extracting machines. The Isosurface extractor then 
deserializes the data and appends the datasets with 
vtkappendFilter implemented as grid service used to 
append datasets from several data extracting instances. 
After extracting the polygons from the datasets the 
extractor then serialize the resulted datasets to mapping 
service. The decimation process takes place after the 
extraction for datasets size reduction by reducing the 
number of polygons. 
[1]  

3.3.3 Data Mapper   
Mapping service is responsible for taking datasets 
produced by Isosurface extractor and deserializes the data 
and maps it to one or more rendering service. Mapping 
and Isosurface extraction may be implemented as a single 
service. The resulted datasets serialized to the rendering 
service. The importance of mapping is to allow the 
discovery of grid available resources by querying the 
Globus MDS. The result of the query is used to assign the 
proper rendering nodes. The mapping service is also 
responsible for partitioning the resulted geometric datasets.   
 
3.3.4 Renderer 
Rendering is a process of transforming the geometric data 
into images. The rendering process is known to consume 
the available resources such as memory and storage. This 
particular problem is common for standard desktop 
computers where the rendering of large geometric datasets 
will consume CPU and available memory. For these 
reasons, our technique uses rendering services in the form 
of grid services. Each rendering service is registered in 
UDDI server and advertises itself to other services. The 
Globus MDS is used to discover the rendering resources in 
the grid. Then the render receives the assigned chunk of 
the datasets. 
 

 
 

 

Figure 4 Grid Mapping Function  
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4 Resources Discovery Mechanism  

The resources discovery mechanism starts at the grid 
mapping function Figure 4 located at client machine. The 
users must specify the starting point of visualization 
pipeline by specifying the address of the starting node and 
the address of data Service where the datasets stored. After 
supplying this information the data reader will 
automatically form the remaining visualization pipeline 
nodes. Data Reader works closely with Globus MDS to 
supply the necessary information about the available 
nodes as showing in figure 3. This information contains 
the available memory and storage capacity and processing 
power of each of the discovered node. Then according to 
calculated size of the datasets and with supplied 
information from the MDS the visualization pipeline will 
be formed. This technique is not built in the MDS 
therefore we had to write and amped small java algorithm 
programs to match this methodology the following 
scenario is a description of the proposed algorithm. 
 
Phase 1- Starting the pipeline process  
 

1-  Connect to datasets Center  
2-  Calculate the size of the datasets  check the number 

of slices   
3-  Request the available node  
4-  Estimate the necessary power for each visualization 

task  
5-  Arrange the nodes according to the predicted power 

from step 4 
6-  Assign the visualization task to each node  
 

Phase 2- Redraw Request process  
 

1- Request the available resources  
2- Reassign the visualization operation to each node 
3- Apply the Isovalue changes to the assigned 

Isosurface extractors  
 

The proposed algorithm is based on two stages. The first 
stage is at the starting point and at the very beginning of 
the pipeline launch which is described as follow.  First the 
data reader checks the datasets format and chooses the 
suitable reader to read the datasets. The next step is to 
calculate the size of the selected datasets. Secondly the 
data reader connects to MDS and gets the available 
resources and rearranges the discovered resources 
according to the calculated size of the datasets. If the 
selected datasets is larger than the power of the first select 
machine then the data reader assigns more than one 
Isosurface extractor and that depends on the size of the 
datasets. The third step is the distribution of the 
visualization operations which is done based on the power 
of available resources and the attributes of the datasets. 

The following step is assigning the tasks and visualization 
operations to the selected nodes. In case the discovered 
machines are not suitable for the rendering process then 
two machines will be selected for the task. On the other 
hand, if the available resources are not sufficient enough 
for the selected datasets then the system will suggest 
adding more resources. The second form of the algorithm 
process is related to the redrawing process of the 
Isosurface. This part is dependent on the users entered 
Isovalue for redraw process. At this stage the datasets 
have been already read and there will be no need for 
rereading the datasets. The Isosurface extractor will resend 
the resurfaced datasets to the Mapper then to the renderer. 
We found that this procedure worked well because there 
will be no change in the pipeline sequence unless there is 
node breakdown. Therefore, for this particular case the 
Globus MDS will have regularly checked on the available 
resources. Additionally, our embedded java program will 
query the MDS at both stages at the initial pipeline launch 
and at every redraw process to avoid the nodes breakdown 
problems. On the other hand, The Data Reader Service 
acts as Data filter to check on the selected datasets for 
visualization and automatically select the suitable data 
reader for this particular format. This process is entirely 
done with supplied reader included in VTK and integrated 
in the reader service. The users will not have to worry 
about selecting readers for specific datasets since the 
datasets is converted if required to reduce the size for 
better transmission purposes with consideration on 
keeping the detailed precision of the datasets. 

 
5- Adaptive Grid Visualization Pipeline Features 

 
This section describes the adaptive gird visualization 
pipeline and the proposed framework for resources 
discovery features and the advantages of techniques 
introduced in the architecture. 
 
5.1 Efficient Resources Utilization 
 
The implemented techniques for distributing the 
visualization pipeline on the grid and the distributions of 
real time visualization operations into several machines 
give the architecture several advantages. Firstly, 
automated load distribution on the first launch of the 
pipeline and the capabilities of partitioning the datasets 
with parallel reading of the data service allow the 
architecture to utilize more resources for geometry 
generation which is known to consume the available 
resources of the machine. Secondly, the architecture is not 
only distributing the visualization operations into grid 
nodes, but is making best use of the discovered nodes 
where the visualization operations are distributed based on 
datasets attributes  and the  nodes with better resources are 
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assigned more slices of datasets. This way the overall 
visualization pipelines will have better load balancing at 
the execution time and the user will have better interaction 
with the datasets. Unlike other grid enabled visualization 
systems such as stated in [13] in their implementation the 
visualization operations take over the memory of the entire 
used machine and the user will have to wait for the 
operations to complete. 
 
5.2 Heterogeneous Support 
 
The architecture was designed with consideration of 
platform independency.  Additionally, the selected internal 
services and used components such as Globus Toolkit and 
VTK Library exist as an open source and provide java 
wrappers for these reasons we focused our implementation 
for clients and our imbedded components such as grid 
mapping function to be in java language where java is 
known to be platform independent. Therefore, the grid 
visualization pipeline allows different hardware and 
different operating systems to communicate and exchange 
the data without worrying about underlying configuration. 
As an example, for our testbed, we have five nodes; Three 
with Linux RedHat 9 and one with fedora core 3 
implemented as Parallel data reader; we implemented 
Isosurface extractor on two nodes and the choice of 
number of Isosurface extractors to be used is depend on 
the visualization requirements. The other node works as 
data Mapper. This provides heterogeneous grid 
visualization pipeline which is able to communicate with 
client installed on Windows XP with modest resources and 
visualize large datasets without overwhelming one single 
machine.   
 
5.3 Automatic Resource Discovery 
 
For resources discovery, we utilize Globus MDS together 
with our embedded Grid Mapping Function to make the 
best use of the discovered resources on the grid. Our 
resources discovery mechanism starts from the display 
client node as the user executes the grid mapping task 
provided in GUI. The MDS then query the resources 
available in the grid and registers the resources in the 
system. The results of the query are information of current 
load of each node and the memory, storage and CPU. For 
better utilization of the discovered resources we wrote java 
client program for selection mechanism that is done by 
comparing our calculated datasets size and the power of 
the available nodes. On the other hand, our system is 
publically available to other users. The resources are 
advertised as grid services and registered in UDDI server.  
This allows automatic discovery of resources and give the 
system flexibility to add or remove services to the pipeline 
as required. 

 
6. Testbed Implementation 
 
The resources we used for testbed implementation include 
2 HP workstations equipped with NVidia GeForce 4MX 
Go graphics, 512 MB of RAM and 2.87 GHz CPU 
running on Linux RedHat 9, and two with NVidia  nv10 
GeForce 256 SDR graphics card , 256 MB of RAM 
running Linux Fedora core 3. At the client user, we used 
HP Notebook equipped with Intel(R)Pentium(R)4 CPU 
2.80GH, Graphic Adapter ATI  Mobility IGP 
340M/345M ,  512 MB of RAM and ST94011A 40 GB 
disk drives running on windows XP Professional. All the 
machines were linked with LAN cable 100MB Ethernet 
LAN. During the implementation there was extra demand 
for memory during the rendering process. 
 
 

 
Figure 5 Dental Scan with Isovalue 1600 

 
 

 

 
Figure 6 Dental Scan with Isovalue 500 
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Figure 7 Dental Scan with Isovalue 1600 

 
7. Experimental Results 
 
For our presented results, we used test models (CT scan of 
facial bone) in raw format that were obtained from  
Hospital Universiti Sains Malaysia and second model was 
the 3D Dental Scans  dataset converted to VTK raw 
format was taken from public datasets archive Table 1 
shows the models used in our experiment. 
 

Table 1: Models used in benchmarks 
Model Name Number of Polygons Size of Data File 
Skeleton head 4.28 million 15.1MB 
3D Dental Scan 14.62 million 58 MB 

 
The first raw skeleton datasets consists of 121 slices of 
256*256 * 256 producing file size 15.1MB. The second 
model is 3D dental scans consists of 167 slices of 256*256 
* 256 producing file size 58 MB.  The datasets first read in 
parallel by Parallel Data reader services as for model of 
3D dental scans datasets during the experiment. The data 
Reader services partitioned the datasets into two portions. 
The slices 1 to 81 are read concurrently with the slices 
from 82 to 167 with one Parallel Data reader Service. The 
implemented Parallel Data Reader Services was based on 
vtkVolume16Reader java class and modified to read the 
datasets in Parallel and work as grid services located at 
Skudai.fsksm.utm.my node which is the starting of the 
pipeline. Then portions of the portioned datasets sent to 
Assigned Isosurface Extractors immediately after 
completing the reading stage. At our Isosurface Extractors 
we used marching cubes and a polygon decimation 
algorithm for geometry generation The vtkmarchingcubes  
algorithm was  used to extract the Isosurface from the 
supplied datasets and we used  and vtkDecimatePro was to 
reduce the number of produced polygons from the 
previous step. For better illustration purpose the figure 5 
Dental Scans Datasets shows the visualization client with 
two visualized objects. The object on the lift is showing 

the lower part of the dental scan was processed on 
Mewah.fsksm.utm.my with Isovalue 1600.  Additionally, 
the object on the right of the same figure was processed on 
Kulai.fsksm.utm.my Machine with the same Isovalue. And 
the same condition for Figure 6 the only different is with 
Isovalue 500. Figure 7 shows visualization client with 
combined portions of the portioned Datasets on the client 
machine. However, The Mapping Service was needed 
before the datasets sent to the visualization client to reduce 
the load of appending the datasets to form one single 
object. We used vtkAppendFilter at Mapping Service to 
append the datasets together. This stage is also responsible 
of mapping the produced polygons to the selected Render 
Services then to the display client. Figure 8 shows the 
performance of the selected Isosurface Extractors for 
dental scan datasets and the number of produced polygons 
for each Isovalue. 

 
Figure 8 Mewah and Kulai Isosurface Extractors with 

different Isovalue and the produced polygons for dental 
scans Datasets 

 
Figure 9 Automatic resources Selection with Parallel 

Reading with comparison of Manual resources Selection 
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Table 2: Improvement of Automatic resources Selection 

 Manual  (s) Automatic  (s) Improvement
Isovalue 1600 27.852 7.338 73.65% 
Isovalue 1200 30.774 18.502 39.87% 
Isovalue  800 24.257    14.602 39.80% 
Isovalue  500 11.756 7.642 34.99% 

 
8. Automatic Resources Selection. 
 
The partitioning and distributing the datasets to more than 
one Isosurface Extractor give the architecture several 
advantages over the conventional methods. There are 
some other methods and tools that are able to distribute the 
assigned jobs and tasks in environment similar to the 
cluster. In addition to that, for cluster case the user already 
has information about his/ her position in the cluster queue. 
Unfortunately, these conditions are not possible with real 
time grid visualization pipeline where the grid is built on 
unreliable environment and implementing the queue 
methodology will cause the undesired outcome for the 
entire pipeline performance. However, for our architecture, 
we implemented automatic resources selection based on 
grid mapping function and MDS queried results. Figure 9 
shows the performance gained from automatic resources 
selection with parallel reading in comparison of manual 
resources selection. The results were based on two 
conditions. First we implemented manual resources 
selection by specifying the Isosurface extractor to extract 
without parallel reading for different Isovalue.  We 
noticed that the manual resources selection causes The 
Isosurface Extraction node to be in unresponsive state 
with certain Isovalue where it worked well with the 
second condition by distributing and portioning method 
with two automatically selected Isosurface extractions. 
 
9. Conclusion and future work 
 
We presented architecture with Adaptive resources 
discovery mechanism for real time visualization pipeline 
for large medical datasets. The implementation was based 
on partitioning the datasets and parallel reading 
capabilities and automatic resources selection for real time 
formation of grid enabled visualization pipeline. Our 
presented results show the improvements of the introduced 
techniques in comparison of the existing manual selection 
without parallel and partitioning techniques. Additionally, 
our presented findings were based on practical 
implementation of grid visualization pipeline prototype. 
Our future work will focus on distributed rendering and 
we will more focus on applying real time distributed 
rendering techniques to improve the performance. We 
showed how resources discovery mechanism could be 

implemented to support automatic formation of real time 
visualization pipeline on grid. 
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