
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

114

Manuscript received December 5, 2007

Manuscript revised December 20, 2007

Adaptive Resources Selection Framework for Grid Enabled
Visualization Pipeline

 Aboamama Atahar Ahmed, Muhammad Shafie Abd Latiff, Kamalrulnizam Abu Bakar

 Universiti Teknologi Malaysia Universiti Teknologi Malaysia Universiti Teknologi Malaysia

Zainul Ahmad Rajion

Universiti Sains Malaysia

Summary

Scientific data visualization is a process of transforming
numerical data into a pictorial format conceivable by humans.
The datasets generated by medical detectors and simulations is
increasing in size and complexity. Additionally, the conventional
desktop computers are not sufficient to process this datasets due
to memory overwhelming phenomenon which causes the desktop
to be in unresponsive state. The current implementation of
remote visualization techniques specifically real time
visualization takes the direction of reducing the size of the
datasets which is known to give less details and precision of the
visualization. On the top of that, the increasing size of datasets
and the continuous demand for computational power results an
urgent need for grid computing infrastructure for real time
remote visualization. However, the current grid computing
implantations introduce new challenges for remote real time
visualization such as resources discovery and real time automatic
resources selection. This paper investigates how the automatic
resources selection mechanism could be used to support real time
remote visualization of large medical datasets on the grid
environment. We show our Adaptive resources selection
framework for grid enabled visualization pipeline. Our results
shows better performance of distributed parallel Isosurface of
large partitioned datasets implemented as grid services. We
support our findings with practical implementation of grid
enabled visualization prototype, and our proposed grid mapping
function algorithm for automatic resources selection to visualize
large medical datasets, (circa 11 million polygons) on modest
resources machine.

Key words:
Visualization, Grid computing, Medical datasets, visualization
techniques, thin clients, Globus toolkit, VTK.

1. Introduction

Scientific data visualization is a process of transforming a
numerical data into a pictorial format understandable by
humans. The datasets generated by medical detectors and
digital scanners is normally large in size and
algorithmically complex. Moreover, the large size of

datasets introduces several challenges for visualization
researchers where the computational powers required for
visualizing this datasets exceeded the ability of
conventional desktop machine provided to the researchers.
The current access methods to large datasets remotely are
also associated with several issues such as the nature and
services of infrastructure provided to access the datasets.
In addition to that, there are several technologies
introduced to provide access methods such as client server
architecture and remote access to a cluster of machines
[1] [2][3] [4] and recent studies focus on grid computing
as an alternative to tackle the problem of data intensive
applications. Grid computing as defined by OGSA [5]
introduces the concept of sharing the resources of
geographically distributed machines. This resulted through
the utilization of current high speed networks therefore
this grid infrastructure allows sharing of processing power
memory and storage and forms like powerful virtual super
computers. However, current grid implementation
introduces new challenges especially for visualization
community such as implementations of remote
visualization on the grid. There is some introduced
research studies focused on enabling existing visualization
systems although these studies introduce solutions for
specific systems but there are arising issues with the
current implementation of these solutions specifically for
real time visualization pipeline. This paper investigates
how the resources discovery mechanism could be
implemented to allow automatic formation of real time
visualization pipeline on the grid environment. Our results
show better performance of our grid mapping function in
utilizing the discovered resources and making best use of
the resources with comparison of current manual
configuration of the pipeline. We support our findings
with practical implementation of real time visualization
pipeline prototype for large medical datasets.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

115

2. Related work

The scientific data visualization was sparked by landmark
NSF report ‘Visualization in Scientific Computing’ by
McCormick [6]. The introduced visualization concept was
based on breaking down the dataflow of the visualization
process to smaller distributed processes. The smaller
processes can be placed on distributed locations which are
interconnected by network to form a modular visualization.
Each part can contribute as an independent modular to
form the overall visualization process. However, the
existing grid enabled visualization systems are in the
direction of translating the existing dataflow concept
presented by Haber and McNabb [7] as described in
Figure [1].

Figure [1] Haber-McNabb Visualization Pipeline

The existing visualization systems such as AVS Express
[8], VTK [9], IBM Data Explorer, OpenGL VizServer
[10] and IRIS Explorer [11] are generally available today
and used to visualize a variety of large volume of data
including medical data. For example, a system such as
VTK is making use of wide range of visualization
algorithms and VTK supports parallelism through the use
of threads. However, these visualization systems are
generally designed to work in single high capabilities
hardware machine. Despite the fact that VTK was
designed in an object oriented fashion, during the design
of this system there were no considerations to be
supported in the grid environment. Other projects are in a
direction to extend the capabilities of these visualization
systems. For instance, gViz project was designed to extend
IRIS Explorer. However, the possible integration in grid
environment should be based on the design of internal
components of these systems. Therefore, the challenge
now is in providing a flexible and effective mechanism to
support remote access to the resources. Current
implementations of grid enabled visualization are often
tied to expensive hardware and powerful graphic support.
In addition to that, the different network bandwidth and
different output devices between the rendering location
and presentation location produces output suitable for one
device and not suitable for another. On the other hand, the
existing grid visualization applications often make
assumptions on the available resources ‘render local and
render remote methodologies’. The following are some of
Grid enabled visualization applications and projects.
RAVE [12] is a grid enabled visualization system that
reacts and responds to available heterogeneous resources.
RAVE implements techniques to make use of both remote

and local resource according to the participating machines
from high capabilities machines to Small PDA’s. The gViz
project [13] is another grid enabled visualization
application. The idea was to incorporate the grid in the
internal components of the IRIS Explorer [11]. The E-
Demand [14] is another grid enabled visualization project
focusing on the use of Grid services to support
stereoscopic visualization in a distributed environment.
The E-demand application considered as PSE “problem
solving environment” on the grid. OGSA [5] presents each
model as an entity. Multi rendering services can be
deployed to form a collaborative environment. The
SuperVise [15] is another grid implementation. In
SuperVise Project, the phases of visualization pipeline
such as filtering and geometry transformation are
distributed across the grid. The user selects the data then
the SuperVise selects the appropriate resources and form
the visualization pipeline. The Distributed Visualization
System [16] is visualization application that uses frameless
buffer for rendering to distribute the pixel images between
several machines. Each machine receives subset of the
pixels to render it and submit the rendered part to create
the full image, but each machine must have the original
copy of the full image. Some other visualization
applications do not rely totally on software in their
implementations for instance Visapult [1] is a visualization
framework with the ability to render a huge amount of
datasets (of the order of 1-5 Tb). Visapult uses parallel
rendering hardware to carry out the high speed rendering
processes. Using Cactus [17] the data are distributed
amongst many parallel nodes for volume rendering, the
rendered subset 2D image sent to the client for local
rendering. Engel_vis [18] is another application that
combines Local and Remote Visualization Techniques for
Interactive volume rendering in medical applications. The
application was implemented using java, java 2D and java
3D based on the client which communicate with a server
implemented in C++ and OpenInventor. The methodology
followed is to load the datasets from the client side.
Clients send the datasets to slicing tool. The slicing tool
inspects slices in axial, coronal directions, and transfers
the volume data to the server application. The server, a
stand-alone application that utilizes 3D texture mapping
hardware renders images off-screen and sends back
compressed images to the clients. The methodology
presented will not work well for clients with limited
capabilities for local rendering and geometry
transformation. There are some other implementations of
grid methods on visualization, such as stated in [19] the
implementation was focused on developing a rendering
pipeline and this implementation also utilizes Globus
toolkits for interconnecting the pipeline components with
support of Chromium technology for distributed rendering.
Other recent implementation as mentioned in [20] where

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

116

they describe the integration of VTK with Globus to have
parallel graphics rendering pipeline on grid environment.
However, the mentioned grid enabled visualization
applications are well structured and designed to solve
specific problem. Some of the applications provide the
participating machines with no ability to do the rendering
processes such as COVISE. Others assume that the
participating machines support the rendering resources
such as OpenGL VizServer 3.1. In addition, the other
newly implemented techniques are trying to solve the
rendering and resources support such as RAVE
visualization application. RAVE is trying to develop a
mechanism to figure out which machines support the
rendering tasks and which machines have limited support
for the rendering. Unlike other recent implementation [19]
where the methods followed did not specifically focus on
the issue of Isosurface rendering or volume rendering
pipeline and how it could be done on a gird environment.
Despite the fact that Isosurface rendering is one of the
most important issues in remote or distributed
visualization, our technical implementation shows the
actual results of performing Isosurface on medical datasets
located remotely and displays the results on modest
resources machine. These findings are described with real
implementation of grid computing environment
particularly with Globus toolkit to provide transparent
access to the available resources. Additionally, we present
in this paper unique added functionality as small
embedded Java programs for the resources discovery to
suite our architecture. On other hand, and make best
selection of the available discovered resources.

3- A Framework for Volumetric Visualization

on the Grid Environment

3.1 Visualization Toolkit

VTK [9] is an open source library for 3D computer
graphics and image processing and visualization. It is
object oriented implementation of over 700 C++ classes
and more than 350000 lines of code. The library created
by Ken Martin, Will Schroeder and Bill Lorensen. This
library organized in a form of kits. The kits are used to
build application in sequential modules with related
functionality. VTK supports a variety of dataset formats
and visualization algorithms. The object oriented design of
VTK allows the C++ library to be accessed with wrappers
built in TCL, java or Python. We are using two
algorithms provided by VTK Marching Cubes [21] for
extracting the Isosurface from the datasets to produce the
polygons and Decimation algorithm [22] to simplify the
mesh and reduce the number of polygons produced by
Marching Cubes stage.

3.2 Grid Services

The motivation behind choosing Globus [23] as our
hosting grid container comes from the useful components
that make up its grid services despite the known
difficulties in the Globus configuration specifically for
real time visualization operations. Our architecture utilizes
very important Globus components such as Globus MDS
(Monitoring and Discovery Services) and GRAM (Grid
Resources allocation Manager) to discover the resources
available on the grid pool and to be able to send and
receive data between the components of the visualization
pipeline. However, the integrations of Globus and VTK is
not new method for grid configuration where there has
been several attempts in past a couple of years [19] [20].
The only issue is that these particular implementations did
not take into consideration the real time visualization
pipeline. Therefore, the visualization pipeline for real time
visualization demands extra consideration to be taken into
account. Adjusting the visualization pipeline is a very
difficult task especially when dealing with a very large
datasets on one hand. This is normally due to unreliable
nature of the resources on the grid and one would not
know which resources suitable for which job. On the other
hand, visualization operations such as Isosurface demands
more computational power and most cases conventional
computer not capable of providing this power. From the
above facts we have decided to use MDS and embed our
java algorithm to collect information from MDS which
also utilizes Ganglia to get detailed information about the
nodes automatically by using UsefulRP Resource Property
Providers. This information organized in a form of static
data such as host name Memory size and the current
processor load for every node in the environment. The
issue now is how to map our visualization tasks to these
discovered resources. This is where our java algorithm
comes to work. This task is done immediately after having
our visualization pipeline started and users press on map
grid function to get VTK data reader calculate the size of
datasets and checks the complexity of datasets then map
the result to the algorithms to propose the resources
needed for this particular datasets according to the MDS
resources query results.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

117

3.3 Visualization Pipeline Architecture

The architecture is constructed from combination of two
different components. First component is VTK which is
distributed based on the requirement of visualization
operation. Additionally, we have VTK installed on every

Figure 2 Automatic Formation of Visualization
pipeline on the grid environment

node except for the client machine where we do not expect
enough resources such as memory, processing power and
storage. However, in order to utilize the existing VTK
interactivity we must have VTK java classes compiled
installed as vtk.jar on the client. Additionally, we have
GT4 which also installed on all the nodes participating in
the architecture except for the display client. On The other
hand, we have installed cogKt as jar file on the client to
allow the queries to be passed and received by the client
machine to The Globus MDS. The distribution of the
architecture components is done based on grid services
where we divide the architecture into several as follow
Parallel Data Reader Service, Iso-surface extractor
Services, Data Mapper, renderer and Display.

3.3.1 Parallel Data Reader

Data reader designed to read the selected datasets in
parallel fashion, the datasets normally organized as slices
specifically medical datasets. The architecture supports
reading different types of datasets such as ASCII binary
files or raw datasets formats and all the formats supported
by VTK. The type of data reader is selected according to

specified datasets and the data reader is able to read data
from more than one location and append the data to one or
more Iso-surface extractor. The size of the datasets is
calculated at this stage. The parallel capabilities adds very
important advantages to the over all architecture
performance by speeding up the reading and recognition
of

Figure 3 Grid Visualization Pipeline Architecture with Parallel
Data reader and Redraw process requests of an Isosurface

the specified datasets. In addition to that dividing the
datasets into chunks allows the following stages of the
pipeline which are Isosurface extraction to be distributed
according to load and the discovered resources on the grid.
The datasets partitioning process is carried out
immediately after checking the attributes of the datasets.
In our particular case for medical datasets which supplied
as numbered slices each portion of the datasets is read in
parallel and assigned to Isosurface extractor. Additionally,
the number of Isosurface Extractors to participate in the
datasets extraction operations depends on two conditions.
First condition is on the discovered resources in the grid.
Second condition is the attributes of the datasets such as
size and the number of the slices. The datasets partitioning
and parallel reading capabilities provide the architecture
speedup and enhance the performance in comparison with
sequential reading methods. Firstly, reading the datasets in
parallel will shorten the time needed to read large datasets
although there is a network delay but our practical
implementation shows better performance in time needed
to read the datasets using parallel reading comparing with
sequential pipeline without parallelism. Secondly,
assigning partitioned datasets to more than one Isosurface
Extractor will also give better performance and speedup

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

118

the time need to extract polygons for later rendering stage.
However, The Isosurface Extraction stage is known to
take longer time when the entire datasets assigned to one
single machine as our implementation show where with
some Isosurface values resulted the memory overwhelmed
and causes to machine to be in unresponsive state.

3.3.2 Distributed Isosurface extractor
The extraction process is geometry generation of the
datasets and duration of this process is depending on the
size, complexity of the datasets and in addition to the
available resources (processing power, memory, storage)
of the used machine. For these reasons dividing this
process to be carried in more than one machine is
necessary to avoid the memory overwhelming
phenomenon which is considered the main problem when
processing large datasets on one conventional desktop.
Our implementation for extracting 3D grid from the
datasets we used The Marching Cubes algorithm [21]. We
have chosen this particular algorithm for geometry
generation for several reasons. Firstly, modeling the
dynamic changes of the visualization operations on the
grid is a great challenge. However, for our particular
Isosurface algorithm case, different Isovalue with the same
datasets produces different number of generated polygons.
Additionally, different quantities of polygons produced by
the same Isovalue even with the same datasets with
different time step. The quantity of generated polygons
causes different performance of the entire extraction
process and over all the performance of the pipeline.
Secondly, this scenario is providing dynamic changes in
the environment where the load is not fixed throughout the
distributed visualization pipeline. The visualization
requirements (datasets location and Isovalue) passed from
the user is located at remote location to the starting server
of the pipeline. Then, the pipeline is formed according to
selected dataset size and generated polygons. Figure 3, the
initial Isosurface drawing requests contain datasets address
location and Isovalue. These parameters are passed to the
starting pipeline server. The source of the datasets can be
from static file or life feed from external programs. After
reading and calculating the datasets size the server
serialize the datasets to the assigned Isosurface extractors
according to datasets size and the capacity of the
extracting machines. The Isosurface extractor then
deserializes the data and appends the datasets with
vtkappendFilter implemented as grid service used to
append datasets from several data extracting instances.
After extracting the polygons from the datasets the
extractor then serialize the resulted datasets to mapping
service. The decimation process takes place after the
extraction for datasets size reduction by reducing the
number of polygons.
[1]

3.3.3 Data Mapper
Mapping service is responsible for taking datasets
produced by Isosurface extractor and deserializes the data
and maps it to one or more rendering service. Mapping
and Isosurface extraction may be implemented as a single
service. The resulted datasets serialized to the rendering
service. The importance of mapping is to allow the
discovery of grid available resources by querying the
Globus MDS. The result of the query is used to assign the
proper rendering nodes. The mapping service is also
responsible for partitioning the resulted geometric datasets.

3.3.4 Renderer
Rendering is a process of transforming the geometric data
into images. The rendering process is known to consume
the available resources such as memory and storage. This
particular problem is common for standard desktop
computers where the rendering of large geometric datasets
will consume CPU and available memory. For these
reasons, our technique uses rendering services in the form
of grid services. Each rendering service is registered in
UDDI server and advertises itself to other services. The
Globus MDS is used to discover the rendering resources in
the grid. Then the render receives the assigned chunk of
the datasets.

Figure 4 Grid Mapping Function

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

119

4 Resources Discovery Mechanism

The resources discovery mechanism starts at the grid
mapping function Figure 4 located at client machine. The
users must specify the starting point of visualization
pipeline by specifying the address of the starting node and
the address of data Service where the datasets stored. After
supplying this information the data reader will
automatically form the remaining visualization pipeline
nodes. Data Reader works closely with Globus MDS to
supply the necessary information about the available
nodes as showing in figure 3. This information contains
the available memory and storage capacity and processing
power of each of the discovered node. Then according to
calculated size of the datasets and with supplied
information from the MDS the visualization pipeline will
be formed. This technique is not built in the MDS
therefore we had to write and amped small java algorithm
programs to match this methodology the following
scenario is a description of the proposed algorithm.

Phase 1- Starting the pipeline process

1- Connect to datasets Center
2- Calculate the size of the datasets check the number

of slices
3- Request the available node
4- Estimate the necessary power for each visualization

task
5- Arrange the nodes according to the predicted power

from step 4
6- Assign the visualization task to each node

Phase 2- Redraw Request process

1- Request the available resources
2- Reassign the visualization operation to each node
3- Apply the Isovalue changes to the assigned

Isosurface extractors

The proposed algorithm is based on two stages. The first
stage is at the starting point and at the very beginning of
the pipeline launch which is described as follow. First the
data reader checks the datasets format and chooses the
suitable reader to read the datasets. The next step is to
calculate the size of the selected datasets. Secondly the
data reader connects to MDS and gets the available
resources and rearranges the discovered resources
according to the calculated size of the datasets. If the
selected datasets is larger than the power of the first select
machine then the data reader assigns more than one
Isosurface extractor and that depends on the size of the
datasets. The third step is the distribution of the
visualization operations which is done based on the power
of available resources and the attributes of the datasets.

The following step is assigning the tasks and visualization
operations to the selected nodes. In case the discovered
machines are not suitable for the rendering process then
two machines will be selected for the task. On the other
hand, if the available resources are not sufficient enough
for the selected datasets then the system will suggest
adding more resources. The second form of the algorithm
process is related to the redrawing process of the
Isosurface. This part is dependent on the users entered
Isovalue for redraw process. At this stage the datasets
have been already read and there will be no need for
rereading the datasets. The Isosurface extractor will resend
the resurfaced datasets to the Mapper then to the renderer.
We found that this procedure worked well because there
will be no change in the pipeline sequence unless there is
node breakdown. Therefore, for this particular case the
Globus MDS will have regularly checked on the available
resources. Additionally, our embedded java program will
query the MDS at both stages at the initial pipeline launch
and at every redraw process to avoid the nodes breakdown
problems. On the other hand, The Data Reader Service
acts as Data filter to check on the selected datasets for
visualization and automatically select the suitable data
reader for this particular format. This process is entirely
done with supplied reader included in VTK and integrated
in the reader service. The users will not have to worry
about selecting readers for specific datasets since the
datasets is converted if required to reduce the size for
better transmission purposes with consideration on
keeping the detailed precision of the datasets.

5- Adaptive Grid Visualization Pipeline Features

This section describes the adaptive gird visualization
pipeline and the proposed framework for resources
discovery features and the advantages of techniques
introduced in the architecture.

5.1 Efficient Resources Utilization

The implemented techniques for distributing the
visualization pipeline on the grid and the distributions of
real time visualization operations into several machines
give the architecture several advantages. Firstly,
automated load distribution on the first launch of the
pipeline and the capabilities of partitioning the datasets
with parallel reading of the data service allow the
architecture to utilize more resources for geometry
generation which is known to consume the available
resources of the machine. Secondly, the architecture is not
only distributing the visualization operations into grid
nodes, but is making best use of the discovered nodes
where the visualization operations are distributed based on
datasets attributes and the nodes with better resources are

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

120

assigned more slices of datasets. This way the overall
visualization pipelines will have better load balancing at
the execution time and the user will have better interaction
with the datasets. Unlike other grid enabled visualization
systems such as stated in [13] in their implementation the
visualization operations take over the memory of the entire
used machine and the user will have to wait for the
operations to complete.

5.2 Heterogeneous Support

The architecture was designed with consideration of
platform independency. Additionally, the selected internal
services and used components such as Globus Toolkit and
VTK Library exist as an open source and provide java
wrappers for these reasons we focused our implementation
for clients and our imbedded components such as grid
mapping function to be in java language where java is
known to be platform independent. Therefore, the grid
visualization pipeline allows different hardware and
different operating systems to communicate and exchange
the data without worrying about underlying configuration.
As an example, for our testbed, we have five nodes; Three
with Linux RedHat 9 and one with fedora core 3
implemented as Parallel data reader; we implemented
Isosurface extractor on two nodes and the choice of
number of Isosurface extractors to be used is depend on
the visualization requirements. The other node works as
data Mapper. This provides heterogeneous grid
visualization pipeline which is able to communicate with
client installed on Windows XP with modest resources and
visualize large datasets without overwhelming one single
machine.

5.3 Automatic Resource Discovery

For resources discovery, we utilize Globus MDS together
with our embedded Grid Mapping Function to make the
best use of the discovered resources on the grid. Our
resources discovery mechanism starts from the display
client node as the user executes the grid mapping task
provided in GUI. The MDS then query the resources
available in the grid and registers the resources in the
system. The results of the query are information of current
load of each node and the memory, storage and CPU. For
better utilization of the discovered resources we wrote java
client program for selection mechanism that is done by
comparing our calculated datasets size and the power of
the available nodes. On the other hand, our system is
publically available to other users. The resources are
advertised as grid services and registered in UDDI server.
This allows automatic discovery of resources and give the
system flexibility to add or remove services to the pipeline
as required.

6. Testbed Implementation

The resources we used for testbed implementation include
2 HP workstations equipped with NVidia GeForce 4MX
Go graphics, 512 MB of RAM and 2.87 GHz CPU
running on Linux RedHat 9, and two with NVidia nv10
GeForce 256 SDR graphics card , 256 MB of RAM
running Linux Fedora core 3. At the client user, we used
HP Notebook equipped with Intel(R)Pentium(R)4 CPU
2.80GH, Graphic Adapter ATI Mobility IGP
340M/345M , 512 MB of RAM and ST94011A 40 GB
disk drives running on windows XP Professional. All the
machines were linked with LAN cable 100MB Ethernet
LAN. During the implementation there was extra demand
for memory during the rendering process.

Figure 5 Dental Scan with Isovalue 1600

Figure 6 Dental Scan with Isovalue 500

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

121

Figure 7 Dental Scan with Isovalue 1600

7. Experimental Results

For our presented results, we used test models (CT scan of
facial bone) in raw format that were obtained from
Hospital Universiti Sains Malaysia and second model was
the 3D Dental Scans dataset converted to VTK raw
format was taken from public datasets archive Table 1
shows the models used in our experiment.

Table 1: Models used in benchmarks
Model Name Number of Polygons Size of Data File
Skeleton head 4.28 million 15.1MB
3D Dental Scan 14.62 million 58 MB

The first raw skeleton datasets consists of 121 slices of
256*256 * 256 producing file size 15.1MB. The second
model is 3D dental scans consists of 167 slices of 256*256
* 256 producing file size 58 MB. The datasets first read in
parallel by Parallel Data reader services as for model of
3D dental scans datasets during the experiment. The data
Reader services partitioned the datasets into two portions.
The slices 1 to 81 are read concurrently with the slices
from 82 to 167 with one Parallel Data reader Service. The
implemented Parallel Data Reader Services was based on
vtkVolume16Reader java class and modified to read the
datasets in Parallel and work as grid services located at
Skudai.fsksm.utm.my node which is the starting of the
pipeline. Then portions of the portioned datasets sent to
Assigned Isosurface Extractors immediately after
completing the reading stage. At our Isosurface Extractors
we used marching cubes and a polygon decimation
algorithm for geometry generation The vtkmarchingcubes
algorithm was used to extract the Isosurface from the
supplied datasets and we used and vtkDecimatePro was to
reduce the number of produced polygons from the
previous step. For better illustration purpose the figure 5
Dental Scans Datasets shows the visualization client with
two visualized objects. The object on the lift is showing

the lower part of the dental scan was processed on
Mewah.fsksm.utm.my with Isovalue 1600. Additionally,
the object on the right of the same figure was processed on
Kulai.fsksm.utm.my Machine with the same Isovalue. And
the same condition for Figure 6 the only different is with
Isovalue 500. Figure 7 shows visualization client with
combined portions of the portioned Datasets on the client
machine. However, The Mapping Service was needed
before the datasets sent to the visualization client to reduce
the load of appending the datasets to form one single
object. We used vtkAppendFilter at Mapping Service to
append the datasets together. This stage is also responsible
of mapping the produced polygons to the selected Render
Services then to the display client. Figure 8 shows the
performance of the selected Isosurface Extractors for
dental scan datasets and the number of produced polygons
for each Isovalue.

Figure 8 Mewah and Kulai Isosurface Extractors with

different Isovalue and the produced polygons for dental
scans Datasets

Figure 9 Automatic resources Selection with Parallel

Reading with comparison of Manual resources Selection

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

122

Table 2: Improvement of Automatic resources Selection

 Manual (s) Automatic (s) Improvement
Isovalue 1600 27.852 7.338 73.65%
Isovalue 1200 30.774 18.502 39.87%
Isovalue 800 24.257 14.602 39.80%
Isovalue 500 11.756 7.642 34.99%

8. Automatic Resources Selection.

The partitioning and distributing the datasets to more than
one Isosurface Extractor give the architecture several
advantages over the conventional methods. There are
some other methods and tools that are able to distribute the
assigned jobs and tasks in environment similar to the
cluster. In addition to that, for cluster case the user already
has information about his/ her position in the cluster queue.
Unfortunately, these conditions are not possible with real
time grid visualization pipeline where the grid is built on
unreliable environment and implementing the queue
methodology will cause the undesired outcome for the
entire pipeline performance. However, for our architecture,
we implemented automatic resources selection based on
grid mapping function and MDS queried results. Figure 9
shows the performance gained from automatic resources
selection with parallel reading in comparison of manual
resources selection. The results were based on two
conditions. First we implemented manual resources
selection by specifying the Isosurface extractor to extract
without parallel reading for different Isovalue. We
noticed that the manual resources selection causes The
Isosurface Extraction node to be in unresponsive state
with certain Isovalue where it worked well with the
second condition by distributing and portioning method
with two automatically selected Isosurface extractions.

9. Conclusion and future work

We presented architecture with Adaptive resources
discovery mechanism for real time visualization pipeline
for large medical datasets. The implementation was based
on partitioning the datasets and parallel reading
capabilities and automatic resources selection for real time
formation of grid enabled visualization pipeline. Our
presented results show the improvements of the introduced
techniques in comparison of the existing manual selection
without parallel and partitioning techniques. Additionally,
our presented findings were based on practical
implementation of grid visualization pipeline prototype.
Our future work will focus on distributed rendering and
we will more focus on applying real time distributed
rendering techniques to improve the performance. We
showed how resources discovery mechanism could be

implemented to support automatic formation of real time
visualization pipeline on grid.

References
[1] Bethel .W, Tierney. Brian, Lee . J, Gunter .D, Lau S

(2000): Visapult Using High-Speed WANs and Network
Data Caches to Enable Remote and Distributed
Visualization, 2000 IEEE.

[2] Xiaoyu Zhang, Chandrajit Bajaj, William Blanke : 2001
Scalable Isosurface Visualization of Massive Datasets on
COTS Clusters : Proceedings of the IEEE 2001 symposium
on parallel and large-data visualization and graphics

[3] Engel K Sommer .O, Ernst C, Ertl T. (2000): Remote 3D
Visualization using Image- Streaming Techniques. 2000

[4] Brett Beeson1,2, Mark Dwyer1, David 2005 : Server-side
Visualization of Massive Datasets Thompson3
Proceedings of the First International Conference on e-
Science and Grid Computing (e-Science’05)

[5] Foster, C. Kesselman, Nick .K. M., Tuecke .S (2002): The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration. Technical
report, Globus, February 2002.

[6] McCormick B. H., DeFanti T. A., Brown M. D. (1987),
“Visualization in Scientific Computing”, Computer
Graphics 21 1-14.

[7] Haber, R.B. and McNabb, D.A. 1990. Visualization
Idioms: A Conceptual Model for Scientific Visualization
Systems. In: Visualization in Scientific Computing, Shriver,
B., Neilson, G.M., and Rosenblum, L.J., Eds., IEEE
Computer Society Press, 74-93.

[8] Upson, C., Faulhaber, T., Kamins, D., Schlegel, D.,
Laidlaw, D., Vroom, J., Gurwitz, R. and van Dam, A. 1989.
The Application Visualization System: a Computational
Environment for Scientific Visualization, IEEE Computer
Graphics and Applications 9, 4, 30- 42.

[9] Will Schroeder, Ken Martin, and Bill Lorensen, The
Visualization Toolkit: An Object-Oriented Approach To 3D
Graphics. Second Edition. Prentice Hall. Upper Saddle
River, NJ. 1998.

[10] SGI. SGI OpenGL VizServer 3.1. Data sheet, SGI, March
2003.

[11] Walton, J.P.R.B. (2004). NAG’s IRIS Explorer. In:
Visualization Handbook, Johnson, C.R. and Hansen, C.D.,
Eds., Academic Press (in press). Available at

 http://www.nag.co.uk/doc/TechRep/Pdf/tr2_03.pdf
[12] Walker D. W. , Grimstead .I (2004): Resource aware

visualization environment.
http://www.wesc.ac.uk/projects/rave/.2004

[13] Wood. J, Brodlie, K., J. Walton. (2003) gViz –
visualization and steering for the grid. In Proceedings of the
UK All Hands Meeting 2003,
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/030.p
df. , http://www.visualization.leeds.ac.uk/gViz.

[14] Charters, S., Holliman, N.S. and Munro, M. 2003.
Visualization in e-Demand: Grid Service Architecture for
Stereoscopic Visualization, Proceedings of UK e-Science
Second All Hands Meeting.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

123

[15] Osborne .J, Wright .H, (2003) SuperVise: Using Grid Tools
to Support Visualization. In Proceedings of the Fifth
International Conference on Parallel Processing and
Applied Mathematics (PPAM 2003),

[16] Mahovsky .J, Benedicenti. L (2003): Architecture for Java-
Based Real-Time Distributed Visualization. IEEE
Transactions on Visualization and Computer Graphics,
9(4):570 – 579, October December 2003.

[17] Allen .G, Benger. W, Goodale. T, Hege H.-C, Lanfermann .
G , Merzky . A, Radke. T , Seidel .E, Shalf .J (2000): The
Cactus Code: A Problem Solving Environment for the
Grid. In Proceedings of the Ninth International Symposium
on High Performance Distributed Computing (HPDC’00),
pages 253–262. IEEE, August 2000

[18] Engel K. et al.. (2000): Combining Local and Remote
Visualization Techniques for Interactive Volume Rendering
in Medical Applications. 2000

[19] Lorensen, William and Harvey E. Cline. Marching Cubes:
A High Resolution 3D Surface Construction Algorithm.
Computer Graphics (SIGGRAPH 87 Proceedings) 21(4)
July 1987, p. 163-170)

http://www.cs.duke.edu/education/courses/fall01/cps124/resourc
es/p163-lorensen.pdf

[20] Ade J. Fewings and Nigel W. John, "Distributed Graphics
Pipelines on the Grid," IEEE Distributed Systems Online,
vol. 8, no. 1, 2007, art. no. 0701-o1001.

[21] Dutra, Rodrigues, Giraldi, Schulze, "Distributed
Visualization Using VTK in Grid Environments," ccgrid, pp.
381-388, Seventh IEEE International Symposium on
Cluster Computing and the Grid (CCGrid '07), 2007

[22] William J. Schroeder , Jonathan A. Zarge , William E.
Lorensen, Decimation of triangle meshes, ACM
SIGGRAPH Computer Graphics, v.26 n.2, p.65-70, July
1992

[23] Thomas Sandholm and Jarek Gawor. Globus Toolkit 3
Core - A Grid Service Container Framework. Globus
Toolkit 3 Core White Paper, July 2003.

[24] M. L. Massie, B. N. Chun, and D. E. Culler, The Ganglia
Distributed Monitoring System: Design, Implementation,
and Experience, Parallel Computing, Vol. 30, Issue 7, July,
2004

[25] Ian Bowman 2004 Performance Modeling for 3D
Visualization in a Heterogeneous Computing Environment:
http://vis.lbl.gov/Publications/2004/Bowman-PGV-LBNL-
56977.pdf

Acknowledgments

This research is supported by the Ministry of Science,
Technology and Innovation Malaysia and collaboration with
Research Management Centre, Universiti Teknologi Malaysia.

 Aboamama Atahar Ahmed
received Higher Diploma in computer
programming and system analysis from
Higher Institute of comprehensive
profession Libya and M.S. degrees in
Information and Multimedia
Technology from Unitar University
Malaysia in 1997 and 2004, respectively.
he is now PhD candidate at Department
of Computer Systems and

Communications, Faculty of Computer Science and Information
Technology,Universiti Teknologi Malaysia.

 Muhammad Shafie Abd Latiff
received the B.S. 1986 and M.S. 1995
degrees in Computer Science (Universiti
Teknologi Malaysia) and PhD in
Modeling, Simulation and Animation in
Virtual Environments (Bradford
University, United Kingdom) in 2002.
he is now a senior lecturer. and Head of
Computer System & Communication
Department , Faculty of Computer
Science and Information Technology,
Universiti Teknologi Malaysia

Kamalrulnizam bin Abu Bakar
received the B.S 1996 in Computer
Science, Universiti Teknologi Malaysia
and M.S. in Computer Communication
& Networks, Leeds Metropolitan
University, UK. in 1998 , PhD in
Computer Science (Network Security),
Aston University, UK. he is now
senior lecturer. at Department of
Computer Systems and
Communications, Faculty of Computer

Science and Information Technology, Universiti Teknologi
Malaysia.

Zainul Ahmad Rajion received

M.S. PhD from Adelaide Australia
now is medical doctor at School of
Dental Sciences, Health Campus
Universiti Sains Malaysia

