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Summary 
The paper presents the experimental measurements of the 
temporal measures of the task scheduler embedded in Neuron 
Chip microcontroller. The investigated task scheduler 
dynamically manages sharing the Application Processor between 
tasks in smart devices developed in LonWorks control 
networking technology. Since the event-driven architecture does 
not provide the explicit management of time, the evaluation of 
the latency characteristics of software has to be handled 
indirectly. We have constructed a set of testing procedures that 
connect the scheduler operations with input/output actions. The 
latter can be analyzed by the standard measurement 
instrumentation. Finally, some information that can support 
timing-aware Neuron Chip programming is provided. 
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1. Introduction 

Local Operating Networks (LON, LonWorks) is one of the 
leading technologies in sensor and control networking 
addressed to a wide range of applications [3,4]. LON has 
become a classic solution in building automation, and 
home networking including all key building automation 
subsystems: heating, ventilating, and air conditioning, 
lighting, security, fire detection, access control, energy 
monitoring, etc. LonWorks platforms are also used, among 
others, in semiconductor manufacturing, pulp and paper 
equipment, material handling, textile machinery, 
petrochemical, food and beverage, automotive, and 
wastewater treatment. 
The core of LonWorks technology (registered also as 
EIA-709 standard) is the Neuron Chip microcontroller, a 
system-on-chip designed to provide intelligence and 
networking capabilities to distributed control devices. The 
Neuron Chip includes three 8-bit in-line processors (MAC 
Processor, Network Processor, and Application Processor) 
that support both communication and application 
processing [5]. 
The MAC Processor and Network Processor, execute the 
lower 6 layers of the LonTalk/EIA-709.1 protocol. The 
Application Processor executes the user code (the 

application program) together with the operating system 
services. Using hierarchical multiprocessor system, the 
Neuron Chip provides the parallel processing of 
application data and communication messages since 
multiple concurrent software processes are executed at 
different stages of protocol stack. 
The Neuron Chip is programmed in Neuron C, a language 
based on ANSI C optimized and enhanced for distributed 
control applications. One of the crucial differences 
between the ANSI C and the Neuron C code is a new 
structure of the application program. As distinct from 
ANSI C, a program written in Neuron C does not include 
the main() construct. Instead, Neuron C exploits a 
multitasking real-time scheduler built in firmware that 
allows the programmer to express logically parallel 
event-driven tasks, and to control the priority execution of 
these tasks [6].  
More specifically, the scheduler executes user-written 
tasks in response to events or conditions specified in when 
clauses. When a specified event or condition becomes true, 
the associated task code is executed. The task responded to 
important events may be assign to priority when clauses. 
The tasks associated with priority when clauses are 
executed before checking non-priority clauses. The 
non-priority tasks are executed only if no priority event or 
condition is evaluated to true. The scheduler checks when 
clauses in the round-robin order according to their 
appearance in the Neuron C program. 
As stated, the Neuron Chip firmware scheduler may be 
treated as a real-time node operating system that 
dynamically manages sharing the Application Processor 
between tasks waiting for the execution. The event-driven 
scheduling of Neuron Chip tasks is a main paradigm of the 
event-based architecture of LonWorks applications. 
The other fundamental concept in LonWorks/EIA-709 
technology are network variables that make up the 
network interface of the application program [6]. 
Whenever an output network variable is modified, its new 
value is propagated across the network to all devices with 
input network variables connected to that output network 
variable. Roughly speaking, the network variables are 
logical inputs/outputs of the nodes. The concept of 
network variables simplifies data sharing between smart 
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sensor and actuator devices. 
The event-driven software architectures refer to object 
oriented programming techniques where each node is 
considered as an object. The network variables can be 
considered as the object public data while conventional 
internal variables are the object private data. 
The event-driven architecture is built on the causal 
relationships among external events and the actions 
executed by a system, i.e., on “why” something happens, 
whereas the time-driven model focuses on the timing of 
actions, i.e., on “when” something happens. In the former 
case, actions are executed “as soon as possible” on the 
arrival of events, and the time can be handled by timing 
signals which are treated as external asynchronous events.  
Conversely, in the time-triggered scheduling actions are 
executed “at the right time” according to a schedule, and 
external events can be handled by polling mechanisms 
[1,2]. In fact, the time-driven model can be considered as 
the particular case of the event-driven one since events 
triggering the task execution might be defined by repeating 
timer expirations. 
The event-driven control can react to events by associating 
them with tasks to be delivered as soon as possible. The 
system is supposed to be waiting for incoming events and 
does not manage the concept of time. Since switching 
between tasks is caused by events, time is no longer a 
suitable independent variable in system modelling. The 
actual execution of actions is often left to the runtime 
support. However, the time is indeed a critical issue for 
control. The concepts of time and speed play a major role 
in the process control area, and especially, in real-time 
applications [1,2]. 
The paper presents the experimental results of the 
temporal measures of the embedded Neuron Chip task 
scheduler. Since the event-driven architecture does not 
provide the explicit management of time at the basic level, 
the evaluation of the latency characteristics of software has 
to be handled indirectly. We have constructed a set of 
testing procedures that connect the scheduler operations 
with input/output actions. The latter might be analyzed by 
the standard measurement equipment. 
We have selected several measures describing the 
scheduler latency characteristics, e.g. the scheduler restart 
overhead delay, the minimum inter-when delay, the 
minimum context switching delay. These measures are 
treated as the exemplification of a set of parameters related 
to the execution time of various Neuron C instructions that 
are evaluated using the method proposed in the present 
paper. 
Thus, the contribution of the paper is twofold. First, it 
relies on the evaluation of task scheduling delay in 
LonWorks smart devices. Second, it consists in the 
presentation of a measurement method that is universal 
and can be used for the evaluation of software latency 
characteristics in other real-time systems. 

Except comments reported in [5], which unfortunately 
include some mistakes and ambiguities, the studies on the 
Neuron Chip scheduler timing, to the author’s knowledge, 
have not been published. The present study is the 
extension of the previous author’s conference paper [10]. 

2. Algorithm Specification 

2.1 When Clause Definition 

The specification of the scheduler algorithm is presented 
below. As was mentioned, events that control the tasks 
execution order are defined through when clauses. A 
when clause contains an expression which, if evaluated as 
true, causes the body of code (the task) following the 
expression to be executed to completion [6] : 

 
when (event) 
 
{ 

task; 
} 

 
A task is a sequence of statements in a Neuron C program. 
The end of the task constitutes a critical section of the 
application program. Once begun each task runs to 
completion. The critical section of the program controls 
flow of application messages exchanged between the 
Application Processor and Network Processor. The 
following operations are executed at the end of a critical 
section [6,7] : 
- outgoing messages and output network variable 

updates are sent, 
- incoming messages and input network variable 

updates are processed,  
- timers are examined to check if they are expired, 
- the watchdog timer is reset to keep it from timing out. 
The  when clauses cannot be nested. Instead, the 
conventional conditional statements if, while, and for 
within the when clauses might be used. 

2.2 When Clauses Evaluation Order 

The scheduler evaluates when clauses in round-robin 
order. As stated, each when clause is evaluated and, if true, 
the associated task is executed. If the when clause is false, 
the scheduler moves on to examine the following when 
clause. After the last when clauses the scheduler returns to 
the top and moves through the group of when clauses 
again. Thus, the position of the task in the application 
program does not determine its potential precedence in the 
access to the Application Processor. However, the order of 
appearance of clauses in the application program defines 
the order of checking of corresponding events. 
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The priority keyword can be used explicitly to 
designate when clauses that should be evaluated more 
often than non-priority when clauses. If there are many 
priority when clauses in the application program, they are 
evaluated in the round-robin order. If none of the priority 
when clauses evaluates to true, then the non-priority 
when clauses are tested according to the round-robin order 
as described earlier. After the execution of any non-priority 
task, the scheduler checks the priority when clauses. 

2.3 Task Execution Order vs. Event Chronology 

If the events triggering the tasks occur rare, the order of 
task executions is determined by the order of 
corresponding event occurrences. Thus, the scheduler 
keeps the event chronology if it is lightly loaded, i.e., 
when no more than one event waits for a task execution. 
The delay between the event occurrence and the beginning 
of the task execution is then negligible since the tasks are 
run “as soon as possible”. 
If more than one event triggering task request occurs, the 
Application Processor may not run the tasks in the order of 
corresponding event occurrences. In other words, the 
subsequent event might be served before some event that 
occurred earlier. It depends on the phase of event 
occurrences with respect to the current position of 
scheduler testing loop as will be shown in Fig. 1. 
If the events are more frequent, the tasks wait for 
execution longer time. The corresponding latency depends 
on the number of when clauses in the application program 
and the tasks complexity. In the extreme case, all the 
events tested in when clauses are evaluated to true which 
cause all the tasks to be executed. This is the worst-case 
scheduler load that may be defined as the saturation 
condition. If the scheduler is saturated, the order of task 
execution is round-robin and corresponds to the order of 
appearance of when clauses in the program listing. Thus, 
although the Neuron Chip scheduler is dynamic in general, 
its operation becomes static under saturation conditions. 
We summarize the description of the scheduler operation 

by analyzing the following code : 
 

when (event a) 
{ 

task A; 
} 

 
priority when (priority_event) 
{ 

priority_task; 
} 

 
when (event b) 
{ 

task B; 
} 

 
when (event c) 
{ 

task C; 
} 

 
As demonstrated, the application program consists of three 
non-priority when clauses defined by the events (a, b, c) 
and the corresponding tasks (A, B, C), and a single priority 
when clause. 
The diagram of the scheduler operation is depicted in Fig. 
1. The exemplified instants of events occurrences are 
specified on the time axis. As follows from Fig. 1, the 
scheduler is saturated since all the events tested are 
evaluated as true. 
In particular, Fig. 1 presents the situation when the task 
execution order is not consistent with a chronology of 
event occurrences. Namely, the task C is executed before 
the task A although the corresponding event c have 
occurred later than the event a. Furthermore, as shown in 
the diagram, the execution order of the non-priority tasks 
is static and round-robin. 
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Fig. 1  Task scheduling with frequent events (saturation status).
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2.4 Events 

The events defined in when clauses fall into two 
categories: predefined events and user-defined events. The 
user-defined event can be any valid Neuron C expression. 
The predefined events use keywords built into the 
compiler and encompass the following classes : 
- system wide events (e.g. reset, online, 

offline), 
- input/output events (e.g. the value read from the I/O 

devices has changed), 
- timer events (timer_expires), 
- message and network variable events (e.g. the update 

of the network variable has been received). 

2.5 Classification of Neuron C Scheduling 

The Neuron C scheduling is applied to single node 
operations only so it performs scheduling in the local 
sense. LonWorks/EIA-709 technology offers limited 
ability to maintain the global scheduling because nodes in 
the LonWorks network have not access to global time (i.e. 
the nodes are not permanently synchronized). Hence, a 
timestamp can only be interpreted within the scope of a 
single node. Instead, the synchronization is established 
every time a packet transmission occurs. The transmitter 
transmits a preamble before sending the packet to allow 
the other nodes to synchronize their receiver clocks [5]. 
As a matter of fact, the concept of synchronized LonWorks 
network has been developed and presented in [9]. 
However, the extra wire connected the selected I/O pins of 
the Neuron Chip in all nodes in the network is required. 
This wire is designed for distribution of the 
synchronization signal generated by the dedicated node. 
Since the Neuron Chip does not support a hardware 
real-time interrupt input, the node processor must poll the 
hardware synchronization signal pulse. In [9], a periodic 
scheduler has been implemented with the calculation of 
the worst-case queuing delay. 
From the point of view of the formal classification we can 
characterize the Neuron C scheduling as : 
- dynamic since the scheduler makes its scheduling 

decisions at run-time, selecting one out of the current 
set of ready tasks, 

- non-preemptive because the currently executing task 
will not be interrupted until it decides on its own to 
release the allocated resources provided that the 
watchdog timer does not expire, 

- with optional priority system (defined by priority 
when clauses). 

2.6 Bypass mode 

The task scheduler built in the Neuron Chip firmware 
operates using a predefined algorithm and a user cannot 

configure or to change its behavior (except the scheduler 
reset mechanism [6]). However, if the task scheduler 
consists of a single when clause, which always evaluates 
to true and never returns, then the algorithm is in fact 
deactivated. In this way a user-defined scheduling 
algorithm might be developed on the basis of the 
conventional conditional statements (if, for, while). 
However, all the scheduling instructions must be included 
within the task associated with the single when clause. 
Moreover, the user is responsible for all event processing, 
i.e. to update the watchdog timer (using 
watchdog_update() function) and to define explicitly 
the critical section boundaries in the application program 
(using post_events() function). A method of Neuron 
Chip programming stated above is called bypass mode [6]. 

3. Definition of Scheduler Latency Measures 

In real-time contexts, event-driven languages are effective 
for systems with sporadic actions that must be executed as 
soon as possible. However, there is a finite delay 
associated with each scheduler operation. If the interarrival 
time between consecutive events is large enough in 
relation to the scheduler overhead, then the 
scheduling-induced latency can be neglected. Otherwise, 
they have to be taken into account in the application 
development. 
The time required for the scheduler to evaluate the same 
when clause in a particular user application code is to a 
larger extent a function of: 
- the size of the user code, 
- the total number of when clauses, 
- the frequency of occurrences of the events associated 

with those when clauses. 
The first two factors depend on the complexity of the user 
code. The latter depends on the application environment 
and a rate of its state changes in the time [5]. It is therefore 
impossible to specify a nominal value for this delay in 
general. Moreover, there is no limit for the upper bound of 
the scheduling delay. 

3.1 Scheduler-Related Timing Measures 

However, it is possible to evaluate the minimum 
(best-case) delay induced by the Neuron Chip task 
scheduler. It constitutes the lower bound for the task 
execution time. We have selected the following measures 
describing the scheduler latency characteristics: 
- the scheduler restart overhead delay, 
- the execution time of io_out() function call, 
- the minimum inter-when delay, 
- the minimum context switching delay, 
- the bypass mode timing properties. 
The list of measures presented above might be extended. 
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These measures are treated as the exemplification of a set 
of parameters related to the execution time of various 
Neuron C instructions that can be evaluated using the 
method proposed in the present paper. 

3.2 Measurement Method 

We have developed a measurement method of selected 
parameters related to scheduler-induced delay. Our 
approach belongs to indirect methods where the dedicated 
code that refers to the input/output operations is used in 
order to extract the corresponding scheduler parameters 
from measurements. More specifically, in the proposed 
method we use a set of testing procedures, written in 
Neuron C, that connect the scheduler operations with 
input/output action. Thus, the timing properties of output 
signals generated on the Neuron Chip input/output port 
include information about several measures related to the 
scheduler latency. The measurements of the corresponding 
signals have been done using a standard digital 
oscilloscope. The experimental results of the oscilloscope 
measurements are reported in Section 4. 

3.3 Measurement Equipment 

We have carried out experiments using NodeBuilder 
Development Tool, which is an integrated hardware and 
software equipment operating with a microcomputer that 
provides a network development environment to prototype 
LonWorks devices [8]. The hardware consists of LTM-10 
LonTalk Module with Neuron Chip, 32 kB flash memory, 
32 kB static RAM, 10 MHz crystal oscillator, and custom 
Neuron Chip firmware. The software includes the Neuron 
C cross compiler for creating Neuron Chip object code. 

4. Experimental Results of Scheduler Timing 

4.1 Scheduler Restart Overhead 

We have started to investigate the scheduler latency 
characteristics from a simple procedure consisting of two 
non-priority when clauses that always evaluate to true as 
shown below : 
 
IO_2 output bit test_signal; 
when(TRUE) 
{ 
 io_out(test_signal,0); 

} 
 
when(TRUE) 
{ 
 io_out(test_signal,1); 

} 
The output object, called test_signal referring to the 

pin IO_2 of the Neuron Chip I/O port, is declared. 
The goal of the measurement is to isolate and extract the 
temporal measures associated with the scheduler. Since the 
processing of when clauses is round-robin, the Neuron C 
procedure performs alternating activation of IO_2 pin. As 
a result, the square waveform is generated on the pin IO_2 
of the Neuron Chip I/O port (see Fig. 2). The 
measurements have been performed using digital 
oscilloscope for Neuron Chip with 10 MHz input clock. 

 
Fig. 2. The evaluation of the scheduler restart overhead delay. 

 
Although a structure of both tasks is the same, the 
durations of the high tH and the low logic levels tL slightly 
differ. The reason of that is a position of a particular when 
clause in a scheduler loop. During the generation of the 
low logic level tL the following operations are run : 
- the execution of io_out() function, 
- the context switching at the end of the task. 
When the high logic level tH is generated, the extra 
operation is performed apart from the actions specified 
above, i.e. the scheduler loop is restarted. Thus, the 
scheduler restart overhead tSCH can be evaluated as the 
difference between the time intervals tH and tL : 

tSCH = tH – tL = 750 μs – 700 μs = 50 μs.  
Note that the scheduler restart overhead causes an extra 
delay only between the last and the first when clause in a 
scheduler loop. 

4.2 Minimum Inter-When Delay 

The testing procedure presented above allows to find the 
minimum delay between the evaluation of the consecutive 
when clauses that we call the minimum inter-when delay. 
As follows from Fig. 2, the minimum inter-when delay is 
700 μs long for 10 MHz input clock. 

4.3 Execution Time of io_out() Function Call 

To estimate the execution time of io_out() function, let 
us analyze timing of the code of a single when clause : 
 
IO_2 output bit test_signal; 
when(TRUE) 
{ 
 io_out(test_signal,0); 
 io_out(test_signal,1); 

} 
The diagram of the waveform generated on the pin IO_2 
of input/output port is shown in Fig. 3. The narrow 

700 μs 750 μs 

tH tL 
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negative pulses are separated by long time intervals 
because the duration of the high logic level tH is 
determined by the context switching delay, i.e., the latency 
related to switching the tasks executed by the processor. 
However, since the first call of io_out()function in the 
task is not followed by any extra firmware operations, we 
can assume that the duration of a single negative pulse, 
which is 70 μs long, is equal to the execution time of 
io_out() function tIO. In particular, it means that the 
function io_out(test_signal,1) is called at the 
instant of the falling edge of the test signal on the pin IO_2 
(see  Fig. 3) because the appropriate rising edge comes 
with 70 μs delay. 
The measured time interval tIO, corresponds to io_out() 
function execution time. However, we can assume that the 
delay associated with the return from the io_out() 
function is small in relation to the delay of the execution of 
the function call itself [5]. Thus, tIO can be treated as the 
io_out() function call time. 

 
Fig. 3  The evaluation of io_out() function execution time. 

 

4.4 Minimum Context Switching Delay  

Since the execution time of io_out() function is known, 
we can evaluate the minimum context switching delay tSW, 
which is the minimum time a scheduler needs to switch the 
execution of the consecutive tasks. It can be found as a 
difference between the width of the positive pulse, tH, and 
the execution time of io_out(), tIO (Fig. 3) : 

tSW = tH – tIO = 700 μs – 70 μs = 630 μs.    
Thus, the context switching delay is quite long in relation 
to the other Neuron C temporal components (tSCH, tSW, tIO). 
It is because the end of a task defines the critical section in 
the Neuron C application program [6,7]. The operations 
executed at the end of a critical section are listed in Sect. 
2.1. In particular, the outgoing messages and output 
network variable updates are sent, and the incoming 
messages and input network variable updates are 
processed. 
Moreover, as follows from the algorithm specification, 
before execution of each task, the scheduler tests the 
system wide events (online, offline, wink), the 
events related to priority when clauses and 
non-priority when clauses. 
The evaluated minimum switching delay tSW is valid for 

switching between consecutive tasks except the transition 
from the last to the first task in the scheduler loop. The 
latter is lengthen, as we noticed, by scheduler restart 
overhead which is 50 μs long.  

4.5 Context Switching with Active Network 
Variables 

Now we will consider the other version of the application 
program where the network variable(s) state is modified 
within the task.  
 
IO_2 output bit test_signal; 
network output nv; 
when(TRUE) 
{ 
 nv=nv+1; 
 io_out(test_signal,0); 
 io_out(test_signal,1); 

} 
 
The diagram of the waveform generated on the pin IO_2 
of input/output port is similar to that demonstrated in Fig. 
3, however, the duration of the positive pulses is 
significantly longer. The measurement on the 
corresponding output pin shows that the duration of 
positive pulse is extended to 3.05 ms. If we assume that 
the time spent for network variable modification is short, 
the increase of task execution time is caused due to 
sending the network variable update at the end of the task. 
Moreover, as observed, this delay increase is the same 
both for short (8-bit) and long (16-bit) network variables. 
If two or more network variable updates are sent within a 
task, the corresponding delay increases by 0.9 ms per a 
network variable and equals 3.95 ms and 4.85 ms for two 
and three network variables, respectively. 

4.6 Execution Time of post_events() Call 

Using the code presented below we can estimate the 
execution time of the idle call of post_events() 
function (we define the function idle call as a call when 
neither network variable updates nor explicit messages are 
ready for sending) : 
 
IO_2 output bit test_signal; 
 
when(TRUE) 
{ 
 io_out(test_signal,0); 
 post_events(); 
 io_out(test_signal,1); 

} 
 

The oscilloscope measurement gives the following results: 
the duration of the high tH = 750 μs, and of the low logic 

70 μs 

io_out(0) 
call 

io_out(1) 
call 

750 μs 
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level tL = 400 μs. Since the io_out() function call time 
is 70 μs (see Sect. 4.3), the execution time of the idle 
post_events() function call equals : 

tpost_e idle = 400 μs - 70 μs = 330 μs. 
Note that the code presented above can be used for 
evaluation of the execution time of any function that will 
be called between io_out()consecutive calls. For 
example, using the code : 
 
IO_2 output bit test_signal; 
when(TRUE) 
{ 
 io_out(test_signal,0); 
 watchdog_upate(); 
 io_out(test_signal,1); 
} 
 
we can evaluate the execution time of 
watchdog_upate() function call equals 30 μs. It is a 
difference between the negative pulse duration (100 μs) 
measured on the oscilloscope and the io_out() function 
call time (70 μs). 

4.7 Bypass Mode Timing 

Next, we investigated the minimum delay of scheduling in 
the bypass mode. At first, we have analyzed the following 
procedure: 
 
IO_2 output bit test_signal; 
when(TRUE) 
{ 
 if(TRUE)// Task 1 
   { 
 io_out(test_signal,0); 
 io_out(test_signal,1); 
         } 
 if(TRUE)// Task 2 
   { 
 io_out(test_signal,0); 
 io_out(test_signal,1); 

   } 
 if(TRUE)// Task 3 
   { 
 io_out(test_signal,0); 
 io_out(test_signal,1); 
          } 

} 
 
The pulse train generated on the pin IO_2, as a result of 
execution of the presented code, is shown in Fig. 4. 
Note that although the scheduling presented above is made 
using if instruction in a user-defined order, it does not 
correspond to the bypass mode, since the program returns 
from the single when clause in each cycle. Therefore, the 

implicit event processing is done at the end of each task 
execution. As seen in Fig. 4, the execution time of the if 
statement is negligible. It is because the negative pulse 
width is near the same (the difference is about 2 μs) as in 
Fig. 3, where the io_out() function call is not 
associated with if statement. 
 

 
 

Fig. 4  The evaluation of conditional statement execution time. 
 

Finally, we investigated the application program, where 
the “full” bypass mode is exploited so the watchdog-timer 
has to be updated. If network variables are used in the 
bypass mode, the post_events() function has to be 
called in order to define explicitly the boundary of critical 
section of the program. 
Moreover, we simulate more complex “event” expressions 
in order to find its influence on timing of the program 
execution. Some algebraic and logic expressions with the 
variables a, b, c are used to complicate the evaluation of 
the events, however, all events still always evaluate to true. 
 
IO_2 output bit test_signal; 
int a=0; 
int b=10; 
int c=40; 
when(TRUE) 
{ 
   for(;;) 
 { 
 if(a==0)// Task 1 
   { 
 io_out(test_signal,0); 
 io_out(test_signal,1); 
         } 
 if(b<=60)// Task 2 
   { 
 io_out(test_signal,0); 
 io_out(test_signal,1); 
         } 
 
 if((c-b)>=25)&&(a=0)// Task 3 
   { 
 io_out(test_signal,0); 
 io_out(test_signal,1); 
         } 
   watchdog_update(); 

} 

72 μs 

io_out(x) 
calls 

750 μs 
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Fig. 5. The evaluation of bypass mode timing properties. 

 
As seen in Fig. 5, testing of “event” expressions causes 
extensions of the positive pulses, because of finite latency 
of the evaluation of when clauses. The evaluation of the 
arithmetic expressions lengthens the first pulse (Task 1) by 
56 μs and the second one (Task 2) by 70 μs. 
All the measurements of the firmware task scheduler have 
been performed for the Neuron Chip with 10 MHz input 
clock. Note that the temporal measures are scaled with the 
input clock frequency, i.e. measured time intervals are 
directly proportional to the input clock. 

4.8 Discussion 

Summing up, the total overhead introduced by the Neuron 
Chip task scheduler is relatively high and approximately 
equal to 700 μs. The corresponding delay is significantly 
greater than the processing time of a task of average 
complexity. In particular, the scheduler-induced latency is 
an order of magnitude greater than the execution time of a 
function referring to the input/output port. The operations 
that are responsible for this latency are called 
automatically and are not present in the code. Therefore, 
the scheduler overhead can determine the application 
program timing if the program consists of a large number 
of short tasks associated with events which frequently 
evaluate to true. 

6. Conclusion 

The Neuron Chip built-in task scheduler defines the 
operational scenario of each LonWorks/EIA-709 device. 
The event-driven strategy of the scheduler algorithm is a 
part of the event-based architecture of the LonWorks 
networked systems. In most cases the knowledge of 
scheduler timing is not necessary to design the application 
program since the interarrival time between events is large 
enough in relation to the scheduler overhead. However, 
there are situations when the knowledge of Neuron Chip 
scheduler latency becomes important, e.g. if system is 

systematically extended and the number of tasks in the 
application program increases significantly. Then, the 
scheduler timing can present the bottleneck in real-time 
system behavior. It can happen especially if the application 
program consists of a large number of short tasks 
associated with events, which frequently evaluate to true. 
In this paper, some information that can support 
timing-aware Neuron Chip programming is provided. 
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