
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

132

Manuscript received December 5, 2007

Manuscript revised December 20, 2007

Latency Characteristics of Event-Driven Task Scheduler

Embedded in Neuron Chip

Marek Miśkowicz

Department of Electronics, AGH University of Science and Technology, Kraków, Poland

Summary
The paper presents the experimental measurements of the
temporal measures of the task scheduler embedded in Neuron
Chip microcontroller. The investigated task scheduler
dynamically manages sharing the Application Processor between
tasks in smart devices developed in LonWorks control
networking technology. Since the event-driven architecture does
not provide the explicit management of time, the evaluation of
the latency characteristics of software has to be handled
indirectly. We have constructed a set of testing procedures that
connect the scheduler operations with input/output actions. The
latter can be analyzed by the standard measurement
instrumentation. Finally, some information that can support
timing-aware Neuron Chip programming is provided.

Key words:
Scheduling Algorithms, Events, Delay Analysis, Fieldbus,
Microprocessor Control, System Architectures, Timing Analysis

1. Introduction

Local Operating Networks (LON, LonWorks) is one of the
leading technologies in sensor and control networking
addressed to a wide range of applications [3,4]. LON has
become a classic solution in building automation, and
home networking including all key building automation
subsystems: heating, ventilating, and air conditioning,
lighting, security, fire detection, access control, energy
monitoring, etc. LonWorks platforms are also used, among
others, in semiconductor manufacturing, pulp and paper
equipment, material handling, textile machinery,
petrochemical, food and beverage, automotive, and
wastewater treatment.
The core of LonWorks technology (registered also as
EIA-709 standard) is the Neuron Chip microcontroller, a
system-on-chip designed to provide intelligence and
networking capabilities to distributed control devices. The
Neuron Chip includes three 8-bit in-line processors (MAC
Processor, Network Processor, and Application Processor)
that support both communication and application
processing [5].
The MAC Processor and Network Processor, execute the
lower 6 layers of the LonTalk/EIA-709.1 protocol. The
Application Processor executes the user code (the

application program) together with the operating system
services. Using hierarchical multiprocessor system, the
Neuron Chip provides the parallel processing of
application data and communication messages since
multiple concurrent software processes are executed at
different stages of protocol stack.
The Neuron Chip is programmed in Neuron C, a language
based on ANSI C optimized and enhanced for distributed
control applications. One of the crucial differences
between the ANSI C and the Neuron C code is a new
structure of the application program. As distinct from
ANSI C, a program written in Neuron C does not include
the main() construct. Instead, Neuron C exploits a
multitasking real-time scheduler built in firmware that
allows the programmer to express logically parallel
event-driven tasks, and to control the priority execution of
these tasks [6].
More specifically, the scheduler executes user-written
tasks in response to events or conditions specified in when
clauses. When a specified event or condition becomes true,
the associated task code is executed. The task responded to
important events may be assign to priority when clauses.
The tasks associated with priority when clauses are
executed before checking non-priority clauses. The
non-priority tasks are executed only if no priority event or
condition is evaluated to true. The scheduler checks when
clauses in the round-robin order according to their
appearance in the Neuron C program.
As stated, the Neuron Chip firmware scheduler may be
treated as a real-time node operating system that
dynamically manages sharing the Application Processor
between tasks waiting for the execution. The event-driven
scheduling of Neuron Chip tasks is a main paradigm of the
event-based architecture of LonWorks applications.
The other fundamental concept in LonWorks/EIA-709
technology are network variables that make up the
network interface of the application program [6].
Whenever an output network variable is modified, its new
value is propagated across the network to all devices with
input network variables connected to that output network
variable. Roughly speaking, the network variables are
logical inputs/outputs of the nodes. The concept of
network variables simplifies data sharing between smart

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

133

sensor and actuator devices.
The event-driven software architectures refer to object
oriented programming techniques where each node is
considered as an object. The network variables can be
considered as the object public data while conventional
internal variables are the object private data.
The event-driven architecture is built on the causal
relationships among external events and the actions
executed by a system, i.e., on “why” something happens,
whereas the time-driven model focuses on the timing of
actions, i.e., on “when” something happens. In the former
case, actions are executed “as soon as possible” on the
arrival of events, and the time can be handled by timing
signals which are treated as external asynchronous events.
Conversely, in the time-triggered scheduling actions are
executed “at the right time” according to a schedule, and
external events can be handled by polling mechanisms
[1,2]. In fact, the time-driven model can be considered as
the particular case of the event-driven one since events
triggering the task execution might be defined by repeating
timer expirations.
The event-driven control can react to events by associating
them with tasks to be delivered as soon as possible. The
system is supposed to be waiting for incoming events and
does not manage the concept of time. Since switching
between tasks is caused by events, time is no longer a
suitable independent variable in system modelling. The
actual execution of actions is often left to the runtime
support. However, the time is indeed a critical issue for
control. The concepts of time and speed play a major role
in the process control area, and especially, in real-time
applications [1,2].
The paper presents the experimental results of the
temporal measures of the embedded Neuron Chip task
scheduler. Since the event-driven architecture does not
provide the explicit management of time at the basic level,
the evaluation of the latency characteristics of software has
to be handled indirectly. We have constructed a set of
testing procedures that connect the scheduler operations
with input/output actions. The latter might be analyzed by
the standard measurement equipment.
We have selected several measures describing the
scheduler latency characteristics, e.g. the scheduler restart
overhead delay, the minimum inter-when delay, the
minimum context switching delay. These measures are
treated as the exemplification of a set of parameters related
to the execution time of various Neuron C instructions that
are evaluated using the method proposed in the present
paper.
Thus, the contribution of the paper is twofold. First, it
relies on the evaluation of task scheduling delay in
LonWorks smart devices. Second, it consists in the
presentation of a measurement method that is universal
and can be used for the evaluation of software latency
characteristics in other real-time systems.

Except comments reported in [5], which unfortunately
include some mistakes and ambiguities, the studies on the
Neuron Chip scheduler timing, to the author’s knowledge,
have not been published. The present study is the
extension of the previous author’s conference paper [10].

2. Algorithm Specification

2.1 When Clause Definition

The specification of the scheduler algorithm is presented
below. As was mentioned, events that control the tasks
execution order are defined through when clauses. A
when clause contains an expression which, if evaluated as
true, causes the body of code (the task) following the
expression to be executed to completion [6] :

when (event)

{

task;
}

A task is a sequence of statements in a Neuron C program.
The end of the task constitutes a critical section of the
application program. Once begun each task runs to
completion. The critical section of the program controls
flow of application messages exchanged between the
Application Processor and Network Processor. The
following operations are executed at the end of a critical
section [6,7] :
- outgoing messages and output network variable

updates are sent,
- incoming messages and input network variable

updates are processed,
- timers are examined to check if they are expired,
- the watchdog timer is reset to keep it from timing out.
The when clauses cannot be nested. Instead, the
conventional conditional statements if, while, and for
within the when clauses might be used.

2.2 When Clauses Evaluation Order

The scheduler evaluates when clauses in round-robin
order. As stated, each when clause is evaluated and, if true,
the associated task is executed. If the when clause is false,
the scheduler moves on to examine the following when
clause. After the last when clauses the scheduler returns to
the top and moves through the group of when clauses
again. Thus, the position of the task in the application
program does not determine its potential precedence in the
access to the Application Processor. However, the order of
appearance of clauses in the application program defines
the order of checking of corresponding events.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

134

The priority keyword can be used explicitly to
designate when clauses that should be evaluated more
often than non-priority when clauses. If there are many
priority when clauses in the application program, they are
evaluated in the round-robin order. If none of the priority
when clauses evaluates to true, then the non-priority
when clauses are tested according to the round-robin order
as described earlier. After the execution of any non-priority
task, the scheduler checks the priority when clauses.

2.3 Task Execution Order vs. Event Chronology

If the events triggering the tasks occur rare, the order of
task executions is determined by the order of
corresponding event occurrences. Thus, the scheduler
keeps the event chronology if it is lightly loaded, i.e.,
when no more than one event waits for a task execution.
The delay between the event occurrence and the beginning
of the task execution is then negligible since the tasks are
run “as soon as possible”.
If more than one event triggering task request occurs, the
Application Processor may not run the tasks in the order of
corresponding event occurrences. In other words, the
subsequent event might be served before some event that
occurred earlier. It depends on the phase of event
occurrences with respect to the current position of
scheduler testing loop as will be shown in Fig. 1.
If the events are more frequent, the tasks wait for
execution longer time. The corresponding latency depends
on the number of when clauses in the application program
and the tasks complexity. In the extreme case, all the
events tested in when clauses are evaluated to true which
cause all the tasks to be executed. This is the worst-case
scheduler load that may be defined as the saturation
condition. If the scheduler is saturated, the order of task
execution is round-robin and corresponds to the order of
appearance of when clauses in the program listing. Thus,
although the Neuron Chip scheduler is dynamic in general,
its operation becomes static under saturation conditions.
We summarize the description of the scheduler operation

by analyzing the following code :

when (event a)
{

task A;
}

priority when (priority_event)
{

priority_task;
}

when (event b)
{

task B;
}

when (event c)
{

task C;
}

As demonstrated, the application program consists of three
non-priority when clauses defined by the events (a, b, c)
and the corresponding tasks (A, B, C), and a single priority
when clause.
The diagram of the scheduler operation is depicted in Fig.
1. The exemplified instants of events occurrences are
specified on the time axis. As follows from Fig. 1, the
scheduler is saturated since all the events tested are
evaluated as true.
In particular, Fig. 1 presents the situation when the task
execution order is not consistent with a chronology of
event occurrences. Namely, the task C is executed before
the task A although the corresponding event c have
occurred later than the event a. Furthermore, as shown in
the diagram, the execution order of the non-priority tasks
is static and round-robin.

Task C
Execution

Task B
Execution

Priority
Task

Execution

Task A
Execution

Task C
Execution

Priority
Task

Execution Task B
Execution

Task A
Execution

Task A

Priority Task

Task B

Task C

Event
a

Event
a

Priority
Event

Event
b

Event
c

Event
b

Priority
Event

Event
c

Time

Fig. 1 Task scheduling with frequent events (saturation status).

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

135

2.4 Events

The events defined in when clauses fall into two
categories: predefined events and user-defined events. The
user-defined event can be any valid Neuron C expression.
The predefined events use keywords built into the
compiler and encompass the following classes :
- system wide events (e.g. reset, online,

offline),
- input/output events (e.g. the value read from the I/O

devices has changed),
- timer events (timer_expires),
- message and network variable events (e.g. the update

of the network variable has been received).

2.5 Classification of Neuron C Scheduling

The Neuron C scheduling is applied to single node
operations only so it performs scheduling in the local
sense. LonWorks/EIA-709 technology offers limited
ability to maintain the global scheduling because nodes in
the LonWorks network have not access to global time (i.e.
the nodes are not permanently synchronized). Hence, a
timestamp can only be interpreted within the scope of a
single node. Instead, the synchronization is established
every time a packet transmission occurs. The transmitter
transmits a preamble before sending the packet to allow
the other nodes to synchronize their receiver clocks [5].
As a matter of fact, the concept of synchronized LonWorks
network has been developed and presented in [9].
However, the extra wire connected the selected I/O pins of
the Neuron Chip in all nodes in the network is required.
This wire is designed for distribution of the
synchronization signal generated by the dedicated node.
Since the Neuron Chip does not support a hardware
real-time interrupt input, the node processor must poll the
hardware synchronization signal pulse. In [9], a periodic
scheduler has been implemented with the calculation of
the worst-case queuing delay.
From the point of view of the formal classification we can
characterize the Neuron C scheduling as :
- dynamic since the scheduler makes its scheduling

decisions at run-time, selecting one out of the current
set of ready tasks,

- non-preemptive because the currently executing task
will not be interrupted until it decides on its own to
release the allocated resources provided that the
watchdog timer does not expire,

- with optional priority system (defined by priority
when clauses).

2.6 Bypass mode

The task scheduler built in the Neuron Chip firmware
operates using a predefined algorithm and a user cannot

configure or to change its behavior (except the scheduler
reset mechanism [6]). However, if the task scheduler
consists of a single when clause, which always evaluates
to true and never returns, then the algorithm is in fact
deactivated. In this way a user-defined scheduling
algorithm might be developed on the basis of the
conventional conditional statements (if, for, while).
However, all the scheduling instructions must be included
within the task associated with the single when clause.
Moreover, the user is responsible for all event processing,
i.e. to update the watchdog timer (using
watchdog_update() function) and to define explicitly
the critical section boundaries in the application program
(using post_events() function). A method of Neuron
Chip programming stated above is called bypass mode [6].

3. Definition of Scheduler Latency Measures

In real-time contexts, event-driven languages are effective
for systems with sporadic actions that must be executed as
soon as possible. However, there is a finite delay
associated with each scheduler operation. If the interarrival
time between consecutive events is large enough in
relation to the scheduler overhead, then the
scheduling-induced latency can be neglected. Otherwise,
they have to be taken into account in the application
development.
The time required for the scheduler to evaluate the same
when clause in a particular user application code is to a
larger extent a function of:
- the size of the user code,
- the total number of when clauses,
- the frequency of occurrences of the events associated

with those when clauses.
The first two factors depend on the complexity of the user
code. The latter depends on the application environment
and a rate of its state changes in the time [5]. It is therefore
impossible to specify a nominal value for this delay in
general. Moreover, there is no limit for the upper bound of
the scheduling delay.

3.1 Scheduler-Related Timing Measures

However, it is possible to evaluate the minimum
(best-case) delay induced by the Neuron Chip task
scheduler. It constitutes the lower bound for the task
execution time. We have selected the following measures
describing the scheduler latency characteristics:
- the scheduler restart overhead delay,
- the execution time of io_out() function call,
- the minimum inter-when delay,
- the minimum context switching delay,
- the bypass mode timing properties.
The list of measures presented above might be extended.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

136

These measures are treated as the exemplification of a set
of parameters related to the execution time of various
Neuron C instructions that can be evaluated using the
method proposed in the present paper.

3.2 Measurement Method

We have developed a measurement method of selected
parameters related to scheduler-induced delay. Our
approach belongs to indirect methods where the dedicated
code that refers to the input/output operations is used in
order to extract the corresponding scheduler parameters
from measurements. More specifically, in the proposed
method we use a set of testing procedures, written in
Neuron C, that connect the scheduler operations with
input/output action. Thus, the timing properties of output
signals generated on the Neuron Chip input/output port
include information about several measures related to the
scheduler latency. The measurements of the corresponding
signals have been done using a standard digital
oscilloscope. The experimental results of the oscilloscope
measurements are reported in Section 4.

3.3 Measurement Equipment

We have carried out experiments using NodeBuilder
Development Tool, which is an integrated hardware and
software equipment operating with a microcomputer that
provides a network development environment to prototype
LonWorks devices [8]. The hardware consists of LTM-10
LonTalk Module with Neuron Chip, 32 kB flash memory,
32 kB static RAM, 10 MHz crystal oscillator, and custom
Neuron Chip firmware. The software includes the Neuron
C cross compiler for creating Neuron Chip object code.

4. Experimental Results of Scheduler Timing

4.1 Scheduler Restart Overhead

We have started to investigate the scheduler latency
characteristics from a simple procedure consisting of two
non-priority when clauses that always evaluate to true as
shown below :

IO_2 output bit test_signal;
when(TRUE)
{
 io_out(test_signal,0);

}

when(TRUE)
{
 io_out(test_signal,1);

}
The output object, called test_signal referring to the

pin IO_2 of the Neuron Chip I/O port, is declared.
The goal of the measurement is to isolate and extract the
temporal measures associated with the scheduler. Since the
processing of when clauses is round-robin, the Neuron C
procedure performs alternating activation of IO_2 pin. As
a result, the square waveform is generated on the pin IO_2
of the Neuron Chip I/O port (see Fig. 2). The
measurements have been performed using digital
oscilloscope for Neuron Chip with 10 MHz input clock.

Fig. 2. The evaluation of the scheduler restart overhead delay.

Although a structure of both tasks is the same, the
durations of the high tH and the low logic levels tL slightly
differ. The reason of that is a position of a particular when
clause in a scheduler loop. During the generation of the
low logic level tL the following operations are run :
- the execution of io_out() function,
- the context switching at the end of the task.
When the high logic level tH is generated, the extra
operation is performed apart from the actions specified
above, i.e. the scheduler loop is restarted. Thus, the
scheduler restart overhead tSCH can be evaluated as the
difference between the time intervals tH and tL :

tSCH = tH – tL = 750 μs – 700 μs = 50 μs.
Note that the scheduler restart overhead causes an extra
delay only between the last and the first when clause in a
scheduler loop.

4.2 Minimum Inter-When Delay

The testing procedure presented above allows to find the
minimum delay between the evaluation of the consecutive
when clauses that we call the minimum inter-when delay.
As follows from Fig. 2, the minimum inter-when delay is
700 μs long for 10 MHz input clock.

4.3 Execution Time of io_out() Function Call

To estimate the execution time of io_out() function, let
us analyze timing of the code of a single when clause :

IO_2 output bit test_signal;
when(TRUE)
{
 io_out(test_signal,0);
 io_out(test_signal,1);

}
The diagram of the waveform generated on the pin IO_2
of input/output port is shown in Fig. 3. The narrow

700 μs 750 μs

tH tL

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

137

negative pulses are separated by long time intervals
because the duration of the high logic level tH is
determined by the context switching delay, i.e., the latency
related to switching the tasks executed by the processor.
However, since the first call of io_out()function in the
task is not followed by any extra firmware operations, we
can assume that the duration of a single negative pulse,
which is 70 μs long, is equal to the execution time of
io_out() function tIO. In particular, it means that the
function io_out(test_signal,1) is called at the
instant of the falling edge of the test signal on the pin IO_2
(see Fig. 3) because the appropriate rising edge comes
with 70 μs delay.
The measured time interval tIO, corresponds to io_out()
function execution time. However, we can assume that the
delay associated with the return from the io_out()
function is small in relation to the delay of the execution of
the function call itself [5]. Thus, tIO can be treated as the
io_out() function call time.

Fig. 3 The evaluation of io_out() function execution time.

4.4 Minimum Context Switching Delay

Since the execution time of io_out() function is known,
we can evaluate the minimum context switching delay tSW,
which is the minimum time a scheduler needs to switch the
execution of the consecutive tasks. It can be found as a
difference between the width of the positive pulse, tH, and
the execution time of io_out(), tIO (Fig. 3) :

tSW = tH – tIO = 700 μs – 70 μs = 630 μs.
Thus, the context switching delay is quite long in relation
to the other Neuron C temporal components (tSCH, tSW, tIO).
It is because the end of a task defines the critical section in
the Neuron C application program [6,7]. The operations
executed at the end of a critical section are listed in Sect.
2.1. In particular, the outgoing messages and output
network variable updates are sent, and the incoming
messages and input network variable updates are
processed.
Moreover, as follows from the algorithm specification,
before execution of each task, the scheduler tests the
system wide events (online, offline, wink), the
events related to priority when clauses and
non-priority when clauses.
The evaluated minimum switching delay tSW is valid for

switching between consecutive tasks except the transition
from the last to the first task in the scheduler loop. The
latter is lengthen, as we noticed, by scheduler restart
overhead which is 50 μs long.

4.5 Context Switching with Active Network
Variables

Now we will consider the other version of the application
program where the network variable(s) state is modified
within the task.

IO_2 output bit test_signal;
network output nv;
when(TRUE)
{
 nv=nv+1;
 io_out(test_signal,0);
 io_out(test_signal,1);

}

The diagram of the waveform generated on the pin IO_2
of input/output port is similar to that demonstrated in Fig.
3, however, the duration of the positive pulses is
significantly longer. The measurement on the
corresponding output pin shows that the duration of
positive pulse is extended to 3.05 ms. If we assume that
the time spent for network variable modification is short,
the increase of task execution time is caused due to
sending the network variable update at the end of the task.
Moreover, as observed, this delay increase is the same
both for short (8-bit) and long (16-bit) network variables.
If two or more network variable updates are sent within a
task, the corresponding delay increases by 0.9 ms per a
network variable and equals 3.95 ms and 4.85 ms for two
and three network variables, respectively.

4.6 Execution Time of post_events() Call

Using the code presented below we can estimate the
execution time of the idle call of post_events()
function (we define the function idle call as a call when
neither network variable updates nor explicit messages are
ready for sending) :

IO_2 output bit test_signal;

when(TRUE)
{
 io_out(test_signal,0);
 post_events();
 io_out(test_signal,1);

}

The oscilloscope measurement gives the following results:
the duration of the high tH = 750 μs, and of the low logic

70 μs

io_out(0)
call

io_out(1)
call

750 μs

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

138

level tL = 400 μs. Since the io_out() function call time
is 70 μs (see Sect. 4.3), the execution time of the idle
post_events() function call equals :

tpost_e idle = 400 μs - 70 μs = 330 μs.
Note that the code presented above can be used for
evaluation of the execution time of any function that will
be called between io_out()consecutive calls. For
example, using the code :

IO_2 output bit test_signal;
when(TRUE)
{
 io_out(test_signal,0);
 watchdog_upate();
 io_out(test_signal,1);
}

we can evaluate the execution time of
watchdog_upate() function call equals 30 μs. It is a
difference between the negative pulse duration (100 μs)
measured on the oscilloscope and the io_out() function
call time (70 μs).

4.7 Bypass Mode Timing

Next, we investigated the minimum delay of scheduling in
the bypass mode. At first, we have analyzed the following
procedure:

IO_2 output bit test_signal;
when(TRUE)
{
 if(TRUE)// Task 1
 {
 io_out(test_signal,0);
 io_out(test_signal,1);
 }
 if(TRUE)// Task 2
 {
 io_out(test_signal,0);
 io_out(test_signal,1);

 }
 if(TRUE)// Task 3
 {
 io_out(test_signal,0);
 io_out(test_signal,1);
 }

}

The pulse train generated on the pin IO_2, as a result of
execution of the presented code, is shown in Fig. 4.
Note that although the scheduling presented above is made
using if instruction in a user-defined order, it does not
correspond to the bypass mode, since the program returns
from the single when clause in each cycle. Therefore, the

implicit event processing is done at the end of each task
execution. As seen in Fig. 4, the execution time of the if
statement is negligible. It is because the negative pulse
width is near the same (the difference is about 2 μs) as in
Fig. 3, where the io_out() function call is not
associated with if statement.

Fig. 4 The evaluation of conditional statement execution time.

Finally, we investigated the application program, where
the “full” bypass mode is exploited so the watchdog-timer
has to be updated. If network variables are used in the
bypass mode, the post_events() function has to be
called in order to define explicitly the boundary of critical
section of the program.
Moreover, we simulate more complex “event” expressions
in order to find its influence on timing of the program
execution. Some algebraic and logic expressions with the
variables a, b, c are used to complicate the evaluation of
the events, however, all events still always evaluate to true.

IO_2 output bit test_signal;
int a=0;
int b=10;
int c=40;
when(TRUE)
{
 for(;;)
 {
 if(a==0)// Task 1
 {
 io_out(test_signal,0);
 io_out(test_signal,1);
 }
 if(b<=60)// Task 2
 {
 io_out(test_signal,0);
 io_out(test_signal,1);
 }

 if((c-b)>=25)&&(a=0)// Task 3
 {
 io_out(test_signal,0);
 io_out(test_signal,1);
 }
 watchdog_update();

}

72 μs

io_out(x)
calls

750 μs

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

139

Fig. 5. The evaluation of bypass mode timing properties.

As seen in Fig. 5, testing of “event” expressions causes
extensions of the positive pulses, because of finite latency
of the evaluation of when clauses. The evaluation of the
arithmetic expressions lengthens the first pulse (Task 1) by
56 μs and the second one (Task 2) by 70 μs.
All the measurements of the firmware task scheduler have
been performed for the Neuron Chip with 10 MHz input
clock. Note that the temporal measures are scaled with the
input clock frequency, i.e. measured time intervals are
directly proportional to the input clock.

4.8 Discussion

Summing up, the total overhead introduced by the Neuron
Chip task scheduler is relatively high and approximately
equal to 700 μs. The corresponding delay is significantly
greater than the processing time of a task of average
complexity. In particular, the scheduler-induced latency is
an order of magnitude greater than the execution time of a
function referring to the input/output port. The operations
that are responsible for this latency are called
automatically and are not present in the code. Therefore,
the scheduler overhead can determine the application
program timing if the program consists of a large number
of short tasks associated with events which frequently
evaluate to true.

6. Conclusion

The Neuron Chip built-in task scheduler defines the
operational scenario of each LonWorks/EIA-709 device.
The event-driven strategy of the scheduler algorithm is a
part of the event-based architecture of the LonWorks
networked systems. In most cases the knowledge of
scheduler timing is not necessary to design the application
program since the interarrival time between events is large
enough in relation to the scheduler overhead. However,
there are situations when the knowledge of Neuron Chip
scheduler latency becomes important, e.g. if system is

systematically extended and the number of tasks in the
application program increases significantly. Then, the
scheduler timing can present the bottleneck in real-time
system behavior. It can happen especially if the application
program consists of a large number of short tasks
associated with events, which frequently evaluate to true.
In this paper, some information that can support
timing-aware Neuron Chip programming is provided.

References

[1] F. De Paoli and F. Tisato, “On the complementary nature of
event-driven and time-driven models,” Control Engineering
Practice, vol.4, pp.847-854, 1996.

[2] H. Kopetz, Real-Time Systems. Design Principles for
Distributed Embedded Applications, Kluwer Academic
Publishers, 1997.

[3] D. Dietrich, D. Loy and H.-J. Schweinzer, Open Control
Networks: LonWorks/EIA 709 Technology, Kluwer
Academic Publishers, 2001.

[4] M. Miśkowicz, R. Golański, “LON technology in wireless
sensor networking applications,” Sensors, vol. 6, pp.30-48,
2006.

[5] LonWorks Technology Device Data, Rev. 4, Motorola Corp.,
1997.

[6] Neuron C Programmer’s Guide, Rev. 4, Echelon Corp,
1995.

[7] Neuron C Reference Guide, Rev. 4, Echelon Corp., 1995.
[8] NodeBuilder User’s Guide, Rev. 3, Echelon Corp., 1995.
[9] H. Schweins and D. Heffernan, “Retrofitting a deterministic

access control policy to a non-deterministic control
network,”, Proceedings of Irish Signal and Systems
Conference, 1998.

[10] M. Miśkowicz, “The timing properties of the embedded
Neuron Chip task scheduler,” Proceedings of IFAC
Workshop on Programmable Devices and Systems, PDS
2004, pp.326-331, 2004.

Marek Miśkowicz received his
M.Sc. and Ph.D. degrees in Electronic
Engineering respectively in 1995 and
2004 from AGH University of Science
and Technology (AGH-UST), Krakow,
Poland. Currently, he is an Assistant
Professor at the Department of
Electronics, AGH-UST. His main
research interest have been focused on
level-crossing sampling, asynchronous
analog-to-digital conversion, and

performance modeling of networked sensor and control systems.
He has published more than 30 papers in international journals
and conference proceedings.

72 μs

io_out(x)
calls

126 μs 140 μs

