
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

152

Abstract—Load balancing is defined as a process of transferring

the workload from heavily loaded nodes to the lightly loaded nodes so
as to equalize loads at all nodes. But in the process of load balancing
there is a possibility that several heavily loaded nodes can transfer
their workloads to a same under loaded node which in turn cause it to
be overloaded, which again the overloaded node will then transfer
some of the workload to another node causing a thrashing effect. In
this paper we propose an algorithm which uses a token concept for
balancing load among the nodes. Instead of each node probing other
nodes often resulting in unsuccessful probing, we take a different
approach that makes the identity of the heavily loaded and lightly
loaded nodes better known to other nodes.

I. INTRODUCTION
 he purpose of the load balancing is to achieve some

performance goal(s),such as improving mean response
time, maximizing resource utilization. Generally a load
balancing algorithm has four components: a transfer policy that
determines whether a node is in a suitable state to participate in
a task transfer, a location policy that determines to which node
a task selected for transfer should be sent, a selection policy that
determines which task should be transferred, an information
policy which is responsible for triggering the collection of
system state information. A transfer policy typically requires
information on the local node’s state to make decisions. A
location policy, on the other hand, requires information on the
states of the remote nodes to make decisions. There are two
different types of algorithms which will initiate the load
balancing activity. In sender-initiated algorithms, load
balancing is initiated by the overloaded node that attempts to
send a task to an under loaded node. Here the overloaded node
is the sender and the under loaded is the receiver. But making
the overloaded node to send the tasks to the under loaded node
which pose an extra workload to the overloaded node which
would be a performance bottleneck. In receiver initiated load
balancing, the initiating activity is done from under loaded
node. In both the algorithms, a threshold value which is based
on CPU queue length is used for transfer policy. The selection
policy selects a task newly originated tasks that caused the node
to become overloaded. The information policy plays an
important role in transferring the load from the heavily loaded
nodes to lightly loaded nodes. This policy is responsible for
deciding when information about the states of other nodes in
the system should be collected. The information policies used
in distributed load balancing falls under three categories:

Demand-driven, periodic and state-change driven. In demand
–driven a node collects the state of other nodes only when it
becomes either sender or receiver, making a suitable candidate
for initialing the load balancing among the nodes. In
sender-initiated policies, sender looks for receivers to transfer
their load. In receiver- initiated policies, receivers solicit bids
from senders. In a periodic policy, nodes exchange load
information periodically. But periodic policies do not adapt
their activity to the system state. In state-change-driven policy,
nodes send their state information whenever their state changes
by a certain degree. A state-change driven policy varies from
demand-driven policy in that it disseminates information about
the state of a node (overloaded or under loaded) rather than
collecting the information about other nodes.
In all the above methods, there is a possibility that overloaded
nodes can detect the same node with less workload and they
will try to send their loads to the destined under loaded node
which now becomes overloaded, again tries to transfer the
workload to other underloaded node in the given network
which results in thrashing effect. Thrashing or instability is a
problem that needs to be addressed in any load balancing
schemes. In this paper we propose an algorithm which uses a
token concept for balancing all nodes. For that it requires the
network that is to be organized as a logical ring for an existing
network.

II. BACKGROUND &NOTIONS

Consider a network consisting of n nodes with n-1 links

connecting all nodes. In this paper we have assumed ring
topology. In load balancing schemes first we have to determine
whether a node is underloaded or overloaded. To do this we
have to evaluate load at each node. To consider load, a
comparative study of different load indices carried out by
Ferrari et al. reported that CPU load information based upon the
CPU queue length does much better in load balancing
compared to CPU utilization. The reason CPU queue length did
better is probably because, when a host is heavily loaded, its
CPU utilization is likely to be close to 100% and it is unable to
reflect the exact load level of the utilization. In contrast, CPU
queue lengths can directly reflect the amount of load on a
CPU.For load balance to be useful, one must first determine
when to load balance. The load balance of a computation is the
ratio of the average computer load to the maximum computer
load,

Token Based Load Balancing in Case of Process
Thrashing

P.Neelakantan, M.M.Naidu

 pneelakantan@rediffmail.com

T

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

153

Γ=
LMax
Lavg

 --------- (1)

The load balancing activity is initiated whenever the Γ(load

balance) of a computation is below some user specified
threshold ΓMin. The Lavg is calculated initially by use of
discovery token. But the above method is not suited for
situations in which the load is changing. In this case when can
node is overloaded when Γ> Γ Min, otherwise underloaded.
Another factor that is to be considered in migrating the load
from underloaded nodes to the lightly loaded nodes is the
communication latency. Latency in a network is measured
either one-way (the time from the source sending a packet to the
destination receiving it), or round-trip (the one-way latency
from source to destination plus the one-way latency from the
destination back to the source). Round-trip latency is more
often quoted, because it can be measured from a single point.
Note that round trip latency excludes the amount of time that a
destination system spends processing the packet. Many
software platforms provide a service called ping that can be
used to measure round-trip latency. Ping performs no packet
processing; it merely sends a response back when it receives a
packet (i.e. performs a no-op), thus it is a relatively accurate
way of measuring latency. If the cost of load balancing would
exceed the benefits of a better work distributed , then it may be
better not to load balance. The expected reduction in runtime
due to load balancing can be estimated loosely by assuming
efficiency which will be increased to ΓMin.

III. PROPOSED METHOD
In order to get information from other nodes, each node

sends a request asking their load. Let us assume that every node
collects the information from other nodes in (i.e.,) Pi collects
information from other j nodes in the network in the following
manner.

Pj Load j

Where j∈ 1, 2...N and j∉ i .

After receiving the information from the remaining nodes,

each node sorts the loads in non decreasing order to find a node
with least load. Here there is a possibility that multiple nodes
can choose the same node to transfer the workload to that
particular node which has been made overloaded. Then that
overloaded node collects the information as said earlier and do
the same where the same situation has been repeated. An
algorithm is said to be unstable if it could enter a state in which
all the systems are spending all of their time migrating
processes without accomplishing any useful work in an attempt
to properly schedule the process for better performance. This is
known as process thrashing. In our algorithm, the above
mentioned way of collecting information is avoided which can
solve the thrashing effect.

Token:
Here the token can be of two forms. The first form of the

token is called discovery token and the second form of the
token is called distribution token.
Discovery token:

With the discovery token, the node that has initiated the
token can find the total workload of the system and also it finds
the number of nodes in the given network.

The format of discovery token is as shown below

SID SUCCI
D

LI INC

Here the SID refers to sender- Identification and SUCCID

refers to Successor node, LI is the Load Indexing, INC is the
pointer incremented at each node. Initially the value of INC is 1.
The token circulates round the ring, and comes to the sender
node which has initiated the discovery token. As each node
knows the predecessor and successor nodes in the network
(which is the principle of logical ring), it knows that it has
received correctly from the node that it is expected from. Load
index is the field where each node writes its load summed with
already the load that is existing in the field. Generally it takes
the form

Load index = Previous load index+ Load Index of current
node.
The Initial value of the load index is the load of the sender

node which has initiated the discovery token, then that value is
updated by the next node by adding its load to the load index
field.
Issue in Discovery Token: Here the issue is which node has to
transmit the discovery token. If we use receiver-initiated
approach, then the under loaded node has to initiate the
discovery token but in a given network there may be more
underloaded nodes, so, there is a possibility of more than one
token can circulate around the ring. The same may be
applicable to the sender-initiated approach. Here also there is a
possibility of more overloaded nodes, which in turn all these
nodes initiate discovery token, so more than one discovery
token is found in the network. Our objective is to make only
one discovery token that is to be circulated around the ring. In
order to do this, we assume that a system with largest IP address
initiates the activity.
Distribution token: Once the job of the Discovery token is
over, the sender node which has initiated Discovery token will
covert it into distribution token. The distribution token takes
the form

SID LA LSN

Here SID is the sender-Identification, LA is the load average

of the network and LSN is the Load to be transferred to the
successor node.

The node sends nothing if its load is less than the average
workload. But if the node is having the load greater the average

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

154

workload, then it sends the portion of the workload

LSN= iww − , where w represents the average work load and
wi represent the workload of node i to the successor node. In
this way the token is circulated rround the ring and it reaches
the origin (the node which has initiated the token). By now we
can tell all the nodes in the ring have the same work load,

wi= w .But one thing that is to be remembered here is always
the node sends its excess load to its successor not to the
predecessor. We also assume that no workload is generated
during the token circulation in the ring. That is, as the load
balancing progresses, every node should be instructed to take
or to give certain amounts of workload with respect to each of
it’s logically directly connected successors.

IV. ALGORITHM
Algorithm Balance ()

{
// choose a machine with highest IP address. Then build
Discovery Token which is to be circulated round the ring.

1. Send Discovery token to the successor. Initially load
Index field contains the load of the first processor
(i.e.,) a machine with highest IP address. INC is
initialized to 0.

// All systems in the network will update their loads in the load
index field and INC is incremented by one when it encounter a
new node in the network. Here 1 refers to the machine with
largest IP address and N-1 refers to predecessor node to 1. As
1 knows that its predecessor is n-1 in the logical ring, it knows
that the token is circulated round the ring.

2. Load Index=0 ;
INC=1;
For i= 1 to N-1 MOD N

 Load Index = Load Index + Load of Index (i);
// The initial sender will calculate the average load from the
information that has been received from token .

3. Average Load=
INC

loadindex
;

// the initial sender which has initiated the discovery token
which change the token format into Distribution token
format.
4. LSN=0

for i = 1 to N-1 MOD N
a. LA= Average Load;
if (Li> LA)

a. LSN=(Li –LA)+LSN;
b. Li= Li- LA

else

 // create temp variable LSN1 in a node that is
holding token

a. LSN1= LSN;

b. LSN= LSN- (LA- Li);
// transfer (LSN1- LSN) amounts of work load to
the node i and update the workload
// of node i

c. Li= Li+ (LSN1- LSN);

// End of for loop
} // End algorithm Balance

V. EXAMPLE

C/
8

B/
12 D/

6

A/
10

As per our algorithm proposed in later section, we will take the
above graph to illustrate the proposed algorithm. As shown
above there are four vertices which represent nodes. Each
vertex represents the name of the node with load index. We will
assume that Node A is having the highest IP address which will
initiate the load balancing activity by calling our algorithm
balance. As per our algorithm first it sends a discovery token
by setting load index into its load value (i.e.,) load index =10
and Inc =1 to its successor B, which updates load index=22 and
inc=2 after last iteration the load index =36 and Inc=4 and the
discovery token that is containing this information is received
by A which it knows that it receives the token from D. After
receiving the load index is divided by the Inc which will yield
the average load. Now the Node A can convert the discovery
token to distribution token which is to be transmitted to the
node B. The distribution token contains Load average value=9
and LSN=1. But at node B, if statement of our algorithm is
executed so, no workload is assigned to B, because the
workload of B is higher than the average load. So, the else
statement is executed and the LSN field is updated with the

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

155

excess load of B and hence LSN=4. At Node C, the else
statement is executed and (LA-Li) amounts of workload is and
the workload of node C is updated and LSN has been reduced
by (LA- Li) units. At node D, once again the else statement is
executed and (LA-Li) amount of workload has been transferred
from LSN field.

According to our Distribution token, the following
information will be available in token circulation round the
ring.

Now by using the above example network we have proved that
the algorithm works well and it has done perfect load balancing

in all the nodes in a given ring topology.

VI. SIMULATION
We have taken the parameters from [9] and here we assumed
that the tasks of fixed size with an average service time
(exponentially distributed) equals to 1 with respect to a
reference processor .For all simulated models, the parameters
of the simulated models are the following: Number of
processors=16, token transfer delay=0.01, task transfer
overhead=0.1, message transfer overhead=0.01, task average
service time=1, Threshold=3, probing communication
overhead=0.02, probing limit=1. Token transfer delay is
chosen such that the average response time does not change
significantly when smaller value is used. Message transfer
overhead is the time required to send a message to next node.
The probing limit and threshold values were taken from [10].

0

2

4

6

8

10

12

14

16

0.0
7 0.3 0.5

4
0.7

1
0.8

9
1.0

5
1.2

5
1.4

5

no balance
Dynamic
Token based

REFERENCES

[1] D.Karger, M.Ruhl. “Simple Efficient Load Balancing Algorithms for

Peer-to-Peer Systems”. In Proc. SPAA, 2004.
[2] P Brighten Godfrey, Ion Stoica. “Heterogeneity and load balance in

Distributed hash tables”. In Proc. IEEE INFOCOM, 2005.
[3] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp,and I. Stoica. Load

balancing in structured p2p systems. In Proc. of IPTPS, 2003.
[4] H. Shen and C. Xu. Locality-aware randomized load balancing algorithms

for structured p2p networks. In Proc Ananth Rao, Kartbik
Lakshminarayanan, Sonesh Surana, et al. “Load Balancing in Structured
P2P Systems”. In Proc. IPTPS, Feb, 2003.

[5] P Brighten Godfrey, Karthik Lakshminarayanan, et al. “Load balancing in
dynamic structured P2P systems”. In Proc. IEEE INFOCOM, 2004.

[6] Ganesan P, Bawam. “Distributed balanced tables: not making a hash of it
all”. Stanford University, Database Group, 2003.

[7] H. Shen and C. Xu. Locality-aware randomized load balancing algorithms
for structured p2p networks. In Proc. of ICPP, pages 529–536, 2005.

[8] Mukesh Singhal, Niranjan G. Shivaratri,”Advanced Concepts in
Operating Systems”, McGraw-Hill; ISBN: 007057572X.

[9] Tariq Omari, Seyed H.Hosseni, K.Vairavan, “ Travelling token for
Dynamic Load Balancing”, Proceedings of the Third IEEE International
Symposium on Network Computing and Applications(NCA’04).

[10] O.Kremien,J.Kramer, “ Methodical analysis of adaptive load sharing
algorithms”, IEEE trans.on parallel and distributed Systems, vol.3, No.6,
1992.

[11] Plamenka Borovska, Milena Lazarova, “Token – Based Adaptive Load
Balancing for Dynamically Parallel Computations on Multicomputer
Platforms”, International Conference on Computer Systems and
Technologies, CompSysTech, 2007.

[12] Jerrel Watts and Stephen Taylor,” A Practical Approach to Dynamic Load
Balancing”, IEEE trans.on parallel and distributed systems, Vol.9, No.3,
March 1998.

[13] Bertsekas, D. P. and Tsitsiklis, J. N. (1997), Parallel and
DistributedComputation Numerical Methods, Athena Scientific,
Belmont.

SENDER
–ID

LOAD AVG LOAD TO
SUCCESSOR
NODE

Action

SID=A LA=9 LSN= 1 -

SID=B LA=9 LSN=4 -

SID=C LA=9 LSN=3 It takes one
load unit.

SID=D LA=9 LSN=0 It takes three
load units.

