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Summary 
 
Knowledge Discovery in Databases (KDD) is an iterative and 
multi step process that aims at extracting previously unknown 
and hidden patterns from a huge volume of databases. Data 
mining is a stage of the entire KDD process that involves 
applying a particular data mining algorithm to extract an 
interesting knowledge.  One of the important problems that are 
used by data mining community is so-called classification 
problem. In this paper we study the classification task and 
provide a comprehensive study of classification techniques with 
more emphasis on classical and incremental decision tree based 
classification. While studying different classification techniques, 
we provide many important issues that distinguish between each 
classifier such as splitting criteria and pruning methods. Such 
criteria lead to the variation of decision tree based classification.  
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1. Introduction 

Classification is an important data mining task that 
analyses a given training set and develops a model for 
each class according to the features present in the data. 
The induced model is used to classify unseen data tuples. 
There are many approaches to develop the classification 
model including decision trees, neural networks, nearest 
neighbor methods and rough set-based methods [1,2].  

Classification is very important when studying learning 
strategies, that is, by describing the task of constructing 
class definition, future data items can be classified by 
determining if they follow the definition learned [3]. It is 
particularly useful when a database contains examples that 
can be used as the basis for decision making process such 
as assessing credit risks, for medical diagnosis, or for 
scientific data analysis. Examples of classification task 
include [4]. 
• Determining which home telephone lines used for 

Internet access. 
• Assigning customers to predefined customer 

segments. 

• Classifying credit applicants as low, medium, or high 
risk. 

• Assigning keywords to articles as they come in off 
the news wire. 

These applications make use of several products that are 
available in the marketplace. AC2 from Isoft, is a very 
well known tool.  SPSS is a product based on the tool, 
called SI-CHAID. Many tools are also used in many data 
mining packages that combine a variety of approaches, 
including IBM’s Intelligent Miner, Clementine, Thinking 
Machine’s Darwin, and Silicon Graphic’s Mineset.  
Angross has produced a decision tree based analysis 
system, called KnowledgeSEEKER [5]. This system is a 
comprehensive program for classification tree analysis. It 
uses two well-known decision tree tools called CHAID 
and CART. The wide application and great practical 
potential of classification has been shown by these 
applications, which have produced useful results.  

Decision tree induction is one of the most common 
techniques to solve the classification problem [2,6]. It 
consists of nodes, branches, leaf nodes, and a root. To 
classify an instance, one starts at the root and finds the 
branch corresponding to the value of that attribute 
observed in the instance. This process is repeated at the 
sub tree rooted at that branch until a leaf node is reached. 
The resulting classification is the class label on the leaf. 
The main objective of a decision tree construction 
algorithm is to create a tree such that the classification 
accuracy of the tree, when used on unseen data, is 
maximized. Other criteria such as tree size and tree 
understandability may also be used. 

Many decision tree induction algorithms have been 
proposed based on different attribute selection and pruning 
strategies. These methods partition the data recursively 
until all tuples in every partition have the same class value. 
The result of this process is a tree that is used for the 
prediction of future unseen data. 

Decision tree induction algorithms operate in two 
phases, the Construction phase and Pruning phase. The 
construction phase of decision tree usually results in a 
complex tree that often overfits the data. This reduces the 
accuracy when applied to unseen data. The Pruning phase 
of decision tree is the process of removing some non-
promising branches to improve the accuracy and 
performance of the decision tree. 
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One of the main drawbacks with the traditional tree 
induction algorithms is that they do not consider the time 
in which the data arrived. Researchers have been strongly 
motivated to propose techniques that update the 
classification model as new data arrives, rather than 
running the algorithms from scratch [1,23,24,25], resulting 
in incremental classifiers. The incremental classifiers that 
reflect the changing data trends are attractive in order to 
make the over all KDD process more effective and 
efficient. In this paper a comprehensive and comparative 
analysis of traditional and incremental learning algorithms 
with more emphasis on tree induction approaches and the 
different splitting and pruning strategies. 

2. Classical Tree Induction 

Many traditional algorithms for inducing decision trees 
have been proposed in the literature (e.g., C4.5 [7], CART 
[9], SPRINT [10], PUBLIC [11], and BOAT [12], based 
on different attribute selection and pruning strategies. 
Some of commonly used splitting criteria include entropy 
or information gain [6, 7], gain ratio [7], Gini index [9], 
Towing rule [9], χ2 and its variant forms [15], 
Summinority [14]. A detailed survey of different selection 
techniques can be found in  [15,16]. 

There are two approaches of tree pruning, pre-pruning 
and post-pruning. In pre-pruning approach, a tree is 
pruned by stopping its construction by deciding not to 
further partition the subset of training data at a given node. 
Consequently, a node becomes a leaf that holds a class 
value with the most frequent class among the subset of 
samples. Pre-pruning criteria are based on statistical 
significance [17], information gain [18], or error 
reduction [15,20]. Post-pruning removes branches from 
the completely grown tree, by traversing the constructed 
tree and uses the estimated error to decide whether some 
undesired branches should be replaced by a leaf node or 
not [7,21]. This replacement is the key issue of many 
pruning criteria that appear in the literature.  

Several post-pruning techniques have been proposed 
based on cost-complexity [9,21], reduced-error [18,21], 
pessimistic-error [7,18,21], minimum-error, critical value 
[21] and Minimum Description Length (MDL) [22]. The 
objective of such criteria is to find simple and 
comprehensible tree with acceptable accuracy. A detailed 
survey of different pruning techniques can be found in 
[21]. 

One of the most popular classical decision tree based 
classifiers is ID3 algorithm.  ID3 is an extension to an 
earlier decision tree based classifier called CLS (Concept 
Learning System) [13].  CLS uses a look ahead approach 

when selecting attribute value for a particular node.  It 
explores the space of possible attribute values up to some 
depth and chooses the best attribute.  CLS is 
computationally expensive because it explores all possible 
decision trees up to particular depth. Although CLS is not 
an efficient decision tree classifier, it was the father of ID3 
algorithms. 

ID3 is a divide-and-conquer approach to decision tree 
induction, sometimes-called top-down induction of 
decision tree, was designed by Ross Quinlan [6, 7]. The 
key success of ID3 lies in its information formula.  The 
goal of this formula is to minimize the expected number of 
tests to classify an object. A decision tree can be regarded 
as an information source. For a given object, it generates a 
message which is a class corresponding to that object.  
The criterion of selecting an attribute in ID3 is based on 
the assumption that the complexity of the decision tree is 
related to the amount of information conveyed by this 
message [6, 7]. 

The information formula is applied to training examples 
in order to select an attribute, which is split best among all 
other attributes regarding the class value.  Once an 
attribute has the highest information gain it is selected to 
be the root node of the tree.  If the samples have the same 
class value, then the node becomes a leaf and labeled with 
that class, otherwise, branches are created from a node 
represent the data values of that node.  Each branch is 
examined in order to determine if it leads to a leaf node.  
At this point, a threshold value may be introduced. A 
threshold is a value that represents the percentage of tuples 
that have to match the class value.  If in a particular 
branch, the required tuples in the training set has the same 
class value, a leaf node is created.  In case of the threshold 
value is not maintained, the information formula is again 
applied to the training set, only those tuples that match the 
branch value, to determine the next node for the split.  
This process continues partitioning the training set 
recursively until either all tuples for a given node belong 
to the same class or there are no remaining attributes on 
which the samples may be further partitioned. In the later 
case, majority voting [1] can be applied.  Majority voting 
involves converting the given node into a leaf that holds 
the class, which has majority among samples. 

Once the decision tree is created, it becomes simple to 
provide the user with all the rules generated, simply by 
traversing the tree from the root to the leaf nodes.  Each 
path in the tree represents a rule that classifies the dataset.  

When the sets of rules have been obtained from the 
decision tree based classifier, the rules are evaluated to 
measure their correctness to avoid the problem of over-
fitting [1,2,7]. The overfitting problem results in reduction 
of the predictive accuracy of the model. The predictive 
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accuracy of the algorithm can be measured using the 
training set and verifying the results using a testing set.  
This method used by Quinlan and called train/test method 
[6].  

Due to some of the limitations of ID3, Quinlan has 
established an extension to it.  He provided a more 
effective algorithm, C4.5.  Generally, ID3 is prone to 
create very large decision tree, which can be difficult to 
understand.  C4.5 attempts to reduce the size of the 
decision tree by using a number of methods.  Pruning 
method is one of the techniques used by C4.5 in order to 
reduce the size of decision tree.  Many pruning techniques 
have been used by C4.5 (i.e. reduced error pruning and 
pessimistic-error pruning) that reduce the tree size.  Some 
algorithms look ahead to see if pruning is beneficial and 
decide whether to prune or not based on some criteria.  
C4.5 uses an alternative method.  It goes ahead; and over-
fits the data and then prune. Although this approach is 
considered to be slower, it is more reliable [7]. Another 
feature used in C4.5 is that, it combines rules in the pruned 
tree in order to keep the number of rules minimum. 

It has been noticed that, a large training dataset is not 
the only reason for a large decision tree. An attribute, 
which has many different values, creates a large number of 
branches particularly when the attributes are numerical. 
C4.5 solves this problem by grouping attribute values to 
keep the number of branches smaller.  For example, if a 
particular attribute has 100 different values, 100 branches 
will be created for the node uses this attribute, this results 
in very huge decision tree.  In fact, this is one of the 
disadvantages of ID3. In C4.5, it provides a facility to use 
ranges as branch values, that is, instead of having 100 
branches, there could be only three, a branch where all 
values are < some value n, = some value n, or a branch 
where all values are > n. 

Another important improvement to C4.5 is the way of 
splitting the dataset.  It has been shown that the 
information gain criteria are biased in that it prefers the 
attributes, which have many values.  Many alternative 
approaches have been proposed, such as gain ratio [7], 
which considers the probability of each attribute value. 

3. Incremental Tree Induction 

One of the main drawbacks with the classical tree 
induction algorithms is that they do not consider the time 
in which the data arrived. Researchers have been strongly 
motivated to propose techniques that update the 
classification model as new data arrives, rather than 
running the algorithms from scratch [1,23,24,25], resulting 
in incremental classifiers. The incremental classifiers that 

reflect the changing data trends are attractive in order to 
make the over all KDD process more effective and 
efficient.  

Incremental algorithms build and refine the model as 
new data arrive at different points in time, in contrast to 
the traditional tree induction algorithms where they 
perform model building in batch manner. Incremental 
classifiers are widely used techniques that the recognition 
accuracy of a classifier is heavily incumbent on the 
availability of an adequate and representative training 
dataset. Acquiring such data is often tedious, time-
consuming, and expensive. In practice, it is not uncommon 
for such data to be acquired in small batches over a period 
of time. A typical approach in such cases is combining 
new data with all previous data, and training a new 
classifier from scratch. This approach results in loss of all 
previously discovered knowledge. Furthermore, the 
combination of old and new datasets is not even always a 
viable option if previous datasets are lost, discarded, 
corrupted, inaccessible, or otherwise unavailable. 
Incremental classifier is the solution to such scenarios, 
which can be defined as the process of extracting new 
patterns without losing prior knowledge from an 
additional dataset that later becomes available.  

The problem of dataset over evolving time has 
motivated development of many incremental classifiers 
including COBWEB [26], ID4 [27], ID5 [24], ID5R [25] 
and IDL [28]. The advantages of incremental techniques 
over traditional techniques are elaborated in [25].  

The ID3 algorithm was extended to accommodate 
incremental learning by several algorithms that were 
proposed with some degree of ID3-compatibility. An 
incremental classifier can be characterized as ID3-
compatible if it constructs almost similar decision tree 
produced by ID3 using all the training set. This strategy is 
maintained by classifiers such as ID4  [27], ID5 [24] and 
ID5R [25]. These classifiers have a property that they 
maintain counters at each node to keep track of the 
examples that have been examined at that node, without 
retaining these past examples. The counters also help to 
show how the untested attributes would split the training 
examples at a particular node. 

ID4 [27] was the first ID3-variant to construct the 
incremental learning. ID4 builds the same tree as the basic 
ID3 algorithm, when there is an attribute at each decision 
node that is the best among other attributes. When the 
relative ordering of the possible test attributes at a node 
changes due to new incoming examples, all subtrees 
below that node are discarded and have to be 
reconstructed. Sometimes, despite training, the relative 
ordering does not stabilize and therefore results in the 
decision tree being rebuilt from scratch every time a new 
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training instance is presented. This thrashing effect was 
too much of a bottleneck to allow practical applications of 
ID4, as it effectively discards all previous learning efforts.  

ID5 [24] expanded this idea by selecting the most 
suitable attribute for a node, while a new instance is 
processed, and restructuring the tree, so that this attribute 
is pulled-up from the leaves towards that node. This is 
achieved by suitable tree manipulations that allow the 
counters to be recalculated without examining the past 
instances.  

In [30] a case was put forward for decision trees, which 
suppress redundant information. Although the 
observations made are applicable to incremental learning, 
no algorithm was given and the authors expressed their 
reservations about the wider practicality of their ideas. 
Nevertheless, the paper describes concisely the concepts 
of tree manipulation and transposition that make ID5 and 
ID5R powerful. 

A blend of the above ideas is also present in the IDL 
algorithm [28]. The notion of topological relevance was 
introduced as a measure of the importance of an attribute 
for determining the class of an example. Topological 
relevance can be calculated in a bottom-up fashion and a 
decision tree is topologically minimal with respect to the 
training set, if it satisfies some measure of topological 
relevance among all attributes and all examples. 
Incremental induction is not carried out by using a 
statistical measure, but by trying to obtain a topologically 
minimal tree. The algorithm achieves impressive results in 
keeping the tree size considerably lower than ID5R, but 
can come across severe problems of non-convergence to a 
final tree form. 

From a different point of view, [29] proposed a measure 
of statistical significance of impurities of nodes to allow 
CART [1,9] to be used incrementally. 

4. Splitting Techniques  

Selecting the test attribute at each node of decision tree 
is one of many reasons that lead to the variation of 
decision tree algorithms. Various splitting criteria were 
proposed and used in different decision tree algorithms, 
including entropy or information gain [6], Gini index [7], 
Towing rule [9], χ2 and its variant forms [15], deviance 
[19], Summinority [14]. 

 Although one may think that, the choice of evaluation 
function has an important effect on the accuracy of 
decision trees, the attribute selection metric, or splitting 
criterion, has no significant effect on the accuracy of the 
induced tree [21].  But, most of recent work on splitting 
criteria by [16] improves purely theoretical attempts to 

address a problem noticed by [33,34], namely that, the 
standard information gain formula is biased towards 
selecting attributes which have many values. In the 
following subsections we discuss some common attribute 
selection criteria.  

We start our description by specifying the notation to be 
used in this section.  Consider a K-class, N-point dataset at 
a given node T, which is about to be split into two nodes, 
TL and TR (for left and right) with the proportions of data 
points, Pl and Pr respectively.  The class of each data point 
is an outcome of discrete random variable, X, which takes 
values from a set of K class labels, {c1,….,ck}. The 
probability distribution of X is expressed as p(X=cj) = pj, 

where j= l,..,k and ∑
=

=
k

1j
j 1p . Note that, in each of the 

following criteria, we provide only the definitions of the 
measures. 

When applied to data splitting, what often evaluated are, 
the changes in the values of these measures due to the 
partitioning of the data.  Normally, a splitting criterion 
selects the split that maximizes the amount of gain in a 
goodness measure or reduction in an impurity measure.  
The impurity-based measures mean that, after each split; 
the data of the child nodes are more homogeneous (purer) 
in terms of class than the data in the parent node. 

4.1 Entropy or information gain 

The use of information gain as a splitting criterion is 
popularized by Quinlan [6,7]. Quinlan has used this 
measure in learning systems called ID3 and C4.5 systems. 
The entropy of a random variable X is defined as:  

 p log p  
p
1log pH(X) j

k

1j

2j
j

k

1j

2j ∑∑
==

−== (define 0 log 

0=0) 
The value of the entropy attains its minimum, 0, when any 
pj=1 (j=1,..,k) (which implies all other pj’s are 0); and the 
value reaches its maximum, log2 k, when all pj’s are equal 
to 1/k.  This property is consistent with that desired by an 
impurity measure: when applied to partitioning data, a 
split that reduces the entropy of the data also reduces the 
impurity of the data. 

4.2 Gini Index 

The measure was introduced by [9], and has been 
implemented in CART. It has the form:  

2

1j

k

1j
p -1 ppG(X) j i  j∑

≠
∑
=

==  

The Gini Index is another popular splitting criterion that 
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possesses the desired property of an impurity measure. 

4.3 Towing Rule 

This measure was also introduced by [9] and has been 
used and implemented in CART learning algorithm. The 
towing function can by defined as: 

Φ = 
4
PP R L

2
k

1j
RjLj |)T\P(c-)T\P(c| ⎥

⎦

⎤
⎢
⎣

⎡
∑
=

 

Where P(cj\TL) and P(cj\TR)  are proportions of data 
points in TL and TR that belong to class cj.  The towing 
rule is more appropriate for data, which has a large 
number of different classes. 

4.4 Chi-Squared (χ2) and its variant forms 

This measure is used as splitting criterion in CHAID.  It 
is more error-based than impurity–based. The measure has 
different variants include that proposed by [15]. The chi-
squared criterion is not as widely used in decision tree 
systems as the previously mentioned measures. 

4.5 Deviance 

This criterion was proposed by [19] and implemented in 
S-plus.  The deviance function is defined as: 

)log(p y2)D(y j

k

j

iji ∑−=  

Where   yij (i=1,…,n; j=1,…,k) is the ith observation of a 
K-component random vector Y, whose value takes the 
form Y= (0,0,…,1jth,…,0), denoting that the class of the 
observation is Cj ; and pj is as defined earlier in this 
section.  Note that the random vector Y is a different 
representation of the random variable X described at the 
beginning of this section; therefore, the deviance is 
basically the same as the entropy measure. The deviance is 
the form of a likelihood ratio statistic (and Y follows a 
multinomial distribution), which is more acceptable to the 
statistics community.  The entropy, instead, is a measure 
of the average amount of information (in number of bits) 
needed to convey a message (or, to identify the class of a 
data point, from the decision tree point of view). 

4.6 Summinority 

This measure was first used in [14] although the idea 
does not appear to be new.  The idea is that, the most 
frequent class in a dataset is called the majority class, and 
all other classes are minority ones. The Summinority 
measure is simply the sum of the numbers of all minority 
cases in Tr and Tl.  The criterion then selects the split that 

minimizes this measure. The Summinority is basically an 
error measure, since as described earlier; decision trees 
classify a data point based on the majority class at a leaf. 

Many imperial studies have been conducted to evaluate 
the quality of various splitting criteria.  These studies have 
shown that, on average, the Entropy, Gini Index and 
Towing Rule perform relatively better, while error based 
criteria, such as Summinority and some χ2 variants are 
somewhat less important.      

5. Pruning Techniques 

Usually, the process of constructing a decision tree 
leads to generating many branches that may reflect 
anomalies in the training data due to noise or outliners. 
The mining algorithm is applied to training data and 
recursively partition the dataset until each subset contains 
one class or no further test is available.  The result is often 
a complex tree that overfits the data.  The overfit problem 
reduces the accuracy when applied to unseen data.  The 
pruning of the decision tree is the process of removing 
leaves and branches to improve the accuracy and 
performance of the decision tree.  Typically, the tree 
pruning methods use statistical measures to remove the 
least reliable sub-trees and consequently, result in faster 
classification and an improvement the accuracy of the tree. 

The pruning of the decision tree is established by 
replacing the undesired sub tree by a leaf node.  The 
replacement takes place if the expected error rate of the 
sub tree is greater than in the leaf node [31]. Getting a 
minimal decision tree is considered to be very important 
than selecting good split in terms of quality of decision 
tree [9]. 

The following subsections introduce the commonly 
used pruning techniques of tree induction algorithms, pre-
pruning and Post-pruning.   

5.1 Pre-Pruning Strategies 

In pre-pruning approach, a tree is pruned by stopping its 
construction by deciding not to further partition the subset 
of training data at a given node.  As a consequence, a node 
becomes a leaf that holds a class value with the most 
frequent class among the subset of samples or simply the 
probability distribution of those samples.  Pre-pruning 
criteria are based on statistical significance [17], 
information gain [18], or error reduction [15,20]. For 
instance, a mining algorithm may determine either to stop 
or grow the tree at a given node by setting the minimum 
gain to 0.01 and further data partitioning is prevented if 
the computed information gain at each node less that this 
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threshold value. This approach is adopted by CHAID 
decision tree based classifier. 

The approaches presented in [11,32] push the accuracy 
and size constraints into the decision tree in order to prune 
the tree dynamically. They proposed PUBLIC classifier 
that integrates building and pruning in one stage. In 
PUBLIC, a node in not further expanded in the 
construction stage of decision tree if it is determined that it 
is certain to be pruned in the subsequent pruning stage.  

5.2 Post-Pruning of Decision Trees 

Post-pruning removes branches from the completely 
grown tree, by traversing the constructed tree and uses the 
estimated errors to decide whether some undesired 
branches should be replaced by a leaf node or not [7,21]. 
This replacement is the key issue of many pruning criteria 
that appear in the literature. 

There are two ways of post-pruning techniques that 
have been studied in data mining algorithms. They are 
basically based on whether to use the same training dataset 
that has been used for construction the decision tree or to 
use a test set that is not used in training tree models.  The 
key issue and the major difficulty to the first approach are 
to derive an accurate estimate of the error rate when the 
trained model is used to classify previously unseen data. 
That is not an issue in the second approach, which 
reserves some of the date for testing, therefore, the model 
has to be built based on a smaller training dataset.  A 
common solution to this problem is to use cross-validation 
procedure. In a 10 fold cross-validation procedure, the 
entire dataset is first randomly divided into 10 equal sized 
blocks.  Then, a tree model is constructed using 90% of 
the data (training set) and testing the remaining 10% 
(testing set).  Next, another tree is constructed, but based 
on different training and testing data.  This process is 
repeated 10 times using different training and testing sets.  
The final tree size and estimated error is the average size 
and error of the ten optimally pruned trees. One 
disadvantage of this procedure is that, it is 
computationally expensive. 

Several pruning techniques have been proposed based 
on cost-complexity [9,21], reduced-error [18,21], 
pessimistic-error [7,18,21], minimum-error, critical value 
[21] and Minimum Description Length (MDL) [22]. The 
objective of such criteria is to find simple and 
comprehensible tree with acceptable accuracy.  

Empirical evaluation has shown that, post-pruning 
approach is more effective than pre-pruning [7,9,21]. This 
primarily because pre-pruning methods are based 
essentially on heuristic rules while post-pruning methods 
are based on statistical theories.  Many decision tree 

algorithms, however, incorporate both approaches but 
primarily rely on post-pruning to obtain optimal decision 
tree. Since most of the pre-pruning methods are based on 
heuristic rules and considered very simple, while post-
pruning methods are more complex and the most popular 
approaches, the following section discuss the methods of 
post-pruning of decision tree in great details.   

5.2.1 Reduced Error Pruning (REP) 

This method proposed by [18] and involves the use of a 
test dataset directly in the process of constructed pruned 
trees, rather than to be used only for determining the best 
tree, as in cost-complexity pruning.  Because the 
procedure does not require building a sequence of sub 
trees, it is claimed to be faster than cost-complexity 
pruning. 

The method works by beginning with using the test data 
on the unpruned tree and record the number of cases 
corresponding to each class in each node.  Then, for each 
internal node, count the number of test errors if the branch 
rooted at this node is kept and the number if it is pruned to 
a leaf.  The difference between them is a measure of the 
gain (if positive) or loss (if negative) of pruning the 
branch.  Next, select the node with the largest gain and 
prune its branch off.  This gives the first pruned sub tree. 
Applying same procedure repeatedly to the previously 
pruned tree will result in obtaining a shrinking tree. The 
problem that may arise using REP is that, at a certain point, 
further pruning may cause increasing in test errors. In such 
case, the process stops at this point and the last and 
smallest sub tree is declared the final pruned tree. 

A major advantage of REP lies in its linear 
computational complexity, since to evaluate the chance of 
pruning; each node is to be visited only once.  On the 
other hand, its disadvantage arises in its bias toward over 
pruning due to the fact that all evidence encapsulated in 
the training set is neglected during the pruning process. 

5.2.2 Cost-Complexity Pruning (CCP)   

This method is also known as the CART pruning 
algorithm.  It has been introduced by [9] and implemented 
in CART, S-Plus.  CCP uses the train/test approach for 
pruning, which trains the model on one set and tests it on 
another.  Since CCP is somewhat complicated procedure, 
we will explain it through the following example. In our 
discussion we use the notion of a sub tree to indicate a 
pruned tree that has the same root of the unpruned tree and 
a notion of a branch to indicate a segment of tree that can 
be a candidate for pruning. 

Given a branch T, the cost complexity measure of T 
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rooted at a node t is defined as: 
Rα (Tt) = R(Tt) + α NT  ⎯⎯⎯⎯⎯→  (3.1) 

Where R(Tt), called cost, is the error rate calculated by 
dividing the total number of error cases in all leaves of 
branch T by the total number of cases in the entire dataset; 
and Nt, called complexity, is the number of leaves in T.  
The parameter α, which is non-negative by definition, can 
be interpreted as the cost per extra leaf.  In figure 1, for 
example, we have a branch rooted at node 40, whose 
complexity is 3 (the number of leaves).  The entire dataset 
contains 500 cases with 3 classes, whose distribution in 
this branch is shown on the second line of each node.  If 
branch T is not pruned, then the cost is calculated as: 

R (T40) = ((8+0) + (10+0) + (0+0))/500 = 18/500 
If the branch is pruned, the node t becomes a leaf of 

class 1, and its cost is computed as: 
R (40) = (20+1)/500   = 21/500 

The cost complexity measure, when the branch is 
pruned to a leaf is given by 

R∝ (t) = R (t) + ∝ ⎯⎯⎯⎯⎯→    (3.2) 
Where ∝ is sufficiently small, R∝ (t) is greater than R∝ 

(Tt), since R(t) is always greater than R(Tt). When the 
value of ∝ Increases to exceed a critical value, R∝ (Tt) 
becomes greater than R∝ (t), because the complexity terms 
∝NT will dominate. Then, pruning of T is preferable since 
its cost-complexity is smaller. To find this critical value of 
α, equate (3.1) and (3.2), and then solve for α. We have 

∝ =( R(t) – R (Tt))/( NT – 1)  ⎯⎯⎯⎯⎯→  (3.3) 
Hence, for branch T40, 

∝ = (21/500 – 18/500)/ 3-1 = 0.003 
Similarly, for branch T41: 

∝ = (20/500 – 18/500)/(2-1)   = 0.004 
The CCP works as follows: the algorithm starts by 

calculating the value of ∝ for each branch, rooted at each 
different internal node of the unpruned tree. The branch 
that has the smallest value of ∝ is then pruned, yielding 
the first pruned sub tree.  If several ∝’s are tied, as the 
smallest, then corresponding branches are all pruned away.  
Next, the values of ∝ are computed again, but based on 
the last pruned tree; this will prune away another branch.  
Repeating this process will progressively produce a series 
of smaller sub trees; each nested within the previous one.  
Each sub tree produced in this procedure is optimal with 
respect to size; that is, no other sub tree of the same size 
would have lower error rate than the one obtained by this 
procedure. After the series of sub trees are generated, each 
of them is used to classify a test dataset. Ideally, the final 
pruned tree would be the one that has the lowest test error 
rate. 

 
 

Total number of cases: 500 

Figure 1. An example of cost –complexity pruning. 

In the above example, suppose the ∝ value of the other 
branches (not shown in the diagram) is greater than 0.003, 
then branch T40 is selected to be pruned the first.  Notice 
that branch T41 will never be selected. This implies that the 
sequence of pruned trees generated by this method does 
not necessarily have its size decreased by one leaf each 
time. 

5.2.3 Pessimistic-Error Pruning (PEP)   

This method was proposed by [7,18], and has been 
implemented in C4.5.  The method uses training dataset 
rather than using testing dataset and stands on more solid 
statistical methods. 

Suppose there are n training cases in a leaf, e of them 
misclassified.  C4.5 deals with this set of data as a sample 
drawn from binomial population, i.e. observing e events in 
n trials (This is in fact, is not the case, as Quinlan pointed 
out).  Then, the method tries to estimate the population 
parameter, which is the error rate on unseen data, based on 
the information contained in this sample.  The method 
pessimistically uses the upper confidence bound of the 
binomial distribution, denoted by Uα (e,n), as the 
estimated error rate at this leaf.  So, a leaf covering m 
training cases with an estimated error rate of Uα (e,n) 
would be expected to have mUα (e,n) error cases.  
Similarly, the estimated number of errors for a branch is 
just the sum of the estimated errors of its sub-branches.  If 
the estimated number of errors for a branch is greater than 
or equal to the number when it is regarded as a leaf, the 
branch is pruned; otherwise, the branch is maintained. 

To understand how this method works, let us look again 
to the example shown in Figure 1. First, we determine a 
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confidence level of 90% (the default confidence value; in 
C4.5 is 75% which often produce a pruned tree that is too 
large).  For node 43 and node 44, which are leaves, we 
have U0.1 (7,20) = 0.5673 and U0.1 (10,22) = 0.6112, 
respectively. Now, the estimated number of errors for 
branch T41 is:20(0.5673) + 22 (0.6112) = 24.793 

If the branch is pruned to a leaf, the estimated number 
of errors is   

42U0.1 (20,42) = 42 (0.5858) = 24.604 
In this case, branch T41 should be pruned since this 

would reduce the estimated number of errors.  After 
pruning, the estimated number of errors for branch T40 is 
42U0.1 (20,22) + 1 U0.1 (0,1) = 42 (0.5858) + 1 (0.9) = 
25.504 
If it is pruned, the estimated number of errors will be   
43 U0.1 (21,43) = 43 (0.5962) = 25.638 
Pruning of branch T40 would cause increasing the 
estimated number of errors, so it is retained (with two 
leaves, node 41 and node 42) and included in the final 
pruned tree. 

5.2.4 Comparison of Pruning Techniques 

As we have seen earlier, different pruning methods 
would lead to different results.  Many empirical studies 
have been conducted to evaluate the effectiveness of 
various pruning methods [8,18,21]. It has been shown that, 
no single method is best of the others.  In terms of 
classification accuracy, the cost-complexity and reduced-
error methods appear to perform somewhat better in many 
domains.  However, these pruning methods normally run 
more slowly than those that depend on the testing dataset.  

6. Conclusion 

The goal of this paper is to provide a comprehensive 
survey about classical and incremental classification 
algorithms. We focus our attention on decision tree based 
classifiers and its applications to solve data mining 
problems. Many important issues that distinguish between 
each classifier such as splitting criteria and pruning 
methods were discussed. Such criteria lead to the variation 
of decision tree based classification. 
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