
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

179

Manuscript received December 5, 2007

Manuscript revised December 20, 2007

Classical and Incremental Classification in Data Mining Process

Ahmed Sultan Al-Hegami

Sana'a University, Sana'a, YEMEN

Summary

Knowledge Discovery in Databases (KDD) is an iterative and
multi step process that aims at extracting previously unknown
and hidden patterns from a huge volume of databases. Data
mining is a stage of the entire KDD process that involves
applying a particular data mining algorithm to extract an
interesting knowledge. One of the important problems that are
used by data mining community is so-called classification
problem. In this paper we study the classification task and
provide a comprehensive study of classification techniques with
more emphasis on classical and incremental decision tree based
classification. While studying different classification techniques,
we provide many important issues that distinguish between each
classifier such as splitting criteria and pruning methods. Such
criteria lead to the variation of decision tree based classification.

Key words:
Knowledge Discovery in Databases (KDD), Data Mining,
Incremental Classifier, Decision Tree, Pruning Technique,
Splitting Technique.

1. Introduction

Classification is an important data mining task that
analyses a given training set and develops a model for
each class according to the features present in the data.
The induced model is used to classify unseen data tuples.
There are many approaches to develop the classification
model including decision trees, neural networks, nearest
neighbor methods and rough set-based methods [1,2].

Classification is very important when studying learning
strategies, that is, by describing the task of constructing
class definition, future data items can be classified by
determining if they follow the definition learned [3]. It is
particularly useful when a database contains examples that
can be used as the basis for decision making process such
as assessing credit risks, for medical diagnosis, or for
scientific data analysis. Examples of classification task
include [4].
• Determining which home telephone lines used for

Internet access.
• Assigning customers to predefined customer

segments.

• Classifying credit applicants as low, medium, or high
risk.

• Assigning keywords to articles as they come in off
the news wire.

These applications make use of several products that are
available in the marketplace. AC2 from Isoft, is a very
well known tool. SPSS is a product based on the tool,
called SI-CHAID. Many tools are also used in many data
mining packages that combine a variety of approaches,
including IBM’s Intelligent Miner, Clementine, Thinking
Machine’s Darwin, and Silicon Graphic’s Mineset.
Angross has produced a decision tree based analysis
system, called KnowledgeSEEKER [5]. This system is a
comprehensive program for classification tree analysis. It
uses two well-known decision tree tools called CHAID
and CART. The wide application and great practical
potential of classification has been shown by these
applications, which have produced useful results.

Decision tree induction is one of the most common
techniques to solve the classification problem [2,6]. It
consists of nodes, branches, leaf nodes, and a root. To
classify an instance, one starts at the root and finds the
branch corresponding to the value of that attribute
observed in the instance. This process is repeated at the
sub tree rooted at that branch until a leaf node is reached.
The resulting classification is the class label on the leaf.
The main objective of a decision tree construction
algorithm is to create a tree such that the classification
accuracy of the tree, when used on unseen data, is
maximized. Other criteria such as tree size and tree
understandability may also be used.

Many decision tree induction algorithms have been
proposed based on different attribute selection and pruning
strategies. These methods partition the data recursively
until all tuples in every partition have the same class value.
The result of this process is a tree that is used for the
prediction of future unseen data.

Decision tree induction algorithms operate in two
phases, the Construction phase and Pruning phase. The
construction phase of decision tree usually results in a
complex tree that often overfits the data. This reduces the
accuracy when applied to unseen data. The Pruning phase
of decision tree is the process of removing some non-
promising branches to improve the accuracy and
performance of the decision tree.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

180

One of the main drawbacks with the traditional tree
induction algorithms is that they do not consider the time
in which the data arrived. Researchers have been strongly
motivated to propose techniques that update the
classification model as new data arrives, rather than
running the algorithms from scratch [1,23,24,25], resulting
in incremental classifiers. The incremental classifiers that
reflect the changing data trends are attractive in order to
make the over all KDD process more effective and
efficient. In this paper a comprehensive and comparative
analysis of traditional and incremental learning algorithms
with more emphasis on tree induction approaches and the
different splitting and pruning strategies.

2. Classical Tree Induction

Many traditional algorithms for inducing decision trees
have been proposed in the literature (e.g., C4.5 [7], CART
[9], SPRINT [10], PUBLIC [11], and BOAT [12], based
on different attribute selection and pruning strategies.
Some of commonly used splitting criteria include entropy
or information gain [6, 7], gain ratio [7], Gini index [9],
Towing rule [9], χ2 and its variant forms [15],
Summinority [14]. A detailed survey of different selection
techniques can be found in [15,16].

There are two approaches of tree pruning, pre-pruning
and post-pruning. In pre-pruning approach, a tree is
pruned by stopping its construction by deciding not to
further partition the subset of training data at a given node.
Consequently, a node becomes a leaf that holds a class
value with the most frequent class among the subset of
samples. Pre-pruning criteria are based on statistical
significance [17], information gain [18], or error
reduction [15,20]. Post-pruning removes branches from
the completely grown tree, by traversing the constructed
tree and uses the estimated error to decide whether some
undesired branches should be replaced by a leaf node or
not [7,21]. This replacement is the key issue of many
pruning criteria that appear in the literature.

Several post-pruning techniques have been proposed
based on cost-complexity [9,21], reduced-error [18,21],
pessimistic-error [7,18,21], minimum-error, critical value
[21] and Minimum Description Length (MDL) [22]. The
objective of such criteria is to find simple and
comprehensible tree with acceptable accuracy. A detailed
survey of different pruning techniques can be found in
[21].

One of the most popular classical decision tree based
classifiers is ID3 algorithm. ID3 is an extension to an
earlier decision tree based classifier called CLS (Concept
Learning System) [13]. CLS uses a look ahead approach

when selecting attribute value for a particular node. It
explores the space of possible attribute values up to some
depth and chooses the best attribute. CLS is
computationally expensive because it explores all possible
decision trees up to particular depth. Although CLS is not
an efficient decision tree classifier, it was the father of ID3
algorithms.

ID3 is a divide-and-conquer approach to decision tree
induction, sometimes-called top-down induction of
decision tree, was designed by Ross Quinlan [6, 7]. The
key success of ID3 lies in its information formula. The
goal of this formula is to minimize the expected number of
tests to classify an object. A decision tree can be regarded
as an information source. For a given object, it generates a
message which is a class corresponding to that object.
The criterion of selecting an attribute in ID3 is based on
the assumption that the complexity of the decision tree is
related to the amount of information conveyed by this
message [6, 7].

The information formula is applied to training examples
in order to select an attribute, which is split best among all
other attributes regarding the class value. Once an
attribute has the highest information gain it is selected to
be the root node of the tree. If the samples have the same
class value, then the node becomes a leaf and labeled with
that class, otherwise, branches are created from a node
represent the data values of that node. Each branch is
examined in order to determine if it leads to a leaf node.
At this point, a threshold value may be introduced. A
threshold is a value that represents the percentage of tuples
that have to match the class value. If in a particular
branch, the required tuples in the training set has the same
class value, a leaf node is created. In case of the threshold
value is not maintained, the information formula is again
applied to the training set, only those tuples that match the
branch value, to determine the next node for the split.
This process continues partitioning the training set
recursively until either all tuples for a given node belong
to the same class or there are no remaining attributes on
which the samples may be further partitioned. In the later
case, majority voting [1] can be applied. Majority voting
involves converting the given node into a leaf that holds
the class, which has majority among samples.

Once the decision tree is created, it becomes simple to
provide the user with all the rules generated, simply by
traversing the tree from the root to the leaf nodes. Each
path in the tree represents a rule that classifies the dataset.

When the sets of rules have been obtained from the
decision tree based classifier, the rules are evaluated to
measure their correctness to avoid the problem of over-
fitting [1,2,7]. The overfitting problem results in reduction
of the predictive accuracy of the model. The predictive

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

181

accuracy of the algorithm can be measured using the
training set and verifying the results using a testing set.
This method used by Quinlan and called train/test method
[6].

Due to some of the limitations of ID3, Quinlan has
established an extension to it. He provided a more
effective algorithm, C4.5. Generally, ID3 is prone to
create very large decision tree, which can be difficult to
understand. C4.5 attempts to reduce the size of the
decision tree by using a number of methods. Pruning
method is one of the techniques used by C4.5 in order to
reduce the size of decision tree. Many pruning techniques
have been used by C4.5 (i.e. reduced error pruning and
pessimistic-error pruning) that reduce the tree size. Some
algorithms look ahead to see if pruning is beneficial and
decide whether to prune or not based on some criteria.
C4.5 uses an alternative method. It goes ahead; and over-
fits the data and then prune. Although this approach is
considered to be slower, it is more reliable [7]. Another
feature used in C4.5 is that, it combines rules in the pruned
tree in order to keep the number of rules minimum.

It has been noticed that, a large training dataset is not
the only reason for a large decision tree. An attribute,
which has many different values, creates a large number of
branches particularly when the attributes are numerical.
C4.5 solves this problem by grouping attribute values to
keep the number of branches smaller. For example, if a
particular attribute has 100 different values, 100 branches
will be created for the node uses this attribute, this results
in very huge decision tree. In fact, this is one of the
disadvantages of ID3. In C4.5, it provides a facility to use
ranges as branch values, that is, instead of having 100
branches, there could be only three, a branch where all
values are < some value n, = some value n, or a branch
where all values are > n.

Another important improvement to C4.5 is the way of
splitting the dataset. It has been shown that the
information gain criteria are biased in that it prefers the
attributes, which have many values. Many alternative
approaches have been proposed, such as gain ratio [7],
which considers the probability of each attribute value.

3. Incremental Tree Induction

One of the main drawbacks with the classical tree
induction algorithms is that they do not consider the time
in which the data arrived. Researchers have been strongly
motivated to propose techniques that update the
classification model as new data arrives, rather than
running the algorithms from scratch [1,23,24,25], resulting
in incremental classifiers. The incremental classifiers that

reflect the changing data trends are attractive in order to
make the over all KDD process more effective and
efficient.

Incremental algorithms build and refine the model as
new data arrive at different points in time, in contrast to
the traditional tree induction algorithms where they
perform model building in batch manner. Incremental
classifiers are widely used techniques that the recognition
accuracy of a classifier is heavily incumbent on the
availability of an adequate and representative training
dataset. Acquiring such data is often tedious, time-
consuming, and expensive. In practice, it is not uncommon
for such data to be acquired in small batches over a period
of time. A typical approach in such cases is combining
new data with all previous data, and training a new
classifier from scratch. This approach results in loss of all
previously discovered knowledge. Furthermore, the
combination of old and new datasets is not even always a
viable option if previous datasets are lost, discarded,
corrupted, inaccessible, or otherwise unavailable.
Incremental classifier is the solution to such scenarios,
which can be defined as the process of extracting new
patterns without losing prior knowledge from an
additional dataset that later becomes available.

The problem of dataset over evolving time has
motivated development of many incremental classifiers
including COBWEB [26], ID4 [27], ID5 [24], ID5R [25]
and IDL [28]. The advantages of incremental techniques
over traditional techniques are elaborated in [25].

The ID3 algorithm was extended to accommodate
incremental learning by several algorithms that were
proposed with some degree of ID3-compatibility. An
incremental classifier can be characterized as ID3-
compatible if it constructs almost similar decision tree
produced by ID3 using all the training set. This strategy is
maintained by classifiers such as ID4 [27], ID5 [24] and
ID5R [25]. These classifiers have a property that they
maintain counters at each node to keep track of the
examples that have been examined at that node, without
retaining these past examples. The counters also help to
show how the untested attributes would split the training
examples at a particular node.

ID4 [27] was the first ID3-variant to construct the
incremental learning. ID4 builds the same tree as the basic
ID3 algorithm, when there is an attribute at each decision
node that is the best among other attributes. When the
relative ordering of the possible test attributes at a node
changes due to new incoming examples, all subtrees
below that node are discarded and have to be
reconstructed. Sometimes, despite training, the relative
ordering does not stabilize and therefore results in the
decision tree being rebuilt from scratch every time a new

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

182

training instance is presented. This thrashing effect was
too much of a bottleneck to allow practical applications of
ID4, as it effectively discards all previous learning efforts.

ID5 [24] expanded this idea by selecting the most
suitable attribute for a node, while a new instance is
processed, and restructuring the tree, so that this attribute
is pulled-up from the leaves towards that node. This is
achieved by suitable tree manipulations that allow the
counters to be recalculated without examining the past
instances.

In [30] a case was put forward for decision trees, which
suppress redundant information. Although the
observations made are applicable to incremental learning,
no algorithm was given and the authors expressed their
reservations about the wider practicality of their ideas.
Nevertheless, the paper describes concisely the concepts
of tree manipulation and transposition that make ID5 and
ID5R powerful.

A blend of the above ideas is also present in the IDL
algorithm [28]. The notion of topological relevance was
introduced as a measure of the importance of an attribute
for determining the class of an example. Topological
relevance can be calculated in a bottom-up fashion and a
decision tree is topologically minimal with respect to the
training set, if it satisfies some measure of topological
relevance among all attributes and all examples.
Incremental induction is not carried out by using a
statistical measure, but by trying to obtain a topologically
minimal tree. The algorithm achieves impressive results in
keeping the tree size considerably lower than ID5R, but
can come across severe problems of non-convergence to a
final tree form.

From a different point of view, [29] proposed a measure
of statistical significance of impurities of nodes to allow
CART [1,9] to be used incrementally.

4. Splitting Techniques

Selecting the test attribute at each node of decision tree
is one of many reasons that lead to the variation of
decision tree algorithms. Various splitting criteria were
proposed and used in different decision tree algorithms,
including entropy or information gain [6], Gini index [7],
Towing rule [9], χ2 and its variant forms [15], deviance
[19], Summinority [14].

 Although one may think that, the choice of evaluation
function has an important effect on the accuracy of
decision trees, the attribute selection metric, or splitting
criterion, has no significant effect on the accuracy of the
induced tree [21]. But, most of recent work on splitting
criteria by [16] improves purely theoretical attempts to

address a problem noticed by [33,34], namely that, the
standard information gain formula is biased towards
selecting attributes which have many values. In the
following subsections we discuss some common attribute
selection criteria.

We start our description by specifying the notation to be
used in this section. Consider a K-class, N-point dataset at
a given node T, which is about to be split into two nodes,
TL and TR (for left and right) with the proportions of data
points, Pl and Pr respectively. The class of each data point
is an outcome of discrete random variable, X, which takes
values from a set of K class labels, {c1,….,ck}. The
probability distribution of X is expressed as p(X=cj) = pj,

where j= l,..,k and ∑
=

=
k

1j
j 1p . Note that, in each of the

following criteria, we provide only the definitions of the
measures.

When applied to data splitting, what often evaluated are,
the changes in the values of these measures due to the
partitioning of the data. Normally, a splitting criterion
selects the split that maximizes the amount of gain in a
goodness measure or reduction in an impurity measure.
The impurity-based measures mean that, after each split;
the data of the child nodes are more homogeneous (purer)
in terms of class than the data in the parent node.

4.1 Entropy or information gain

The use of information gain as a splitting criterion is
popularized by Quinlan [6,7]. Quinlan has used this
measure in learning systems called ID3 and C4.5 systems.
The entropy of a random variable X is defined as:

 p log p
p
1log pH(X) j

k

1j

2j
j

k

1j

2j ∑∑
==

−== (define 0 log

0=0)
The value of the entropy attains its minimum, 0, when any
pj=1 (j=1,..,k) (which implies all other pj’s are 0); and the
value reaches its maximum, log2 k, when all pj’s are equal
to 1/k. This property is consistent with that desired by an
impurity measure: when applied to partitioning data, a
split that reduces the entropy of the data also reduces the
impurity of the data.

4.2 Gini Index

The measure was introduced by [9], and has been
implemented in CART. It has the form:

2

1j

k

1j
p -1 ppG(X) j i j∑

≠
∑
=

==

The Gini Index is another popular splitting criterion that

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

183

possesses the desired property of an impurity measure.

4.3 Towing Rule

This measure was also introduced by [9] and has been
used and implemented in CART learning algorithm. The
towing function can by defined as:

Φ =
4
PP R L

2
k

1j
RjLj |)T\P(c-)T\P(c| ⎥

⎦

⎤
⎢
⎣

⎡
∑
=

Where P(cj\TL) and P(cj\TR) are proportions of data
points in TL and TR that belong to class cj. The towing
rule is more appropriate for data, which has a large
number of different classes.

4.4 Chi-Squared (χ2) and its variant forms

This measure is used as splitting criterion in CHAID. It
is more error-based than impurity–based. The measure has
different variants include that proposed by [15]. The chi-
squared criterion is not as widely used in decision tree
systems as the previously mentioned measures.

4.5 Deviance

This criterion was proposed by [19] and implemented in
S-plus. The deviance function is defined as:

)log(p y2)D(y j

k

j

iji ∑−=

Where yij (i=1,…,n; j=1,…,k) is the ith observation of a
K-component random vector Y, whose value takes the
form Y= (0,0,…,1jth,…,0), denoting that the class of the
observation is Cj ; and pj is as defined earlier in this
section. Note that the random vector Y is a different
representation of the random variable X described at the
beginning of this section; therefore, the deviance is
basically the same as the entropy measure. The deviance is
the form of a likelihood ratio statistic (and Y follows a
multinomial distribution), which is more acceptable to the
statistics community. The entropy, instead, is a measure
of the average amount of information (in number of bits)
needed to convey a message (or, to identify the class of a
data point, from the decision tree point of view).

4.6 Summinority

This measure was first used in [14] although the idea
does not appear to be new. The idea is that, the most
frequent class in a dataset is called the majority class, and
all other classes are minority ones. The Summinority
measure is simply the sum of the numbers of all minority
cases in Tr and Tl. The criterion then selects the split that

minimizes this measure. The Summinority is basically an
error measure, since as described earlier; decision trees
classify a data point based on the majority class at a leaf.

Many imperial studies have been conducted to evaluate
the quality of various splitting criteria. These studies have
shown that, on average, the Entropy, Gini Index and
Towing Rule perform relatively better, while error based
criteria, such as Summinority and some χ2 variants are
somewhat less important.

5. Pruning Techniques

Usually, the process of constructing a decision tree
leads to generating many branches that may reflect
anomalies in the training data due to noise or outliners.
The mining algorithm is applied to training data and
recursively partition the dataset until each subset contains
one class or no further test is available. The result is often
a complex tree that overfits the data. The overfit problem
reduces the accuracy when applied to unseen data. The
pruning of the decision tree is the process of removing
leaves and branches to improve the accuracy and
performance of the decision tree. Typically, the tree
pruning methods use statistical measures to remove the
least reliable sub-trees and consequently, result in faster
classification and an improvement the accuracy of the tree.

The pruning of the decision tree is established by
replacing the undesired sub tree by a leaf node. The
replacement takes place if the expected error rate of the
sub tree is greater than in the leaf node [31]. Getting a
minimal decision tree is considered to be very important
than selecting good split in terms of quality of decision
tree [9].

The following subsections introduce the commonly
used pruning techniques of tree induction algorithms, pre-
pruning and Post-pruning.

5.1 Pre-Pruning Strategies

In pre-pruning approach, a tree is pruned by stopping its
construction by deciding not to further partition the subset
of training data at a given node. As a consequence, a node
becomes a leaf that holds a class value with the most
frequent class among the subset of samples or simply the
probability distribution of those samples. Pre-pruning
criteria are based on statistical significance [17],
information gain [18], or error reduction [15,20]. For
instance, a mining algorithm may determine either to stop
or grow the tree at a given node by setting the minimum
gain to 0.01 and further data partitioning is prevented if
the computed information gain at each node less that this

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

184

threshold value. This approach is adopted by CHAID
decision tree based classifier.

The approaches presented in [11,32] push the accuracy
and size constraints into the decision tree in order to prune
the tree dynamically. They proposed PUBLIC classifier
that integrates building and pruning in one stage. In
PUBLIC, a node in not further expanded in the
construction stage of decision tree if it is determined that it
is certain to be pruned in the subsequent pruning stage.

5.2 Post-Pruning of Decision Trees

Post-pruning removes branches from the completely
grown tree, by traversing the constructed tree and uses the
estimated errors to decide whether some undesired
branches should be replaced by a leaf node or not [7,21].
This replacement is the key issue of many pruning criteria
that appear in the literature.

There are two ways of post-pruning techniques that
have been studied in data mining algorithms. They are
basically based on whether to use the same training dataset
that has been used for construction the decision tree or to
use a test set that is not used in training tree models. The
key issue and the major difficulty to the first approach are
to derive an accurate estimate of the error rate when the
trained model is used to classify previously unseen data.
That is not an issue in the second approach, which
reserves some of the date for testing, therefore, the model
has to be built based on a smaller training dataset. A
common solution to this problem is to use cross-validation
procedure. In a 10 fold cross-validation procedure, the
entire dataset is first randomly divided into 10 equal sized
blocks. Then, a tree model is constructed using 90% of
the data (training set) and testing the remaining 10%
(testing set). Next, another tree is constructed, but based
on different training and testing data. This process is
repeated 10 times using different training and testing sets.
The final tree size and estimated error is the average size
and error of the ten optimally pruned trees. One
disadvantage of this procedure is that, it is
computationally expensive.

Several pruning techniques have been proposed based
on cost-complexity [9,21], reduced-error [18,21],
pessimistic-error [7,18,21], minimum-error, critical value
[21] and Minimum Description Length (MDL) [22]. The
objective of such criteria is to find simple and
comprehensible tree with acceptable accuracy.

Empirical evaluation has shown that, post-pruning
approach is more effective than pre-pruning [7,9,21]. This
primarily because pre-pruning methods are based
essentially on heuristic rules while post-pruning methods
are based on statistical theories. Many decision tree

algorithms, however, incorporate both approaches but
primarily rely on post-pruning to obtain optimal decision
tree. Since most of the pre-pruning methods are based on
heuristic rules and considered very simple, while post-
pruning methods are more complex and the most popular
approaches, the following section discuss the methods of
post-pruning of decision tree in great details.

5.2.1 Reduced Error Pruning (REP)

This method proposed by [18] and involves the use of a
test dataset directly in the process of constructed pruned
trees, rather than to be used only for determining the best
tree, as in cost-complexity pruning. Because the
procedure does not require building a sequence of sub
trees, it is claimed to be faster than cost-complexity
pruning.

The method works by beginning with using the test data
on the unpruned tree and record the number of cases
corresponding to each class in each node. Then, for each
internal node, count the number of test errors if the branch
rooted at this node is kept and the number if it is pruned to
a leaf. The difference between them is a measure of the
gain (if positive) or loss (if negative) of pruning the
branch. Next, select the node with the largest gain and
prune its branch off. This gives the first pruned sub tree.
Applying same procedure repeatedly to the previously
pruned tree will result in obtaining a shrinking tree. The
problem that may arise using REP is that, at a certain point,
further pruning may cause increasing in test errors. In such
case, the process stops at this point and the last and
smallest sub tree is declared the final pruned tree.

A major advantage of REP lies in its linear
computational complexity, since to evaluate the chance of
pruning; each node is to be visited only once. On the
other hand, its disadvantage arises in its bias toward over
pruning due to the fact that all evidence encapsulated in
the training set is neglected during the pruning process.

5.2.2 Cost-Complexity Pruning (CCP)

This method is also known as the CART pruning
algorithm. It has been introduced by [9] and implemented
in CART, S-Plus. CCP uses the train/test approach for
pruning, which trains the model on one set and tests it on
another. Since CCP is somewhat complicated procedure,
we will explain it through the following example. In our
discussion we use the notion of a sub tree to indicate a
pruned tree that has the same root of the unpruned tree and
a notion of a branch to indicate a segment of tree that can
be a candidate for pruning.

Given a branch T, the cost complexity measure of T

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

185

rooted at a node t is defined as:
Rα (Tt) = R(Tt) + α NT ⎯⎯⎯⎯⎯→ (3.1)

Where R(Tt), called cost, is the error rate calculated by
dividing the total number of error cases in all leaves of
branch T by the total number of cases in the entire dataset;
and Nt, called complexity, is the number of leaves in T.
The parameter α, which is non-negative by definition, can
be interpreted as the cost per extra leaf. In figure 1, for
example, we have a branch rooted at node 40, whose
complexity is 3 (the number of leaves). The entire dataset
contains 500 cases with 3 classes, whose distribution in
this branch is shown on the second line of each node. If
branch T is not pruned, then the cost is calculated as:

R (T40) = ((8+0) + (10+0) + (0+0))/500 = 18/500
If the branch is pruned, the node t becomes a leaf of

class 1, and its cost is computed as:
R (40) = (20+1)/500 = 21/500

The cost complexity measure, when the branch is
pruned to a leaf is given by

R∝ (t) = R (t) + ∝ ⎯⎯⎯⎯⎯→ (3.2)
Where ∝ is sufficiently small, R∝ (t) is greater than R∝

(Tt), since R(t) is always greater than R(Tt). When the
value of ∝ Increases to exceed a critical value, R∝ (Tt)
becomes greater than R∝ (t), because the complexity terms
∝NT will dominate. Then, pruning of T is preferable since
its cost-complexity is smaller. To find this critical value of
α, equate (3.1) and (3.2), and then solve for α. We have

∝ =(R(t) – R (Tt))/(NT – 1) ⎯⎯⎯⎯⎯→ (3.3)
Hence, for branch T40,

∝ = (21/500 – 18/500)/ 3-1 = 0.003
Similarly, for branch T41:

∝ = (20/500 – 18/500)/(2-1) = 0.004
The CCP works as follows: the algorithm starts by

calculating the value of ∝ for each branch, rooted at each
different internal node of the unpruned tree. The branch
that has the smallest value of ∝ is then pruned, yielding
the first pruned sub tree. If several ∝’s are tied, as the
smallest, then corresponding branches are all pruned away.
Next, the values of ∝ are computed again, but based on
the last pruned tree; this will prune away another branch.
Repeating this process will progressively produce a series
of smaller sub trees; each nested within the previous one.
Each sub tree produced in this procedure is optimal with
respect to size; that is, no other sub tree of the same size
would have lower error rate than the one obtained by this
procedure. After the series of sub trees are generated, each
of them is used to classify a test dataset. Ideally, the final
pruned tree would be the one that has the lowest test error
rate.

Total number of cases: 500

Figure 1. An example of cost –complexity pruning.

In the above example, suppose the ∝ value of the other
branches (not shown in the diagram) is greater than 0.003,
then branch T40 is selected to be pruned the first. Notice
that branch T41 will never be selected. This implies that the
sequence of pruned trees generated by this method does
not necessarily have its size decreased by one leaf each
time.

5.2.3 Pessimistic-Error Pruning (PEP)

This method was proposed by [7,18], and has been
implemented in C4.5. The method uses training dataset
rather than using testing dataset and stands on more solid
statistical methods.

Suppose there are n training cases in a leaf, e of them
misclassified. C4.5 deals with this set of data as a sample
drawn from binomial population, i.e. observing e events in
n trials (This is in fact, is not the case, as Quinlan pointed
out). Then, the method tries to estimate the population
parameter, which is the error rate on unseen data, based on
the information contained in this sample. The method
pessimistically uses the upper confidence bound of the
binomial distribution, denoted by Uα (e,n), as the
estimated error rate at this leaf. So, a leaf covering m
training cases with an estimated error rate of Uα (e,n)
would be expected to have mUα (e,n) error cases.
Similarly, the estimated number of errors for a branch is
just the sum of the estimated errors of its sub-branches. If
the estimated number of errors for a branch is greater than
or equal to the number when it is regarded as a leaf, the
branch is pruned; otherwise, the branch is maintained.

To understand how this method works, let us look again
to the example shown in Figure 1. First, we determine a

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

186

confidence level of 90% (the default confidence value; in
C4.5 is 75% which often produce a pruned tree that is too
large). For node 43 and node 44, which are leaves, we
have U0.1 (7,20) = 0.5673 and U0.1 (10,22) = 0.6112,
respectively. Now, the estimated number of errors for
branch T41 is:20(0.5673) + 22 (0.6112) = 24.793

If the branch is pruned to a leaf, the estimated number
of errors is

42U0.1 (20,42) = 42 (0.5858) = 24.604
In this case, branch T41 should be pruned since this

would reduce the estimated number of errors. After
pruning, the estimated number of errors for branch T40 is
42U0.1 (20,22) + 1 U0.1 (0,1) = 42 (0.5858) + 1 (0.9) =
25.504
If it is pruned, the estimated number of errors will be
43 U0.1 (21,43) = 43 (0.5962) = 25.638
Pruning of branch T40 would cause increasing the
estimated number of errors, so it is retained (with two
leaves, node 41 and node 42) and included in the final
pruned tree.

5.2.4 Comparison of Pruning Techniques

As we have seen earlier, different pruning methods
would lead to different results. Many empirical studies
have been conducted to evaluate the effectiveness of
various pruning methods [8,18,21]. It has been shown that,
no single method is best of the others. In terms of
classification accuracy, the cost-complexity and reduced-
error methods appear to perform somewhat better in many
domains. However, these pruning methods normally run
more slowly than those that depend on the testing dataset.

6. Conclusion

The goal of this paper is to provide a comprehensive
survey about classical and incremental classification
algorithms. We focus our attention on decision tree based
classifiers and its applications to solve data mining
problems. Many important issues that distinguish between
each classifier such as splitting criteria and pruning
methods were discussed. Such criteria lead to the variation
of decision tree based classification.

References

[1] Han, J., and Kamber, M., ”Data Mining: Concepts and Techniques”,
1st Edition, Harcourt India Private Limited. 2001.

[2] Duda, R. O., Hart, P. E. and Stork, D. G., "Pattern Classification",
2nd Edition, John Wiley & Sons (Asia) PV. Ltd., 2002.

[3] Patterson, D. W., “Introduction to Artificial Intelligence and Expert
Systems”, 8th Edition, Prentice-Hall, India, 2000.

[4] Berry Michael J. A. and Linoff Gorden S.,”Mastering Data Mining”,
John Wiley & Sons, 2000.

[5] Robert Groth , ” Data Mining: A hands-On Approach for business
professionals”, Prentice Hall PTR, New Jersey, USA, 1998.

[6] Quinlan, J. R., ”Induction of Decision Trees”, Machine Learning,
1:1, Boston: Kluwer, Academic Publishers, 1986, 81-106.

[7] Quinlan, J. R., "C4.5: Programs for Machine Learning, San Mateo,
CA: Morgan Kaufmann, 1993.

[8] Esposito, F., Malerba, D. and Semeraro, G., ”A Comparative
Analysis of Methods for Pruning Decision Trees”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, IEEE
Computer Society, 1997.

[9] Breiman, L. J., Friedman, J. H., Olshen, R. A. and Stone, C. J. ,
Classifications and Regression Trees, New York, Chapman and
Hall., 1984.

[10] Shafer, J., Aggrawal, R. and Mehta, M., ”SPRINT: A Scalable
Parallel Classifier for Data Mining”, In Proceedings of 22nd VLDB

Conference, 1996.
[11] Rastogi, R. and Shim, K.., “PUBLIC: A Decision Tree Classifier

that Integrates Building and Pruning”, In Proceedings of the 24th
International Conference on VLDB, 1998.

[12] Gehrke, J., Ganti, V, Ramakrishnan, R. and Loh, W-Y., “BOAT-
optimistic Decision Tree Construction”, In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 1999.

[13] Mitchell, T. M, Utgoff, P. E. and Banerji, R., ”Learning by
Experimentation: Acquiring and Refining Problem-Solving
Heuristics”, In machine learning: Artificial Intelligence Approach,
Edited by R. S. Michalski, J. G. Carbonell, and Michall T. M.,
Tioga publishing Co., Palo Alto, CA, USA, 1983.

[14] Heath, D., Kasif, S., and Salzburg, S., “Learning Oblique Decision
Trees”, In Proceedings of the 13th International Joint Conference on
Artificial Intelligence, San Mateo, CA: Morgan Kaufmann, 1993.

[15] Liu, W. Z. and White, A. P., “The Importance of Attribute Selection
Measures in Decision Tree Induction”, Machine Learning, 15, 1994.

[16] Fayyad, U. M. and Irani, K.B., “The Attribute Selection Problem in
Decision Tree Generation”, In Proceedings of 10th National
Conference on Artificial Intelligence, Menlo Park, CA: AAA
Press/MIT Press, 1992.

[17] Clark, P. and Niblett, T., “The CN2 Induction Algorithm”, Machine
Learning, 3(4), 1989.

[18] Quinlan J. R., “Simplifying Decision Trees”, International Journal
of Machine Learning Studies, 27, 1987, 221-234.

[19] Clark, L.A and pregiban, D., “Tree-Based Models”, In statistical
Models in (J.M. Chambers and T.J. Hastie eds.), pacific Grave, CA:
Wadsworth and Brooks, 1992.

[20] Kass, G. V., “An Exploratory Technique for Investigating Large
quantities of Categorical Data”, Applied Statistics, 29,1980, 119-
127.

[21] Mingers, J., ”An Empirical Comparison of Pruning Methods for
Decision Tree Induction”, Machine Learning, 4(2), 1987.

[22] Rissanen, J., "Stochastic Complexity in Statistical Inquiry", World
Scientific Publicarion Co., 1989.

[23] Kalles, D. and Morris, T., “Efficient Incremental Induction of
Decision Trees”, Machine Learning, 24, 1996, pp. 231-241.

[24] Utgoff, P. E., “ID5: An Incremental ID3”, In Proceedings of the 5th
International Conference on Machine Learning, 1988, pp. 107-120.

[25] Utgoff, P. E., “Incremental Induction of Decision Tress”, Machine
Learning, 4(2), 1989, pp.161-186.

[26] Fisher, D., “Knowledge Acquisition via Incremental Conceptual
Clustering”, Machine Learning, 2, 1987, pp.139-172.

[27] Schlimmer, J. C. and Fisher, D., ”A Case Study of Incremental
Concept Induction”, In Proceedings of the 5th National Conference
on Artificial Intelligence, 1986, pp.496-501, Philadelphia, PA,
Morgan Kaufman.

[28] Van-de-Velde, W. ,"The Incremental Induction of Topologically
Minimal Decision Trees” In Proceedings of 7th International
Conference on Machine Learning, Austin, TX., 1990, 66-74.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

187

[29] Crawford, S., “Extensions to the CART Algorithm”, International
Journal of Man-Machine Studies 31(2), 1989, 197-217.

[30] Cockett, J. and Zhu, Y., “A New Incremental Technique for
Decision Trees with Thresholds” In Proceedings of the SPIE 1095,
1989, 804-811.

[31] Pujari, A. K., "Data Mining Techniques", 1st Edition, Universities
Press (India) Limited, 2001.

[32] Garofalakis, M., Hyun, D., Rastogi, R. and Shim, K., “Efficient
Algorithms for Constructing Decision Trees with Constraints”, Bell
Laboratories Tech. Memorandum, 2000.

[33] Clair, St. C., “A Usefulness Metric and its Application to Decision
Tree Based Classification”, Ph.D. Thesis, School of Computer
Science, Telecommunications and Information Systems, DePaul
University, Chicago, USA, 1999.

[34] Mingers, J., “An Empirical Comparison of Selection Measures for
Decision Tree Induction”, Machine learning, 3, 1989.

Ahmed Sultan Al-Hegami received
His B.Sc degree in Computer Science
from King Abdul Aziz University,
Saudi Arabia, MCA (Master of
Computer Application) from
Jawaharlal Nehru University, New
Delhi, India; and Ph.D. degree from
University of Delhi, Delhi, India. He
is lecturer at the Department of
Computer Science, Sana’a University,
Yemen.
Currently he is assistant
professor at the Department
of Computer Science, Sana’a

University, Yemen. His research interest includes
artificial intelligence, machine learning, temporal
databases, real time systems, data mining, and knowledge
discovery in databases.

