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Summary 

This paper proposes generation of entries of the S-Box using 
arithmetic modulo powers of two. The approach saves storage 
space and makes real time computations of the entries feasible. 
The inverse function used in the process is based on arithmetic 
modulo a power of two. The platform proposed for this project is 
modulo “2n” arithmetic which builds upon the hypothesis that 
the set of odd residues of “2n” forms a mathematical field. A first 
round optimization cuts the amount of required storage space by 
half. A second demonstrates that all entries of the S-Box could 
be derived from any of the remaining rows after the first round is 
completed; hence only a single row needs to be stored.  For real 
time regeneration of the S-Box, each of the single row entries is 
unpacked into two digits. One array stores the most significant 
digits and other stores the least.  The goal of this paper is 
therefore twofold: to enable real time computation of entries of 
the S-Box and to reduce the amount of stored information. The 
latter is small enough to reduce vulnerability and large enough to 
form a basis that enables real time generation of the complete 
S-Box. 

 
Keywords: Modulo Arithmetic, Mathematical Field, Rijndael, 

and S-Box. 

 
1. Introduction 

In general, most of the low-level components of block 
ciphers emphasize the functional aspect of the likes of the 
S-Box. According to Vincent Rijmen, the co-designer of 
the Rijndael algorithm, the Advanced Encryption 
Standard (AES), which is based on the S-Box is still 
superior in security [1]. In fact, their algorithm enjoys 
extremely high level of confusion and diffusion. 
Furthermore, the resistance of the inverse function in 
GF(2n) to linear, differential and higher-order differential 
attacks is exceptional according to Rijmen. However, one 
of the disadvantages of AES is the simplicity of 
description in GF (2n), which is also the field in which the 
diffusion layer is linear. The AES designers believe that 
this may create uneasy feelings, but they are not aware of 
any vulnerability thereof. Should such a vulnerability 
exist, they suggest the replacement of the GF(2n) by 
another field that has similar properties, but is not 
algebraic over GF(2n).   

A potential vulnerability that will be dealt with here is not 
directly related to the aforementioned discussion. The 
vulnerability discussed here stems from storing the S-Box 
in an attempt to avoid the overhead of tedious real time 
computations. The authors of this paper have shown in a 
previous paper that arithmetic modulo prime numbers 
provides a valid, less complex alternative to real time 
computation of S-Box inverses [18]. One may argue that 
reducing the complexity relative to the Galois Field may 
increase vulnerability. Nevertheless, such tradeoff is 
acceptable considering the gain in the amount of 
information stored and the consequences thereto. 
However, more work is needed to confirm that the 
vulnerability of the resulting platform is less relative to 
that of the original implementation via Galois Fields. 

This research is based on the finding that unique inverses 
of residues of, for example, 2n may be obtained by a 
bijective mapping of these residues to the odd residues of 
2n+1.  In a nutshell, the process of finding inverses starts 
with an injective mapping of residues of 2n to the odd 
residues of 2n+1. The inverses of the latter are computed 
using the field of odd numbers modulo 2n+1. The resulting 
inverses are then mapped back by a bijective function to 
pseudo inverses of residues of 2n. The rest of the paper is 
organized as follows.  A brief introduction to the AES is 
presented in section 2.  In section 3, a literature survey is 
presented.  The arithmetic modulo a power of two 
platform is analyzed in section 4. Section 5 discusses 
performance optimizations and the conclusion is given in 
section 6. 
 
2. The Advanced Encryption Standard 
In Reference [2] the authors stated that “The Advanced 
Encryption Standard (AES) committee solicited proposals 
for an encryption algorithm that would become the first 
choice for most situations requiring a block cipher”. 
Consequently, several algorithms were submitted and 
Rijndael was chosen by the American National Institute of 
Standards and Technology (NIST) [3]. More information 
about the AES is in the next subsection. 
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2.1 The Rijndael Algorithm 
For Rijndael, the length of both the block to be encrypted 
and the encryption key are not fixed. They can be 
independently specified to 128, 192 or 256 bits. The 
number of rounds, however, varies according to the key 
length. It can be equal to 10, 12 and 14 when the key 
length is 128 bits, 192 bits and 256 bits, respectively [4]. 
The basic components of Rijndael are simple 
mathematical, logical, and table lookup operations. The 
latter is actually a composite function of an inversion over 
Galois Field (GF) with an affine mapping. Such structure 
makes Rijndael suitable for hardware implementation [2] 
Nevertheless, both hardware and software 
implementations have their own drawbacks. Hardware 
implementation is rigid as a block and key sizes must be 
held at fixed values. However, the running time is better 
compared to its software counterpart. All in all, Rijndael 
is considered to be the fastest algorithm in terms of the 
critical path between plaintext and cipher-text2. This 
paper proposes the design of a modulo prime-number 
based AES algorithm. The design will be simulated in a 
VHDL environment to confirm its superiority. The VHDL 
modules will not be included in this paper.  
 
3. Literature Survey 
Ichikawa, Kasuya, and Mastui published a paper they 
called “Hardware Evaluation of AES finalists”[5]. The 
paper evaluates hardware implementations of the AES 
finalists; Twofish [13], Serpent [14], RC6 [15], Mars [16], 
and Rijndael[17]. Commenting on Mars, the authors 
stated two problems: the keyed transformations take a 
long time and, the algorithm is very complex. They also 
concluded that RC6 gives a poor performance since the 
critical path is long. The RC6, according to them, did not 
satisfy the need for fast encryption. They believe Serpent 
has the best security but it requires the largest circuit. 
They also believed that Twofish has quite a long critical 
path. In their paper titled “Comparison of the Hardware 
Performance of AES candidates using reconfigurable 
hardware” Pawel Chodowiec and Kris Gai gave data 
supporting Rijndael [16]. The throughput of Rijndael 
came second. However, considering all the other criteria, 
Rijndael was found to be the best. Ian Harvey discussed 
the selection of encryption algorithm in practical 
situations in his paper titled “The Effects of Multiple 
Algorithms in the Advanced Encryption Standard” [2]. 
AES finalists are compared based on the factors 
considered for algorithm selection. Bryan Weeks et al 
presented an overview of the methods and architectures 
used for the AES hardware comparison in their paper 
titled “Hardware Performance Simulations of Round 2 
Advanced Encryption Standard Algorithms” [4]. In 
general, throughput, area and latency are the 
characteristics considered for design tradeoffs in 
hardware engineering. The five finalists were examined 

from the standpoint of minimum area and maximum 
throughput. Interested readers may consult reference [4] 
for further details. A. Satoh, S. et al presented an AES 
hardware implementation they considered to be efficient 
in their paper “A Compact Rijndael Hardware 
architecture with S-Box Optimization” [8]. However, the 
main drawback of their architecture is the critical path 
time. The SubBytes, MixColumns and AddRoundKey 
transformations are done for one column within one clock 
cycle. This increases the critical path time. In the next 
subsection, a survey of some of the VHDL 
implementations is presented. 
 
3.1 VHDL implementations 
Algotronix AES Core [9] represents the second 
generation of their AES VHDL technology. It is a stable 
implementation of the entire algorithm. It offers 
competitive density and performance on all the main Field 
Programmable Gate Arrays (FPGA) families from Xilinx, 
Altera and Actel. It is supplied as synthesizable source 
code to allow for customer code review in security 
sensitive applications. The core is highly configurable 
with many implementation options but unlike most 
competitive products, this is achieved using VHDL 
generic parameters and does not require customizing the 
VHDL code.  
In their paper “Configurable Design and Implementation 
of the Rijndael Algorithm-AES”, Arda Yurdakul et al [10] 
discussed the design and implementation of three 
configurable and flexible cores of Rijndael. The three 
cores are; an encryptor, a decryptor and a combined 
encryptor-decryptor. These cores support not only the 
AES, but also the whole Rijndael algorithm. Another 
feature of the cores is that they are all designed using 
Electronic Code Book (ECB) mode, meaning that every 
single data block is encrypted and decrypted 
independently from each other. Since ECB is the basic 
element of all other main modes such as Cipher Block 
Chaining (CBC), Cipher Feedback (CFB) and Output 
Feedback (OFB), it is easy to extend their design and 
implement the other modes. All the modules in these 
flexible cores are realized using VHDL language. Some 
modules are designed by using behavioral style and some 
are designed using Register Transfer Language. In the 
next section the implementation of the modulo arithmetic 
based AES is presented. 
 
4. AES Implementation using modulo 
arithmetic 
Generally speaking for the hardware implementations of 
Rijndael, Ian Harvey [2] states that the average time for 
one lookup table is 3.2 nanoseconds for Rijndael (8x8). If 
one is able to optimize the S-Box lookup process, then the 
speed of Rijndael can be greatly increased. The S-Box 
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computation is the most time-consuming operation in 
Rijndael. This is the case because it is required in every 
round. Current implementations pre-compute the S-Box 
and store it on a Read Only Memory (ROM). However, 
there is a chance that in a highly sensitive data 
environment, storing such information may pose a threat 
to its security. To circumvent such vulnerability, the 
S-Box values must be computed in a real-time basis. 
However, using the Galois Fields (GF) renders this option 
undesirable. To speed up real-time S-Box construction, an 
environment other than the GF must be used. The reason 
real time computation of the S-Box is advantageous is 
twofold: first, when the lookup table is stored for future 
reference, it is vulnerable to attacks; hence, it is a security 
concern. Second, if a device doesn’t have enough 
resources, real-time computation of inverses of numbers 
for the S-Box in the Galois Field environment becomes a 
bottleneck. To overcome these limitations, real time 
computations of these inverses can be performed using 
modulo arithmetic. The proof that modulo arithmetic 
approach is efficient and takes significantly less time and 
space compared to the GF can be found in reference [11]. 
Henceforth, arithmetic modulo a power of two will be 
referred to as AM(2n).  In the next subsections we will 
present analysis of AM(2n). 

 
4.1 Computing inverses modulo (2n) 
A VHDL module for computing the S-Box values has 
been simulated successfully. Without loss of generality, 
the module was used to compute the inverses of residues 
modulo 24. For convenience, the output is rearranged in 
table 1 below. The table shows an AM(24) mapping of 
numbers less than 24.  
 

Number Inverse Modulo16 
1 1 
2 - 
3 11 
4 - 
5 13 
6 - 
7 7 
8 - 
9 9 
10 - 
11 3 
12 - 
13 5 
14 - 
15 15 

Table 1.  Inverses Modulo 16 mapping the first 15 
integers 

 
Only odd numbers on the first row have inverses modulo 

16. The inverses are shown in the second row, which also 
shows a ‘-’ for numbers without inverses. In this case, all 
the even numbers do not have inverses as expected. The 
following is a generalization of the relationship between 
numbers and their multiplicative inverses modulo a power 
of 2.  
 
Lemma 1 
Given any integer n and any number ‘a’ that is less than 
2n, if ‘a’ has a multiplicative inverse modulo 2n , then both 
‘a’ and its multiplicative inverse must be odd numbers. 
 
Proof 
If  ‘a’ and ‘b’ are multiplicative inverses of each other 
modulo 2n, then for some integer z less than 2n the 
following equation holds:     
 a * b    =  (z * 2n) + 1                                    (1) 
Since the right hand side is an odd number, it follows that 
‘a’ must be an odd number and ‘b’ must also be an odd 
number.  This proves that there are no multiplicative 
inverses for even numbers modulo 2n. The Eueler’s 
Totiet12  will be used to prove that every odd number has a 
multiplicative inverse modulo 2n. In general, 
mathematicians use Euler’s Totiet function ‘Ф’ to 
compute the number of integers that are relatively prime 
(or multiplicative inverses) to a particular integer n. The 
function, denoted Ф(n), is given by the following product: 
   
Ф (n) =  
[(p1 – 1)* p1

k1-1 ] * [(p2 – 1)  * p2
k2-1] 

 * … * [(pm – 1)*pm
km-1 ]                              (2) 

 
Where n in this case is expressed in terms of its prime 
factors [p1, p2, …  pk]. 
 
A special case of the Euler’s function can be used to find 
the number of integers that are relatively prime to 2n. 
Since a power of 2 has the number 2 as its only prime 
factor then replacing “n” with “2n”; “p1”with the number 
2;  “k1” with “n”  we reach equation 3 . 
 
 Ф (2n) = (2-1)(2n – 1 ) =  2n – 1                         (3) 
 
The formula shows that half of the numbers less than 2n 
are relatively prime to it. Since no even number is 
relatively prime to 2n and there are exactly 2n-1 odd 
number less that 2n , it follows that all the odd numbers 
less than 2n have multiplicative inverses. This completes 
the proof. 
Lemma 2 
For any integer n, if we divide the sequence of odd 
numbers from 1 to “2n-1”  into two disjoint subsets where 
the first contains the sequence of all the odd numbers that 
are less than 2n-1 and the second contains the rest in 
ascending order as well, then we can say that the first and 
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last number in each subset is the multiplicative inverse of 
itself modulo 2n. 
Proof: 

Assume a sequence of odd numbers divided into 
two subsets as shown: 
 [1, 3,. ., 2n-1 – 1] , [2n-1 + 1, 2n-1 + 3,… ,2n – 1] 

The proof will be divided into four parts for the four 
boundary conditions: 

 {1, (2n-1 – 1), (2n-1 +1) and (2n – 1)}. 
a) The proof for 1 as the multiplicative inverse of 

itself is trivial.  
b) The proof for (2n – 1) as the multiplicative 

inverse of itself can be given as follows for some 
integer z that is less than 2n: 

           (2n – 1) * (2n – 1 ) =  22n - 2n+1 + 1 =    
            2n (2n -2) + 1 =  2n (z) + 1 = 1 mod (2n ) 

c) The proof for (2n - 1 – 1) is as follows: 
(2n - 1 – 1 )*( 2n - 1 – 1 ) = 22n - 2 – 2n + 1 = 2n * (2n-2 
– 1 ) +1 = 1 mod (2n) 

d) The proof for (2n - 1 + 1) is also achievable in a 
similar way: 
 (2n - 1 + 1 )*( 2n - 1 + 1 ) = 22n - 2 + 2n + 1 = 2n * (2n-2 
+ 1 ) +1 = 1 mod (2n) 
 

We will also show that for any power of 2, there are only 
four numbers that are inverses of themselves modulo the 
power of 2. 
 
Corollary 1 
There are exactly four numbers that are the inverses of 
themselves modulo a power of 2. 
Proof 
For any number 2n we proved in Lemma 1 that each of the 
numbers in the set S = {1, (2n-1-1), (2n-1+1), (2n -1)} equals 
its inverse modulo (2n). We need to show that if a number 
"a" equals its inverse then "a" must be a member of the set 
S. Let us assume “a” to be the inverse of itself and that “a” 
is not a member of S, we conclude the following four 
inequalities: 

(i) a  <  (2n -1) 
(ii) a  >  1  
(iii) a is not equal to (2n-1 – 1) 
(iv) a is not equal to (2n-1 +1) 

 
We will prove that if  “a” satisfies conditions (i) and (ii), 
then “a” must be equal to (2n-1 – 1) or (2n-1 +1), thereby 
contradicting statements (iii) and (iv) and proving that the 
value of “a” can only be equal to one of the members of 
the set S. 
 
Case (i)     a <  (2n -1) 
Therefore: a =  (2n – 1) – 2*r                                 
       for  any r > 0                                            (4) 
 and     
a2 =  (2n – 1) 2 – 4 *r (2n – 1) + 4* r2 

    = 22n – 2n+1 + 1 – 4*r*2n + 4*r+ 4 * r2 
    = 2n (2n – 2 – 4*r) + 4 * r2 + 4*r + 1           (5)                               
  Since a2  is congruent to 1 modulo 2n, equation (5) 
implies that:               
       (4 * r2 + 4*r) mod (2n) = 0 
Therefore  (4 * r2 + 4*r) = t * 2n                          
         for     0 < t < 2n 
Rearranging the terms results in the following equation  
  
 r*{(r+1)/t}=2n-2                                                                      (6) 
 
Equation (6) implies that both "r" and "{(r+1)/t}" are 
powers of 2. Since the numerator (r+1) must be an odd 
number, it follows that {(r+1)/t} must be equal to 1. 
Therefore "r" must be equal to 2n-2. Consequently, using 
equation (4),  "a" will satisfy the following equation: 
                      a =  (2n – 1) – 2*r 
                         =  (2n – 1) – 2*2n-2 
                         =  (2n-1 – 1) 
Case (ii)     a >  1 
   Therefore a =  1 + 2*r      
   for any r > 0                                                   (7)                        
           and   a2 =  1 + 4*r + 4 * r2                                                                
            since “a” is congruent to 1 modulo 2n it follows 
that: 

         
 (4 * r2 + 4*r) mod (2n) = 0 
  
and eventually we find the value of “r” to be equal to 2n-2  
following the same steps of case (i),.   Plugging this value 
in equation (7) will lead to:  
 
      a  =  1 + 2 * 2n-2   = (2n-1 + 1)   
which completes the proof. 
This ends the proof for Corollary 1. 
 

Since mapping of the boundary conditions 
results in numbers that are inverses of themselves, 
AM(2n), and for that matter GF(2n ), may look vulnerable 
through the S-Box Values. We used corollary 1 to show 
that regardless of the value of n, the number of integers 
which are equal to their inverses modulo (2n) will be 
exactly four. However, that is not the only concern we 
have with this approach. AM(2n) also suffers from another 
disadvantage, that is, even numbers have no inverses 
modulo(2n). The question that may be asked is whether or 
not modifying the modulo (2n) arithmetic will lead to a 
better approach. In the next subsection the proposed 
“pseudo inverses modulo powers of two” will be 
introduced.   
 
4.2 Pseudo inverses modulo powers of two 
So far the following points have been emphasized: 

1. All the odd numbers are relatively prime to 
powers of two 
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2. No even number has an inverse modulo a power 
of two 

 
It is clear from the first point that every odd number has an 
inverse in modulo a power of two arithmetic, which is a 
plus. However, the second point limits the use of powers 
of two because the same conclusion could not be reached 
for the even numbers. The next move is to show that a 
mapping of all the integers less than 2n  to the odd 
numbers less than 2n+1 will enable the use of modulo a 
power of two arithmetic as a valid alternative to 
computing inverses via the GF approach.  The resulting 
inverses are considered pseudo inverses because they are 
computed in a different mathematical field. Four 
functions are needed to compute the pseudo inverses as 
follows, where “OdRs” stands for Odd Residues and 
“IOdRs” stands for Inverse of Odd Residues:  
 
             F1: (2 n)  à OdRs( 2 n+1);   
             F2: OdRs (2 n+1)  à IOdRs (2 n+1)  
             F3: IOdRs (2 n+1) à (2 n) 
             F4: (2 n)  à (2 n) 
 
The algorithm for computing the pseudo inverses is a 
direct implementation of these functions and is called 
“pseudo inverses modulo 2n algorithm”. Figure 1 shows 
the implementation of algorithm in steps: the first function 
(F1) is implemented on the first two steps; the second 
function (F2) is implemented at the third step; the third 
function (F3) is given by the fourth step; the fourth 
function (F4) is shown in step 5.  
 
 

1. given a remainder "r"  in 
modulo "2n"  

2. compute    "s"  =  "2r – 1"  
3. compute "t" the inverse of "s" 

in modulo " 2n+1 " 
4. compute "u"  = "(s+1)/2" 
5. "u" is the pseudo inverse of 

"r" modulo 2n 
 

Figure 1. Algorithm for finding pseudo inverses 
modulo 2n 

 
To demonstrate the algorithm, we use the value "4" for the 
variable "n" and display the results on table 2 for all the 
remainders in ascending order. The left most column is 
considered column number 1, consequently, the results of 
each of the steps of the algorithm are displayed in the 
column sharing its number. 
 
Except for step number "3", the rest are self explanatory. 
It will be sufficient to state that if "x" and "y" are inverses 
of each other in modulo 2n+1, then  there is an integer "m" 

that relates  them as follows: 
 
             x =    (2n * m +1)/y                  (8) 
 
The next step is to optimize the process which is covered 
in section 4. 
 

r s t u 

1 1 1 1 
2 3 11 6 
3 5 13 7 
4 7 23 12 
5 9 25 13 
6 11 3 2 
7 13 5 3 
8 15 15 8 
9 17 17 9 
10 19 27 14 
11 21 29 15 
12 23 7 4 
13 25 9 5 
14 27 19 10 
15 29 21 11 

Table 2. Demonstration of the pseudo inverses of 24 

 
 
 

5. Optimizing the pseudo modulo approach 
 
The proposed approach will be optimized by reducing 
both the computation complexity and storage 
requirement. For this purpose, a practically larger value 
for “n” will be needed. Without loss of generality, the 
value chosen for “n” is “7”. This gives an S-Box with 128 
entries computed as pseudo inverses using arithmetic 
modulo 28. Table 3 below shows inverses computed using 
the field of odd numbers modulo 28. Even numbered 
columns are eliminated because their entries are not 
members of this field.  
 

 1 3 5 7 9 B D F 
0 01 AB CD B7 39 A3 C5 EF 
1 F1 1B 3D A7 29 13 35 DF 
2 E1 8B AD 97 19 83 A5 CF 
3 D1 FB 1D 87 09 F3 15 BF 
4 C1 6B 8D 77 F9 63 85 AF 
5 B1 DB FD 67 E9 D3 F5 9F 
6 A1 4B 6D 57 D9 43 65 8F 
7 91 BB DD 47 C9 B3 D5 7F 
8 81 2B 4D 37 B9 23 45 6F 
9 71 9B BD 27 A9 93 B5 5F 
A 61 0B 2D 17 99 03 25 4F 
B 51 7B 9D 07 89 73 95 3F 



IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007 
 

 

245 

C 41 EB 0D F7 79 E3 05 2F 
D 31 5B 7D E7 69 53 75 1F 
E 21 CB ED D7 59 C3 E5 0F 
F 11 3B 5D C7 49 33 55 FF 

Table 3.  Inverses of off numbers modulo 28 
 
The table gives 128 inverses for an S-Box with 128 
entries. For a 256 entries S-Box, one has to take the value 
of “n” to be equal to 8. 
 
Although there are 128 computed inverses on table 3, one 
needs to determine the inverses of only half of them and 
the other half will follow by symmetry. That is, if "x" is 
the inverse of "y", then "y" is the inverse of "x".  For 
example, if the inverse of “45” can easily be determined 
from  the 4th row and the 5th column of the table as “8D”, 
then it will be redundant to have the number “45” on the 
table in the eighth row and the D’ column.  It is interesting 
to observe that further optimization can be achieved 
through the following lemma: 
 
Lemma 3 
If "x" is the inverse of "y" in modulo 2n arithmetic, then 
the 2n’s complement of x is the inverse of the 2n’s 
complement of y. That is, (2n – x) is the inverse of (2n – y) 
modulo 2n arithmetic.   
 
Proof: 
Given "x" and "y" to be inverses in modulo 2n arithmetic, 
then for (2n – x) to be the inverse of (2n – y) they must 
satisfy for some integer "m" the following: 
 
    (2n – x) * (2n – y)    =   2n * m + 1 
 
Rewriting the left hand side we get: 
 
(22n – x*2n – y*2n  + x*y )  = 2n[2n – (x+y)] + x*y 
 
Since x*y can be rewritten as (2n *k +1),  it follows that 
 
(22n – x*2n – y*2n  + x*y )  = 2n [2n +k– (x+y)] + 1 
 
Taking "m" to be equal to [2n +k– (x+y)] completes the 
proof. 
 
Based on Lemma 3, table 3 will therefore reduce to table 4 
below: 
 
 1 3 5 7 9 B D F 
0 01 AB CD B7 39 A3 C5 EF 
1 F1 1B 3D A7 29 13 35 DF 
2 E1 8B AD 97 19 83 A5 CF 
3 D1 FB 1D 87 09 F3 15 BF 
4 C1 6B 8D 77 F9 63 85 AF 
5 B1 DB FD 67 E9 D3 F5 9F 

6 A1 4B 6D 57 D9 43 65 8F 
7 91 BB DD 47 C9 B3 D5 7F 
   Table 4.  A Reduced version of table 3 
 
Table 4 enables the lookup of inverses for the odd 
hexadecimal numbers from 01 to 7F, where the column 
headers are the Least Significant Digits (LSD) and the 
row headers are the Most Significant Digits (MSD). If one 
needs to find the inverse of a double hexadecimal digits 
number where the MSD is less than "8", then the answer 
can be looked up from table 4. However, if the MSD is 
more than "7", then lemma 3 has to be used. Here is an 
example for a case where the MSD is greater than "7". 
 
To find the inverse of "9D" one must use lemma 3 because 
the MSD is greater than 7. The lemma will be 
demonstrated in this case in three steps:  
 

1. obtain the 28's complement of "9D" which is 
equal to "63".  

2. find the inverse of "63" using table 4, which is 
equal to "4B". 

3. find the 28's complement  of "4B" which is 
equal to "B5".  

 
The result from step 3 in this case "B5" is the inverse of 
"9D" obtained indirectly from table 4. A quick look at 
table 3 confirms that the inverse of "9D" is indeed "B5".  
To even further optimize the process, table 4 can be 
reduced to a single row, namely, row number 1. The 
following definition is necessary for the said hypothesis. 
 
Definition 1:  The generator Gm (Gl) is a one dimensional 
array that contains the MSD (LSD) digit of the inverses in 
the first row of table 4 as follows: 
 
          Gm =   [0, A, C, B, 3, A, C, E] 
           Gl =   [1, B, D, 7, 9, 3, 5, F] 
 
Based on this definition the following lemma will 
summarize the results of this section, hence no proof is 
presented. 
 
 
Lemma 4 
  
The single step for computing the inverse of a two 
hexadecimal digits number "HmHl" is as follows: 

Inverse of (HmHl)=       (Gm [Hl] – Hm) || Gl [Hl]      
                                           for Hm = 1,7,9 or F 

                                       (Gm[Hl] – 9*Hm) || Gl[Hl]   
                                           for Hm = 3,5,B or D 
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6.  Conclusion 

An implementation of the Advanced Encryption Standard 
that uses the field of odd residues of a power of two as a 
platform has been investigated. The paper suggested an 
alternative to the Galois Field that may very well be 
desirable for situations where storing of the S-Box is not 
desirable or feasible. The proposed technique is based on 
arithmetic modulo powers of two and enabled the 
reduction of storage space to only (1/2 n) of the amount 
required by the complete S-Box. The eliminated entries of 
the S-Box can be regenerated from the stored part. The 
stored part was carefully chosen to be small enough to 
reduce the vulnerability but also large enough to form a 
basis that can be used to generate all the entries. Although 
this paper introduced a new mathematical field and 
significant savings in the storage requirement, the 
ultimate measure for its importance comes from one fact: 
that is, whether or not further work will confirm that the 
resulting AES implementation is less vulnerable 
compared to the original implementation via Galois Field. 
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