
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

240

Manuscript received December 5, 2007

Manuscript revised December 20, 2007

An Optimized Real Time Generation of S-Box Inverses Using
Arithmetic Modulo Powers of Two

Eltayeb Salih Abuelyman, and Mohamed Ahmed El-Affendi

College of Computer and Information Systems
 Prince Sultan University, Riyadh 11586, Saudi Arabia

Summary

This paper proposes generation of entries of the S-Box using
arithmetic modulo powers of two. The approach saves storage
space and makes real time computations of the entries feasible.
The inverse function used in the process is based on arithmetic
modulo a power of two. The platform proposed for this project is
modulo “2n” arithmetic which builds upon the hypothesis that
the set of odd residues of “2n” forms a mathematical field. A first
round optimization cuts the amount of required storage space by
half. A second demonstrates that all entries of the S-Box could
be derived from any of the remaining rows after the first round is
completed; hence only a single row needs to be stored. For real
time regeneration of the S-Box, each of the single row entries is
unpacked into two digits. One array stores the most significant
digits and other stores the least. The goal of this paper is
therefore twofold: to enable real time computation of entries of
the S-Box and to reduce the amount of stored information. The
latter is small enough to reduce vulnerability and large enough to
form a basis that enables real time generation of the complete
S-Box.

Keywords: Modulo Arithmetic, Mathematical Field, Rijndael,

and S-Box.

1. Introduction

In general, most of the low-level components of block
ciphers emphasize the functional aspect of the likes of the
S-Box. According to Vincent Rijmen, the co-designer of
the Rijndael algorithm, the Advanced Encryption
Standard (AES), which is based on the S-Box is still
superior in security [1]. In fact, their algorithm enjoys
extremely high level of confusion and diffusion.
Furthermore, the resistance of the inverse function in
GF(2n) to linear, differential and higher-order differential
attacks is exceptional according to Rijmen. However, one
of the disadvantages of AES is the simplicity of
description in GF (2n), which is also the field in which the
diffusion layer is linear. The AES designers believe that
this may create uneasy feelings, but they are not aware of
any vulnerability thereof. Should such a vulnerability
exist, they suggest the replacement of the GF(2n) by
another field that has similar properties, but is not
algebraic over GF(2n).

A potential vulnerability that will be dealt with here is not
directly related to the aforementioned discussion. The
vulnerability discussed here stems from storing the S-Box
in an attempt to avoid the overhead of tedious real time
computations. The authors of this paper have shown in a
previous paper that arithmetic modulo prime numbers
provides a valid, less complex alternative to real time
computation of S-Box inverses [18]. One may argue that
reducing the complexity relative to the Galois Field may
increase vulnerability. Nevertheless, such tradeoff is
acceptable considering the gain in the amount of
information stored and the consequences thereto.
However, more work is needed to confirm that the
vulnerability of the resulting platform is less relative to
that of the original implementation via Galois Fields.

This research is based on the finding that unique inverses
of residues of, for example, 2n may be obtained by a
bijective mapping of these residues to the odd residues of
2n+1. In a nutshell, the process of finding inverses starts
with an injective mapping of residues of 2n to the odd
residues of 2n+1. The inverses of the latter are computed
using the field of odd numbers modulo 2n+1. The resulting
inverses are then mapped back by a bijective function to
pseudo inverses of residues of 2n. The rest of the paper is
organized as follows. A brief introduction to the AES is
presented in section 2. In section 3, a literature survey is
presented. The arithmetic modulo a power of two
platform is analyzed in section 4. Section 5 discusses
performance optimizations and the conclusion is given in
section 6.

2. The Advanced Encryption Standard
In Reference [2] the authors stated that “The Advanced
Encryption Standard (AES) committee solicited proposals
for an encryption algorithm that would become the first
choice for most situations requiring a block cipher”.
Consequently, several algorithms were submitted and
Rijndael was chosen by the American National Institute of
Standards and Technology (NIST) [3]. More information
about the AES is in the next subsection.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

241

2.1 The Rijndael Algorithm
For Rijndael, the length of both the block to be encrypted
and the encryption key are not fixed. They can be
independently specified to 128, 192 or 256 bits. The
number of rounds, however, varies according to the key
length. It can be equal to 10, 12 and 14 when the key
length is 128 bits, 192 bits and 256 bits, respectively [4].
The basic components of Rijndael are simple
mathematical, logical, and table lookup operations. The
latter is actually a composite function of an inversion over
Galois Field (GF) with an affine mapping. Such structure
makes Rijndael suitable for hardware implementation [2]
Nevertheless, both hardware and software
implementations have their own drawbacks. Hardware
implementation is rigid as a block and key sizes must be
held at fixed values. However, the running time is better
compared to its software counterpart. All in all, Rijndael
is considered to be the fastest algorithm in terms of the
critical path between plaintext and cipher-text2. This
paper proposes the design of a modulo prime-number
based AES algorithm. The design will be simulated in a
VHDL environment to confirm its superiority. The VHDL
modules will not be included in this paper.

3. Literature Survey
Ichikawa, Kasuya, and Mastui published a paper they
called “Hardware Evaluation of AES finalists”[5]. The
paper evaluates hardware implementations of the AES
finalists; Twofish [13], Serpent [14], RC6 [15], Mars [16],
and Rijndael[17]. Commenting on Mars, the authors
stated two problems: the keyed transformations take a
long time and, the algorithm is very complex. They also
concluded that RC6 gives a poor performance since the
critical path is long. The RC6, according to them, did not
satisfy the need for fast encryption. They believe Serpent
has the best security but it requires the largest circuit.
They also believed that Twofish has quite a long critical
path. In their paper titled “Comparison of the Hardware
Performance of AES candidates using reconfigurable
hardware” Pawel Chodowiec and Kris Gai gave data
supporting Rijndael [16]. The throughput of Rijndael
came second. However, considering all the other criteria,
Rijndael was found to be the best. Ian Harvey discussed
the selection of encryption algorithm in practical
situations in his paper titled “The Effects of Multiple
Algorithms in the Advanced Encryption Standard” [2].
AES finalists are compared based on the factors
considered for algorithm selection. Bryan Weeks et al
presented an overview of the methods and architectures
used for the AES hardware comparison in their paper
titled “Hardware Performance Simulations of Round 2
Advanced Encryption Standard Algorithms” [4]. In
general, throughput, area and latency are the
characteristics considered for design tradeoffs in
hardware engineering. The five finalists were examined

from the standpoint of minimum area and maximum
throughput. Interested readers may consult reference [4]
for further details. A. Satoh, S. et al presented an AES
hardware implementation they considered to be efficient
in their paper “A Compact Rijndael Hardware
architecture with S-Box Optimization” [8]. However, the
main drawback of their architecture is the critical path
time. The SubBytes, MixColumns and AddRoundKey
transformations are done for one column within one clock
cycle. This increases the critical path time. In the next
subsection, a survey of some of the VHDL
implementations is presented.

3.1 VHDL implementations
Algotronix AES Core [9] represents the second
generation of their AES VHDL technology. It is a stable
implementation of the entire algorithm. It offers
competitive density and performance on all the main Field
Programmable Gate Arrays (FPGA) families from Xilinx,
Altera and Actel. It is supplied as synthesizable source
code to allow for customer code review in security
sensitive applications. The core is highly configurable
with many implementation options but unlike most
competitive products, this is achieved using VHDL
generic parameters and does not require customizing the
VHDL code.
In their paper “Configurable Design and Implementation
of the Rijndael Algorithm-AES”, Arda Yurdakul et al [10]
discussed the design and implementation of three
configurable and flexible cores of Rijndael. The three
cores are; an encryptor, a decryptor and a combined
encryptor-decryptor. These cores support not only the
AES, but also the whole Rijndael algorithm. Another
feature of the cores is that they are all designed using
Electronic Code Book (ECB) mode, meaning that every
single data block is encrypted and decrypted
independently from each other. Since ECB is the basic
element of all other main modes such as Cipher Block
Chaining (CBC), Cipher Feedback (CFB) and Output
Feedback (OFB), it is easy to extend their design and
implement the other modes. All the modules in these
flexible cores are realized using VHDL language. Some
modules are designed by using behavioral style and some
are designed using Register Transfer Language. In the
next section the implementation of the modulo arithmetic
based AES is presented.

4. AES Implementation using modulo
arithmetic
Generally speaking for the hardware implementations of
Rijndael, Ian Harvey [2] states that the average time for
one lookup table is 3.2 nanoseconds for Rijndael (8x8). If
one is able to optimize the S-Box lookup process, then the
speed of Rijndael can be greatly increased. The S-Box

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

242

computation is the most time-consuming operation in
Rijndael. This is the case because it is required in every
round. Current implementations pre-compute the S-Box
and store it on a Read Only Memory (ROM). However,
there is a chance that in a highly sensitive data
environment, storing such information may pose a threat
to its security. To circumvent such vulnerability, the
S-Box values must be computed in a real-time basis.
However, using the Galois Fields (GF) renders this option
undesirable. To speed up real-time S-Box construction, an
environment other than the GF must be used. The reason
real time computation of the S-Box is advantageous is
twofold: first, when the lookup table is stored for future
reference, it is vulnerable to attacks; hence, it is a security
concern. Second, if a device doesn’t have enough
resources, real-time computation of inverses of numbers
for the S-Box in the Galois Field environment becomes a
bottleneck. To overcome these limitations, real time
computations of these inverses can be performed using
modulo arithmetic. The proof that modulo arithmetic
approach is efficient and takes significantly less time and
space compared to the GF can be found in reference [11].
Henceforth, arithmetic modulo a power of two will be
referred to as AM(2n). In the next subsections we will
present analysis of AM(2n).

4.1 Computing inverses modulo (2n)
A VHDL module for computing the S-Box values has
been simulated successfully. Without loss of generality,
the module was used to compute the inverses of residues
modulo 24. For convenience, the output is rearranged in
table 1 below. The table shows an AM(24) mapping of
numbers less than 24.

Number Inverse Modulo16
1 1
2 -
3 11
4 -
5 13
6 -
7 7
8 -
9 9
10 -
11 3
12 -
13 5
14 -
15 15

Table 1. Inverses Modulo 16 mapping the first 15
integers

Only odd numbers on the first row have inverses modulo

16. The inverses are shown in the second row, which also
shows a ‘-’ for numbers without inverses. In this case, all
the even numbers do not have inverses as expected. The
following is a generalization of the relationship between
numbers and their multiplicative inverses modulo a power
of 2.

Lemma 1
Given any integer n and any number ‘a’ that is less than
2n, if ‘a’ has a multiplicative inverse modulo 2n , then both
‘a’ and its multiplicative inverse must be odd numbers.

Proof
If ‘a’ and ‘b’ are multiplicative inverses of each other
modulo 2n, then for some integer z less than 2n the
following equation holds:
 a * b = (z * 2n) + 1 (1)
Since the right hand side is an odd number, it follows that
‘a’ must be an odd number and ‘b’ must also be an odd
number. This proves that there are no multiplicative
inverses for even numbers modulo 2n. The Eueler’s
Totiet12 will be used to prove that every odd number has a
multiplicative inverse modulo 2n. In general,
mathematicians use Euler’s Totiet function ‘Ф’ to
compute the number of integers that are relatively prime
(or multiplicative inverses) to a particular integer n. The
function, denoted Ф(n), is given by the following product:

Ф (n) =
[(p1 – 1)* p1

k1-1] * [(p2 – 1) * p2
k2-1]

 * … * [(pm – 1)*pm
km-1] (2)

Where n in this case is expressed in terms of its prime
factors [p1, p2, … pk].

A special case of the Euler’s function can be used to find
the number of integers that are relatively prime to 2n.
Since a power of 2 has the number 2 as its only prime
factor then replacing “n” with “2n”; “p1”with the number
2; “k1” with “n” we reach equation 3 .

 Ф (2n) = (2-1)(2n – 1) = 2n – 1 (3)

The formula shows that half of the numbers less than 2n
are relatively prime to it. Since no even number is
relatively prime to 2n and there are exactly 2n-1 odd
number less that 2n , it follows that all the odd numbers
less than 2n have multiplicative inverses. This completes
the proof.
Lemma 2
For any integer n, if we divide the sequence of odd
numbers from 1 to “2n-1” into two disjoint subsets where
the first contains the sequence of all the odd numbers that
are less than 2n-1 and the second contains the rest in
ascending order as well, then we can say that the first and

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

243

last number in each subset is the multiplicative inverse of
itself modulo 2n.
Proof:

Assume a sequence of odd numbers divided into
two subsets as shown:
 [1, 3,. ., 2n-1 – 1] , [2n-1 + 1, 2n-1 + 3,… ,2n – 1]

The proof will be divided into four parts for the four
boundary conditions:

 {1, (2n-1 – 1), (2n-1 +1) and (2n – 1)}.
a) The proof for 1 as the multiplicative inverse of

itself is trivial.
b) The proof for (2n – 1) as the multiplicative

inverse of itself can be given as follows for some
integer z that is less than 2n:

 (2n – 1) * (2n – 1) = 22n - 2n+1 + 1 =
 2n (2n -2) + 1 = 2n (z) + 1 = 1 mod (2n)

c) The proof for (2n - 1 – 1) is as follows:
(2n - 1 – 1)*(2n - 1 – 1) = 22n - 2 – 2n + 1 = 2n * (2n-2
– 1) +1 = 1 mod (2n)

d) The proof for (2n - 1 + 1) is also achievable in a
similar way:
 (2n - 1 + 1)*(2n - 1 + 1) = 22n - 2 + 2n + 1 = 2n * (2n-2
+ 1) +1 = 1 mod (2n)

We will also show that for any power of 2, there are only
four numbers that are inverses of themselves modulo the
power of 2.

Corollary 1
There are exactly four numbers that are the inverses of
themselves modulo a power of 2.
Proof
For any number 2n we proved in Lemma 1 that each of the
numbers in the set S = {1, (2n-1-1), (2n-1+1), (2n -1)} equals
its inverse modulo (2n). We need to show that if a number
"a" equals its inverse then "a" must be a member of the set
S. Let us assume “a” to be the inverse of itself and that “a”
is not a member of S, we conclude the following four
inequalities:

(i) a < (2n -1)
(ii) a > 1
(iii) a is not equal to (2n-1 – 1)
(iv) a is not equal to (2n-1 +1)

We will prove that if “a” satisfies conditions (i) and (ii),
then “a” must be equal to (2n-1 – 1) or (2n-1 +1), thereby
contradicting statements (iii) and (iv) and proving that the
value of “a” can only be equal to one of the members of
the set S.

Case (i) a < (2n -1)
Therefore: a = (2n – 1) – 2*r
 for any r > 0 (4)
 and
a2 = (2n – 1) 2 – 4 *r (2n – 1) + 4* r2

 = 22n – 2n+1 + 1 – 4*r*2n + 4*r+ 4 * r2
 = 2n (2n – 2 – 4*r) + 4 * r2 + 4*r + 1 (5)
 Since a2 is congruent to 1 modulo 2n, equation (5)
implies that:
 (4 * r2 + 4*r) mod (2n) = 0
Therefore (4 * r2 + 4*r) = t * 2n
 for 0 < t < 2n
Rearranging the terms results in the following equation

 r*{(r+1)/t}=2n-2 (6)

Equation (6) implies that both "r" and "{(r+1)/t}" are
powers of 2. Since the numerator (r+1) must be an odd
number, it follows that {(r+1)/t} must be equal to 1.
Therefore "r" must be equal to 2n-2. Consequently, using
equation (4), "a" will satisfy the following equation:
 a = (2n – 1) – 2*r
 = (2n – 1) – 2*2n-2
 = (2n-1 – 1)
Case (ii) a > 1
 Therefore a = 1 + 2*r
 for any r > 0 (7)
 and a2 = 1 + 4*r + 4 * r2
 since “a” is congruent to 1 modulo 2n it follows
that:

 (4 * r2 + 4*r) mod (2n) = 0

and eventually we find the value of “r” to be equal to 2n-2
following the same steps of case (i),. Plugging this value
in equation (7) will lead to:

 a = 1 + 2 * 2n-2 = (2n-1 + 1)
which completes the proof.
This ends the proof for Corollary 1.

Since mapping of the boundary conditions
results in numbers that are inverses of themselves,
AM(2n), and for that matter GF(2n), may look vulnerable
through the S-Box Values. We used corollary 1 to show
that regardless of the value of n, the number of integers
which are equal to their inverses modulo (2n) will be
exactly four. However, that is not the only concern we
have with this approach. AM(2n) also suffers from another
disadvantage, that is, even numbers have no inverses
modulo(2n). The question that may be asked is whether or
not modifying the modulo (2n) arithmetic will lead to a
better approach. In the next subsection the proposed
“pseudo inverses modulo powers of two” will be
introduced.

4.2 Pseudo inverses modulo powers of two
So far the following points have been emphasized:

1. All the odd numbers are relatively prime to
powers of two

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

244

2. No even number has an inverse modulo a power
of two

It is clear from the first point that every odd number has an
inverse in modulo a power of two arithmetic, which is a
plus. However, the second point limits the use of powers
of two because the same conclusion could not be reached
for the even numbers. The next move is to show that a
mapping of all the integers less than 2n to the odd
numbers less than 2n+1 will enable the use of modulo a
power of two arithmetic as a valid alternative to
computing inverses via the GF approach. The resulting
inverses are considered pseudo inverses because they are
computed in a different mathematical field. Four
functions are needed to compute the pseudo inverses as
follows, where “OdRs” stands for Odd Residues and
“IOdRs” stands for Inverse of Odd Residues:

 F1: (2 n) à OdRs(2 n+1);
 F2: OdRs (2 n+1) à IOdRs (2 n+1)
 F3: IOdRs (2 n+1) à (2 n)
 F4: (2 n) à (2 n)

The algorithm for computing the pseudo inverses is a
direct implementation of these functions and is called
“pseudo inverses modulo 2n algorithm”. Figure 1 shows
the implementation of algorithm in steps: the first function
(F1) is implemented on the first two steps; the second
function (F2) is implemented at the third step; the third
function (F3) is given by the fourth step; the fourth
function (F4) is shown in step 5.

1. given a remainder "r" in
modulo "2n"

2. compute "s" = "2r – 1"
3. compute "t" the inverse of "s"

in modulo " 2n+1 "
4. compute "u" = "(s+1)/2"
5. "u" is the pseudo inverse of

"r" modulo 2n

Figure 1. Algorithm for finding pseudo inverses
modulo 2n

To demonstrate the algorithm, we use the value "4" for the
variable "n" and display the results on table 2 for all the
remainders in ascending order. The left most column is
considered column number 1, consequently, the results of
each of the steps of the algorithm are displayed in the
column sharing its number.

Except for step number "3", the rest are self explanatory.
It will be sufficient to state that if "x" and "y" are inverses
of each other in modulo 2n+1, then there is an integer "m"

that relates them as follows:

 x = (2n * m +1)/y (8)

The next step is to optimize the process which is covered
in section 4.

r s t u

1 1 1 1
2 3 11 6
3 5 13 7
4 7 23 12
5 9 25 13
6 11 3 2
7 13 5 3
8 15 15 8
9 17 17 9
10 19 27 14
11 21 29 15
12 23 7 4
13 25 9 5
14 27 19 10
15 29 21 11

Table 2. Demonstration of the pseudo inverses of 24

5. Optimizing the pseudo modulo approach

The proposed approach will be optimized by reducing
both the computation complexity and storage
requirement. For this purpose, a practically larger value
for “n” will be needed. Without loss of generality, the
value chosen for “n” is “7”. This gives an S-Box with 128
entries computed as pseudo inverses using arithmetic
modulo 28. Table 3 below shows inverses computed using
the field of odd numbers modulo 28. Even numbered
columns are eliminated because their entries are not
members of this field.

 1 3 5 7 9 B D F
0 01 AB CD B7 39 A3 C5 EF
1 F1 1B 3D A7 29 13 35 DF
2 E1 8B AD 97 19 83 A5 CF
3 D1 FB 1D 87 09 F3 15 BF
4 C1 6B 8D 77 F9 63 85 AF
5 B1 DB FD 67 E9 D3 F5 9F
6 A1 4B 6D 57 D9 43 65 8F
7 91 BB DD 47 C9 B3 D5 7F
8 81 2B 4D 37 B9 23 45 6F
9 71 9B BD 27 A9 93 B5 5F
A 61 0B 2D 17 99 03 25 4F
B 51 7B 9D 07 89 73 95 3F

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

245

C 41 EB 0D F7 79 E3 05 2F
D 31 5B 7D E7 69 53 75 1F
E 21 CB ED D7 59 C3 E5 0F
F 11 3B 5D C7 49 33 55 FF

Table 3. Inverses of off numbers modulo 28

The table gives 128 inverses for an S-Box with 128
entries. For a 256 entries S-Box, one has to take the value
of “n” to be equal to 8.

Although there are 128 computed inverses on table 3, one
needs to determine the inverses of only half of them and
the other half will follow by symmetry. That is, if "x" is
the inverse of "y", then "y" is the inverse of "x". For
example, if the inverse of “45” can easily be determined
from the 4th row and the 5th column of the table as “8D”,
then it will be redundant to have the number “45” on the
table in the eighth row and the D’ column. It is interesting
to observe that further optimization can be achieved
through the following lemma:

Lemma 3
If "x" is the inverse of "y" in modulo 2n arithmetic, then
the 2n’s complement of x is the inverse of the 2n’s
complement of y. That is, (2n – x) is the inverse of (2n – y)
modulo 2n arithmetic.

Proof:
Given "x" and "y" to be inverses in modulo 2n arithmetic,
then for (2n – x) to be the inverse of (2n – y) they must
satisfy for some integer "m" the following:

 (2n – x) * (2n – y) = 2n * m + 1

Rewriting the left hand side we get:

(22n – x*2n – y*2n + x*y) = 2n[2n – (x+y)] + x*y

Since x*y can be rewritten as (2n *k +1), it follows that

(22n – x*2n – y*2n + x*y) = 2n [2n +k– (x+y)] + 1

Taking "m" to be equal to [2n +k– (x+y)] completes the
proof.

Based on Lemma 3, table 3 will therefore reduce to table 4
below:

 1 3 5 7 9 B D F
0 01 AB CD B7 39 A3 C5 EF
1 F1 1B 3D A7 29 13 35 DF
2 E1 8B AD 97 19 83 A5 CF
3 D1 FB 1D 87 09 F3 15 BF
4 C1 6B 8D 77 F9 63 85 AF
5 B1 DB FD 67 E9 D3 F5 9F

6 A1 4B 6D 57 D9 43 65 8F
7 91 BB DD 47 C9 B3 D5 7F
 Table 4. A Reduced version of table 3

Table 4 enables the lookup of inverses for the odd
hexadecimal numbers from 01 to 7F, where the column
headers are the Least Significant Digits (LSD) and the
row headers are the Most Significant Digits (MSD). If one
needs to find the inverse of a double hexadecimal digits
number where the MSD is less than "8", then the answer
can be looked up from table 4. However, if the MSD is
more than "7", then lemma 3 has to be used. Here is an
example for a case where the MSD is greater than "7".

To find the inverse of "9D" one must use lemma 3 because
the MSD is greater than 7. The lemma will be
demonstrated in this case in three steps:

1. obtain the 28's complement of "9D" which is
equal to "63".

2. find the inverse of "63" using table 4, which is
equal to "4B".

3. find the 28's complement of "4B" which is
equal to "B5".

The result from step 3 in this case "B5" is the inverse of
"9D" obtained indirectly from table 4. A quick look at
table 3 confirms that the inverse of "9D" is indeed "B5".
To even further optimize the process, table 4 can be
reduced to a single row, namely, row number 1. The
following definition is necessary for the said hypothesis.

Definition 1: The generator Gm (Gl) is a one dimensional
array that contains the MSD (LSD) digit of the inverses in
the first row of table 4 as follows:

 Gm = [0, A, C, B, 3, A, C, E]
 Gl = [1, B, D, 7, 9, 3, 5, F]

Based on this definition the following lemma will
summarize the results of this section, hence no proof is
presented.

Lemma 4

The single step for computing the inverse of a two
hexadecimal digits number "HmHl" is as follows:

Inverse of (HmHl)= (Gm [Hl] – Hm) || Gl [Hl]
 for Hm = 1,7,9 or F

 (Gm[Hl] – 9*Hm) || Gl[Hl]
 for Hm = 3,5,B or D

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

246

6. Conclusion

An implementation of the Advanced Encryption Standard
that uses the field of odd residues of a power of two as a
platform has been investigated. The paper suggested an
alternative to the Galois Field that may very well be
desirable for situations where storing of the S-Box is not
desirable or feasible. The proposed technique is based on
arithmetic modulo powers of two and enabled the
reduction of storage space to only (1/2 n) of the amount
required by the complete S-Box. The eliminated entries of
the S-Box can be regenerated from the stored part. The
stored part was carefully chosen to be small enough to
reduce the vulnerability but also large enough to form a
basis that can be used to generate all the entries. Although
this paper introduced a new mathematical field and
significant savings in the storage requirement, the
ultimate measure for its importance comes from one fact:
that is, whether or not further work will confirm that the
resulting AES implementation is less vulnerable
compared to the original implementation via Galois Field.

References

[1] Rijmen, V. "Security and Implementation of the AES"
2nd International Workshop on the state of the art in
cryptology and new challenges ahead, Warsaw, Poland,
Thursday, May 13th, 2004

[2] Harvey, I.,“The Effects of Multiple Algorithms in the
Advanced Encryption
Standard”, nCipher Corporation Ltd., 4’Th January 2000
Retrieved on November 6, 2005

[3] Daemen,J. and Rijmen, V. , “AES Proposal: Rijndael,”
Document vers on 2, Date: 03/09/99. Retrieved on
October 20, 2005

[4] Weeks, B., Mark, Bean, B., Rozylowicz, T., Ficke, C.
“Hardware Performance Simulations of Round 2
Advanced Encryption Standard Algorithms”, National
Security Agency. Retrieved on November 8, 2005

[5] Ichikawa, T., Kasuya, T., Matsui, M. “Hardware
Evaluation of AES Finalists”, Kamakura Office,
Mitsubishi Electric Engineering Company Limited.
Retrieved on October 30, 2005.

[6] Chodowiec, P. and Gaj, K., “Comparison of the Hardware
Performance of AES candidates using reconfigurable
hardware” , spring 2002

[7] http://www.nist.gov/aes “Advanced Encryption Standard
Development Effort”..

[8] Satoh, A., Morioka, S., Takano, K. and Munetoh, S. “A
Compact Rijndael Hardware Architecture with S-Box
Optimization,” Proc.Advances in
Cryptology—ASIACRYPT 2001, pp. 239-254, 2001.

[9] Algotronix
http://www.algotronix.com/engineering/aes1.html

[10] http://www.cmpe.boun.edu.tr/~yurdakul/papers/Ozpinar
DSD03.pdf

[11] Abuelyaman, E. “Alternative S-Box Computation
Method for AES Environments.” Technical Report,
School of Information Technology, Illinois State
University, Normal, IL. December 2005

[12] Guy, R. K. "Euler's Totient Function," "Does

Properly Divide ," "Solutions of

," "Carmichael's Conjecture," "Gaps

Between Totatives," "Iterations of and ," "Behavior of

and ." §B36-B42 in Unsolved
Problems in Number Theory, 2nd ed. New York:
Springer-Verlag, pp. 90-99, 1994.

[13] Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall,
C., Ferguson, N. “Twofish: A 128-Bit Block Cipher”,
15’Th June, 1998

[14] Anderson, R., Biham, E. and Knudsen, L. ,” The Case
for Serpent” , 24th March 2000

[15] Ronald L. Rivest1, M.J.B. Robshaw2, R. Sidney2, and
Y.L. Yin2, “The RC6 Block Cipher”, August 20, 1998

[16] IBM MARS Team, “MARS and the AES Selection
Criteria”, May 15, 2000

[17] Daemen, J. and Rijmen, V. “AES Proposal: Rijndael ”
Document version 2 1999 – May

[18] Abuelyaman, E. and El-Affendi, M. “ S-Box
Construction Using Arithmetic Modulo Prime Numbers”,
The first conference on digital communications and
computer applications, Jordon University of Science &
Technology, March 19-22, 2007.

[19] Swankoski,, E.J., Brooks, R.R., Narayanan, V.,
Kandemir, M., Irwin, M.J “A Parallel architecture for
Secure FPGA Symmetric Encryption” , 2004

Eltayeb Salih Abuelyaman received a
PhD degree in Computer Engineering
from the University of Arizona in the
US in 1988. He served as faculty
member at various universities in the US
for 18 years before moving to Prince
Sultan University in Saudi Arabia where
he served as a Faculty Member, a
Director of the Information Technology
and Computing Services and currently

serves as the Dean of the College of Computer Science and
Information Systems. His current research Interest is in the area
of Computer Networks and Information Security.

Dr. El-Affendi obtained a PhD in
computer science from Bradford
University in 1983. He is currently an
associate professor of computer science
in the department of computer science,
Prince Sultan University, KSA and the
Director of the University Research
Center. Current research interests of Dr.
El-Affendi include computer networks,
distributed systems and applied
computational linguistics.

