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Summary 
The exemplary revolution in the area of computing has led to 
the adoption of computer simulation, as the most popular tool 
in testing, and acceptance of new techniques and 
methodologies, especially in the area of network simulation. 
Research in the direction of network simulation has not only 
led to the testing of alternative techniques but also, in the 
direction of proving the methodology of simulation and 
proving the credibility of results with certain level of 
confidence. In the current paper an effort has been done to 
summarize the measures to be used in performance analysis of 
an ATM switch and accepting the results with certain 
confidence interval width. 
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1. Introduction 
The performance of networks, especially ATM network 
mainly depends on the performance of interconnecting 
switching elements, Channey (1997). An ATM switch 
can boost or degrade the performance of any network, 
depending on the way the buffers are managed and the 
context switching is done for forwarding packets from 
input ports to output ports. This led to an extensive 
research in the area of various buffer management 
techniques, scheduling policies and validating the output 
of simulation results.   
For the simulation of any aspect of an ATM switch, once 
the model has been identified and the program is ready to 
run. The source data is generated with the help of well 
though of probability distribution. The results seem to 
indicate that if the system design in your program is 
actually put into practice, it would perform well. The 
statistical analysis of the output of the simulation 
experiment is mandatory. Otherwise, “… computer runs 
yield a mass of data but this mass may turn into a 
mess<if the random nature of such output dta is ignored , 
and then>…instead of an expensive simulation model, a 
toss of the coin had better be used” Kleijen(1979) 
Many simulations include randomness, which can arise 
in a variety of ways. This randomness may lead to 
random results. But these errors may be reduced with the 
help of some statistical methods. In fact, every 

simulation is basically a random experiment and the 
results produced are nothing more than statistical 
samples. Thus the statistical analysis is an absolute 
necessarily. However two problems are encountered in 
the analysis of simulation results; one- the results are 
highly correlated; second-the source data do not satisfy 
the requirements of statistical independence.  
The simulation of even moderately complex switch, is 
often computation intensive and may require very long 
runs in order to obtain reliable final results. Statistical 
errors associated with the final results of simulations are 
commonly measured by relative statistical error, defined 
as the ratio of the half width of the confidence 
interval(CI) and the point estimate of an analyzed 
performance measure. 
 

 In the current paper section 2 derives the formula 
for estimation of run length and section Section 3 
describes the ways to remove the transients, Section 4 
and 5 describes the ways to remove the effect due to 
autocorrelation of data and the strategy to reduce the its 
effect so that variance and autocorrelation have minimal 
effect on the output and the results can be achieved with 
a given limit of significance. Section 6 includes the 
summarization and conclusion. 

2. Length of Simulation Runs 
A simulation run is an uninterrupted recording of 

a system’s behavior under a specified combination of 
controllable variables. One of the important questions 
that must be resolved in all simulation experiments 
involving randomness is how long to run a simulation 
experiment so that we have a reasonable degree of 
confidence in the numerical results of the considerably 
simpler question in classical statistics. Deo(1991) 
explained the calculation of simulation run length with in 
a given limit of confidence as  

n = 2

22
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t is the tolerance limit we are willing to accept; σ2 
is the variance of the parent population and y1- α/2 is the 
two tailed standardized normal static for the probability 
(1-α). Typically the confidence level (1-α) might be 90 
percent, for which y1- α/2 =1.65; or it might be 95 
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percent for which y1- α/2 = 1.96; or 99 percent , for 
which y1- α/2 =  2.58.  

Equation-2.1 is very commonly used for formulae 
for computing the sample size in statistics. In order to 
use it in determining the sample size we need to know 
the variance σ2 ( of the distribution being sampled), 
which in general is not known in advance. It can, 
however be estimated as 
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where xi is the avg of parameter being measured 
during ith run of the simulation program. E.g. in case of 
an ATM Switch this parameter can be average queue 
length (AvgQL), average waiting time of pkts in queue 
before getting forwarded on output port (AvgWT) or 
average ideal time of the server/processor for waiting for 
the packets to arrive (AvgIDT). When the estimation 2.2 
is used in place of the true population, variance σ2 , the 
normalized random variable 
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is no longer distributed according to the 
standardized normal distribution; instead it follows a 
student-t distribution. However, if n is sufficiently large 
(>50) the difference between the two distributions 
becomes negligible. Fortunately, in most simulation 
experiments (especially network related), the run length 
is large enough to satisfy this condition. 

The equation number 2.1 for determining the run 
length in a simulation experiment is valid provided the 
two conditions are met 
(i) the distribution is stationary, i.e. the simulation 

has reached a steady state before we start 
observing x1,x2,…xm (independent of initial 
transients) and 

(ii) the samples x1,x2,…xm are not correlated(that is 
they are statistically independent). 

3. Elimination of Transients 
Since the transients are due to initial bias, 

different initial conditions will produce transients of 
different lengths and magnitude. Primarily, there are 
three methods of removing the effect of transients.  
(i) Ignore an initial section of the simulation run. 

The run is started from an empty state and 
stopped after a certain period (when the system 
is considered to have settled down to a steady 
state). The state of the system at that time is left 
intact. The run is then restarted and statistics 
gathered up to a certain time from the start. The 
initial cut-off period,  is often decided by 

making some pilot runs to see how long the 
initial bias persists. 

(ii) Another method of reducing the effect of 
transients in statistics being gathered is to start 
the system in an initial state which is close to 
the steady state. Since the transients are due to 
the difference between the steady state and the 
initial state, the smaller the difference , the 
shorter would be the duration of transients.  

(iii) The third strategy , which may be used for 
reducing the effect of the initial bias is to ensure 
that the runs have been made long enough that 
the initial bias becomes negligible. 

4. Auto correlated Observations 
The use of traditional models in networks 

characterized by self similar processes can lead to 
incorrect conclusions about the performance of analyzed 
networks. Before we can compute the required sample 
size in such a case, we must first determine the degree to 
which the data is correlated. In a sequence of 
observations x1,x2,…xm the extent to which values 
separated by m units affect each other can be measured 
by 
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where xi is the ith observation and x is the mean 
value of xi’s as given by equation 4.1. The quantity rm is 
called an autocorrelation coefficient with lag m. For the 
specific case m=0, r0 is nothing but the estimate  σ2est of 
the variance of the distribution from which xi’s are drawn 
as given in equation 2.2. 

Using the equation 4.1, one can compute all of 
these coefficients r1,r2,… In all physical systems as m 
increases coefficient rm will decrease, because the effect 
of one value on another becomes weaker as the distance 
between two observations becomes longer. Thus after a 
certain number M, these coefficient may be considered to 
have become zero, i.e.,  

rM+1=rM+2=0  (4.2) 

This cut-off point M must be large enough to 
include coefficients that are significant, but it must be 
much smaller than n, the sample size. An accepted rule 
of thumb is to keep M≤ n/10, if each of these rm’s is 
significantly different from zero. ( selecting an exact 
value of M involves a decision that can be made on the 
basis of a few trial runs.) 

The effect of all nonzero autocorrelation 
coefficients, are included in the following expression for 
the estimate of the variance of x : 
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Substituting 4.3 in 8.6 in place of σ2/n , we get the 
following expression for the run length n for the auto 
correlated case:  
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  (4.4) 
where the autocorrelation coefficient rk’s are 

given by equation 4.1. Using formula 4.4 instead of 2.1, 
we can determine the sample size needed in an auto 
correlated case. 

Consider an example. A sequence of 1500 
observations was made and found to be serially 
correlated. The autocorrelation coefficients were 
estimated using eqn. 4.1  as r1=0.33, r2=0.25 and 
r3=0.15. Others were not significantly different from 
zero. The mean ( of the 500 samples) was found to be 
20.6 and the variance as 1021. The calculation 
of minimum sample size to assume that the 
estimate lies within ±2 units of the true mean 
with confidence level of (1-α)=0.95, can be done as 
following 

2
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=980.5684 * 1.82 ≅1785 

Thus the existence of autocorrelation made the 
sample size 19% larger.  

5. Blocking Methods 
The only difficulty one may encounter in using 

autocorrelation approach is the amount of computation 
time required in evaluating autocorrelation coefficients. 
Several output analysis methods have been proposed, to 
overcome this limitation. It has been observed that Batch 
means and probabilities tend to be more nearly normally 
distributed than the raw outputs( due to central limit 
theorm). So Xi’s can be divided into different kind of 
batch arrangements.. e.g. NBM(Non overlapping Batch 
Means Method) by Conway(1963), Overlapping Batch 
Means (OBM) by Meketon et al(1984), and Standerdized 
Time series(STS) by Schruben(1983). NBM has some 
advantages over other output analysis methods. In 
addition to being easy to understand and easy to 

implement, batch means can be extended by analogy to 
estimators other than the sample mean, for example 
standard deviation, Schmeiser et al, (1990). 

In case of NBM, the n observations x1,x2,…xn are 
grouped into b consecutive blocks, each of length p=n/b. 
Then let the block averages be denoted by  

Xb=
p

xxx nbpbp +++ +−+− ...2)1(1)1(   (5.1) 

Schmeiser(1982), in considering non overlapping 
batches for confidence intervals on the mean, advocates 
choosing 10 ≤  k ≤ 30 , even when the run length n is 
quite large. This is reasonable (even for the general batch 
statistics). Song et al(1995) discuss the optimal mean-
squared-error(mse) batch size. Goldsman et al (1997) 
Show that NBM requires O(n) Computation and O(1) 
storage for any fix p. 
 
6. Summary and Conclusion 
The conventional way to measure the quality of 
simulation is mean square error. Considering this, bias 
and variance are two ways that a simulation experiment 
can fail. 

Bias can arise from at least six sources. First, the 
pseudorandom numbers. At best only appear to be 
independent and uniformly distributed on the unit 
interval. Second, the distribution of the random variates 
X can be made to differ from the known input model, 
often for convenience or some specific prupose. Third, 
initial transients and stopping rules and bias point 
estimators. Fourth, some good point estimators are 
inherently biased, such as using order statistics to 
estimate quantiles, Fifth, the computer number system is 
only an approximation to the real number system, e.g. all 
computations have round off error. Sixth, modeling error, 
generated because of error in the input model, which is 
often estimated from real world data or from error in the 
logical model, which is often intentional to simplify 
coding. Sensitivity analysis can provide a sense of the 
effect of the un known modeling error. 

 The effect of the six sources of bias depends on 
the run length (i.e. sample size of the output data). The 
long runs of simulators make this bias error minimum 
but need extensive sources in terms of space & time and 
some stopping rule. The equation given in 2.1 can be 
used to calculate the run length of the simulation 
experiment initially. If the number of runs comes out to 
be an achievable figure, the  improvised formula using 
eqn. 4.4 can be used to reduce the effect of 
autocorrelation. But, initially if the number of samples 
comes out to be in more than 5-6 digits, blocking 
methods can be used.  
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