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Summary 
Recently, a new version of the insert-delete pair has been 
proposed that maintains a random binary search tree in such a 
way that all the grandparents in the tree always have both of 
their sub-trees full. For a tree with ‘n’ nodes, if such an 
arrangement is made, it is straightforward that even an arbitrary 
sequence of insertion and deletion would not cause the tree to 
grow beyond n/2. Compare this with conventional insert delete 
algorithms where a tree may grow up to the height of n-1 
reducing search to be sequential. Lesser the height of the tree, 
lesser would be its internal path-length, and hence faster the 
search would be. To study the behavior of the Binary Search 
tree with proposed insert delete pair, we have simulated a 
binary search tree with 1024 nodes. In this article we provide 
some empirical results to show that the proposed insert-delete 
pair maintains the tree in better shape, with considerable 
reduction in the internal path-length. 
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1. Introduction 
 
Binary search trees are used in computer science for 
rapid data storage and retrieval. With an ideally arranged 
BST with n nodes, most of the tree related operations 
require time that is not more than lg(n). That means 
effort required to perform an operation on a BST grows 
logarithmically as size of the input grows. Despite of its 
wide popularity binary search tree has few serious 
problems. One of the major problems with binary search 
tree is its topology. The BST topology depends upon the 
order with which data is added or deleted. That means if 
input is not in random order the tree becomes lengthier 
on one side, reducing the search to be sequential. For 
optimal results the tree has to be wider and flatter in 
shape. In other words, tree height has to be minimal so 
that resulting tree could become bushy. To maintain the 
tree in better shape many algorithms have been proposed 
over the years. Some of them are [1], [2], [3], [5], and [6]. 
Since many versions of the insert-delete algorithms exist, 
we would like to touch upon the conventional insert-
delete algorithms. In the conventional insert algorithm, a 
key is inserted by first comparing the key with the root, 
and then based on the comparison a left or right path is 

chosen, repeating the process until the key is either 
inserted or discarded (if duplicate). For the conventional 
delete algorithm, two variations symmetric and 
asymmetric deletion exist. In asymmetric deletion, a leaf 
node is deleted simply, a node with one son is deleted by 
replacing the node by its son, and a node with two sub-
trees is deleted by replacing the node by its in-order 
successor or predecessor. In symmetric deletion, to 
maintain the tree balance, successor and predecessor 
replaces the node alternatively. 

 
2. Internal Path Length of the Tree 
 
When analyzing the performance of a binary search tree 
we require few parameters like its height or internal path 
length. Though, these parameters are interrelated but 
sometimes give better performance evaluation when 
analyzed independently. The height of the tree is the 
longest path from the root to a leaf node. The internal 
path length (IPL) of a tree is the sum of the depths of all 
nodes in the tree. Root of the tree has depth zero, and 
every son in the tree has a depth that is one more than its 
parent. This means that IPL of the tree would be 
minimum when every node in the tree has minimal depth. 
This is possible only when the tree is height balanced. 
For an average case analysis of a binary search tree, the 
internal path length is an important parameter. Using IPL 
of the tree, average number of comparisons required to 
perform search, insert or delete can be computed. For a 
‘n’ node random binary search tree, the internal path 

length I n , and the average number of comparison 

required for a successful search C n  are related as I n = n 

(C n -1). This formula clearly indicates that average 

search time is directly related to the path length of the 
tree. Knuth [7] has given a formula that relates the height 

of a ‘n’ node random binary search tree h n  and the 

number of comparison required for a successful search 

C n as C n = 2(1 + 1/n) h n  - 3. For a perfect balanced 

tree with n nodes, and height h, we have a relation n = 
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2
1+h

-1. In this case path length of the tree would be 

minimum and given by I min =(n+1) lg(n+1)/lg2 - 2n. . 

Eppinger [4] gathered some empirical evidences 
to study the behavior of a binary search tree when 
operated with a series of conventional insert-delete 
algorithms. His experiment suggests that applying many 
insertions and asymmetric deletions causes a tree to 
become more unbalanced. However, insertions with 
symmetric deletions preserve the balance of the tree. His 
results suggest that during the first few insertions and 
deletions, IPL of the tree decreases, and after some 
critical point the IPL starts increasing, and eventually 

leveling of after approximately n
2

 insertions and 
deletions.  

 
3. Proposed Insert-Delete Algorithms 
 
Height and IPL of the tree increases if too many nodes in 
the tree have just one son. In addition to that, a tree may 
loose its balance following two many insertions and 
deletions, resulting in increased IPL of the tree. This 
happens because conventional insert or delete algorithms 
do not take care of the “balance factor” of the tree. In our 
previous work [8], we have proposed another version of 
the insert-delete algorithms to maintain a random binary 
search tree dynamically. Without applying any complex 
rebalancing technique, or using considerable amount of 
space, proposed insert-delete pair maintains the tree in 
such a way that every grandfather in the tree always has 
two sons (provided that the grandfather exist). If such an 
arrangement were made, any sequence of insertion and 
deletion would keep the tree height <= n/2, and not n-1, 
that is what possible with the conventional insertion and 
deletion. A comparative study of the conventional and 
proposed insert algorithms (without deletions), given in 
[8], shows that for a random input, the proposed insert 
algorithm produces a tree with 20% to 30% reduction in 
the height, forcing the average number of comparisons 
required for a successful search to go down by 15% to 
20%. Because of the space constraints, in our previous 
work [8], we could not provide any result to show that 
what happens to the tree when proposed insertion and 
deletion algorithms are applied together. Choosing path 
length of the tree (IPL) as a parameter, we have 
investigated that what happens to the tree when proposed 
insert delete algorithms are applied together.  

 
4. Methodology 
 
To measure the behavior of the proposed insert-delete 
algorithms [10] we have compared two binary search 
trees for a same sequence of corresponding insert-delete 
pairs. Comparing binary trees for arbitrary sequence of 

insertion and deletion is difficult since two trees may not 
have same number of nodes after each sequence. Initially, 
two trees of ‘n’ nodes are created using the conventional 
and proposed insert algorithms. To create initial binary 
search trees, random number generator generates 
numbers until ‘n’ unique numbers have been generated 
(ignoring duplicates). Each number (key) is then 
supplied to the conventional and proposed insert 
algorithms to produce conventional and proposed binary 
search trees. While inserting a key, if the key is already 
present in the tree, the key is discarded, and another 
random number is generated. Once initial trees are ready, 
their internal path length is calculated. Following that, a 
sequence of corresponding delete-insert pair is applied to 
each of the tree in such a way that the number of nodes 
in the trees always remains constant. To delete a node 
from the tree, a random number (key) is generated until 
produced number is found in the tree, and then, the key is 
deleted from both of the trees. In essence, each delete-
insert pair ensures that a key is actually deleted and 
inserted in every sequence, so that the number of nodes 
in the trees always remains ‘n’. For both of the trees, 
after each sequence, the path length is recorded. For the 
purpose of simulation, two initial trees with 1024 nodes 
are created using the conventional and proposed insert 
algorithms. Following this, each tree is operated by a 
series of 10,000 corresponding delete-insert pairs to 
gather following results.  

 
5. Results  
 
The graphs in figure 1 show the internal path lengths of 
the two trees against the number of insert-delete pairs. 
Three sample runs are provided. Thick line represents the 
internal path length of the tree operated by conventional 
insert-delete pair and vice versa. Maximum difference in 
the path lengths of the two trees was found to be in the 
very beginning (when no deletion was applied). As given 
sample runs show, internal path lengths of the two initial 
trees (proposed and conventional) were found to be 
(9431, 10694), (9471, 11913), and (9879, 11188). These 
results show that there is a considerable reduction in the 
path length of the tree created by proposed insert 
algorithm. Once ID pairs are applied, gap between the 
path lengths starts decreasing. As number of ID pairs 
increases, conventional tree seems to be loosing its path 
length (as observed by Eppinger), while path length of 
the proposed tree almost remains same.  One could guess 
that loosing internal path length is always a desirable 
property, even in that case; tree operated by proposed ID 
pair always remains better in shape with lesser internal 
path length. Algorithms are tested for 10,000 ID pairs, 
and made to run under Borland C++ compiler 5.5, 
maximum random number that system could have 
generated was 32767.  
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A 1024 Nodes Tree (1st Run)
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A 1024 Nodes Tree (2nd Run)
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A 1024 Nodes Tree (3rd Run)
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Figure 1 
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