
IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

269

Manuscript received December 5, 2007

Manuscript revised December 20, 2007

Insertion and Deletion on Binary Search Tree using Modified
Insert Delete Pair: An Empirical Study

1 Suri Pushpa, 2 Prasad Vinod, 3 Jilani Abdul Khader

1
Dept. of Computer Science, Kurukshetra University, Haryana, India

2
Dept. of Technology, Majan University, Sultanate of Oman.

3
Dept. of Computer Science, Nizwa University, Sultanate of Oman

Summary
Recently, a new version of the insert-delete pair has been
proposed that maintains a random binary search tree in such a
way that all the grandparents in the tree always have both of
their sub-trees full. For a tree with ‘n’ nodes, if such an
arrangement is made, it is straightforward that even an arbitrary
sequence of insertion and deletion would not cause the tree to
grow beyond n/2. Compare this with conventional insert delete
algorithms where a tree may grow up to the height of n-1
reducing search to be sequential. Lesser the height of the tree,
lesser would be its internal path-length, and hence faster the
search would be. To study the behavior of the Binary Search
tree with proposed insert delete pair, we have simulated a
binary search tree with 1024 nodes. In this article we provide
some empirical results to show that the proposed insert-delete
pair maintains the tree in better shape, with considerable
reduction in the internal path-length.
Keywords:
Tree Balancing, Binary Search Tree, Tree Path-Length

1. Introduction

Binary search trees are used in computer science for
rapid data storage and retrieval. With an ideally arranged
BST with n nodes, most of the tree related operations
require time that is not more than lg(n). That means
effort required to perform an operation on a BST grows
logarithmically as size of the input grows. Despite of its
wide popularity binary search tree has few serious
problems. One of the major problems with binary search
tree is its topology. The BST topology depends upon the
order with which data is added or deleted. That means if
input is not in random order the tree becomes lengthier
on one side, reducing the search to be sequential. For
optimal results the tree has to be wider and flatter in
shape. In other words, tree height has to be minimal so
that resulting tree could become bushy. To maintain the
tree in better shape many algorithms have been proposed
over the years. Some of them are [1], [2], [3], [5], and [6].
Since many versions of the insert-delete algorithms exist,
we would like to touch upon the conventional insert-
delete algorithms. In the conventional insert algorithm, a
key is inserted by first comparing the key with the root,
and then based on the comparison a left or right path is

chosen, repeating the process until the key is either
inserted or discarded (if duplicate). For the conventional
delete algorithm, two variations symmetric and
asymmetric deletion exist. In asymmetric deletion, a leaf
node is deleted simply, a node with one son is deleted by
replacing the node by its son, and a node with two sub-
trees is deleted by replacing the node by its in-order
successor or predecessor. In symmetric deletion, to
maintain the tree balance, successor and predecessor
replaces the node alternatively.

2. Internal Path Length of the Tree

When analyzing the performance of a binary search tree
we require few parameters like its height or internal path
length. Though, these parameters are interrelated but
sometimes give better performance evaluation when
analyzed independently. The height of the tree is the
longest path from the root to a leaf node. The internal
path length (IPL) of a tree is the sum of the depths of all
nodes in the tree. Root of the tree has depth zero, and
every son in the tree has a depth that is one more than its
parent. This means that IPL of the tree would be
minimum when every node in the tree has minimal depth.
This is possible only when the tree is height balanced.
For an average case analysis of a binary search tree, the
internal path length is an important parameter. Using IPL
of the tree, average number of comparisons required to
perform search, insert or delete can be computed. For a
‘n’ node random binary search tree, the internal path

length I n , and the average number of comparison

required for a successful search C n are related as I n = n

(C n -1). This formula clearly indicates that average

search time is directly related to the path length of the
tree. Knuth [7] has given a formula that relates the height

of a ‘n’ node random binary search tree h n and the

number of comparison required for a successful search

C n as C n = 2(1 + 1/n) h n - 3. For a perfect balanced

tree with n nodes, and height h, we have a relation n =

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

270

2
1+h

-1. In this case path length of the tree would be

minimum and given by I min =(n+1) lg(n+1)/lg2 - 2n. .

Eppinger [4] gathered some empirical evidences
to study the behavior of a binary search tree when
operated with a series of conventional insert-delete
algorithms. His experiment suggests that applying many
insertions and asymmetric deletions causes a tree to
become more unbalanced. However, insertions with
symmetric deletions preserve the balance of the tree. His
results suggest that during the first few insertions and
deletions, IPL of the tree decreases, and after some
critical point the IPL starts increasing, and eventually

leveling of after approximately n
2

 insertions and
deletions.

3. Proposed Insert-Delete Algorithms

Height and IPL of the tree increases if too many nodes in
the tree have just one son. In addition to that, a tree may
loose its balance following two many insertions and
deletions, resulting in increased IPL of the tree. This
happens because conventional insert or delete algorithms
do not take care of the “balance factor” of the tree. In our
previous work [8], we have proposed another version of
the insert-delete algorithms to maintain a random binary
search tree dynamically. Without applying any complex
rebalancing technique, or using considerable amount of
space, proposed insert-delete pair maintains the tree in
such a way that every grandfather in the tree always has
two sons (provided that the grandfather exist). If such an
arrangement were made, any sequence of insertion and
deletion would keep the tree height <= n/2, and not n-1,
that is what possible with the conventional insertion and
deletion. A comparative study of the conventional and
proposed insert algorithms (without deletions), given in
[8], shows that for a random input, the proposed insert
algorithm produces a tree with 20% to 30% reduction in
the height, forcing the average number of comparisons
required for a successful search to go down by 15% to
20%. Because of the space constraints, in our previous
work [8], we could not provide any result to show that
what happens to the tree when proposed insertion and
deletion algorithms are applied together. Choosing path
length of the tree (IPL) as a parameter, we have
investigated that what happens to the tree when proposed
insert delete algorithms are applied together.

4. Methodology

To measure the behavior of the proposed insert-delete
algorithms [10] we have compared two binary search
trees for a same sequence of corresponding insert-delete
pairs. Comparing binary trees for arbitrary sequence of

insertion and deletion is difficult since two trees may not
have same number of nodes after each sequence. Initially,
two trees of ‘n’ nodes are created using the conventional
and proposed insert algorithms. To create initial binary
search trees, random number generator generates
numbers until ‘n’ unique numbers have been generated
(ignoring duplicates). Each number (key) is then
supplied to the conventional and proposed insert
algorithms to produce conventional and proposed binary
search trees. While inserting a key, if the key is already
present in the tree, the key is discarded, and another
random number is generated. Once initial trees are ready,
their internal path length is calculated. Following that, a
sequence of corresponding delete-insert pair is applied to
each of the tree in such a way that the number of nodes
in the trees always remains constant. To delete a node
from the tree, a random number (key) is generated until
produced number is found in the tree, and then, the key is
deleted from both of the trees. In essence, each delete-
insert pair ensures that a key is actually deleted and
inserted in every sequence, so that the number of nodes
in the trees always remains ‘n’. For both of the trees,
after each sequence, the path length is recorded. For the
purpose of simulation, two initial trees with 1024 nodes
are created using the conventional and proposed insert
algorithms. Following this, each tree is operated by a
series of 10,000 corresponding delete-insert pairs to
gather following results.

5. Results

The graphs in figure 1 show the internal path lengths of
the two trees against the number of insert-delete pairs.
Three sample runs are provided. Thick line represents the
internal path length of the tree operated by conventional
insert-delete pair and vice versa. Maximum difference in
the path lengths of the two trees was found to be in the
very beginning (when no deletion was applied). As given
sample runs show, internal path lengths of the two initial
trees (proposed and conventional) were found to be
(9431, 10694), (9471, 11913), and (9879, 11188). These
results show that there is a considerable reduction in the
path length of the tree created by proposed insert
algorithm. Once ID pairs are applied, gap between the
path lengths starts decreasing. As number of ID pairs
increases, conventional tree seems to be loosing its path
length (as observed by Eppinger), while path length of
the proposed tree almost remains same. One could guess
that loosing internal path length is always a desirable
property, even in that case; tree operated by proposed ID
pair always remains better in shape with lesser internal
path length. Algorithms are tested for 10,000 ID pairs,
and made to run under Borland C++ compiler 5.5,
maximum random number that system could have
generated was 32767.

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

271

A 1024 Nodes Tree (1st Run)

9000

9300

9600

9900

10200

10500

10800

1

50
1

10
01

15
01

20
01

25
01

30
01

35
01

40
01

45
01

50
01

55
01

60
01

65
01

70
01

75
01

80
01

85
01

90
01

95
01

10
00

1

ID Pairs

P
at

hl
en

gt
h

Conventional ID Pair

Modified ID Pair

A 1024 Nodes Tree (2nd Run)

9000

9300

9600

9900

10200

10500

10800

11100

11400

11700

12000

1

5
0

1

1
0

0
1

1
5

0
1

2
0

0
1

2
5

0
1

3
0

0
1

3
5

0
1

4
0

0
1

4
5

0
1

5
0

0
1

5
5

0
1

6
0

0
1

6
5

0
1

7
0

0
1

7
5

0
1

8
0

0
1

8
5

0
1

9
0

0
1

9
5

0
1

1
0

0
0

1

ID Pairs

P
at

h
le

n
g

th

Conventional ID Pair

Modified ID Pair

A 1024 Nodes Tree (3rd Run)

9000

9300

9600

9900

10200

10500

10800

11100

11400

1

5
0

1

1
0

0
1

1
5

0
1

2
0

0
1

2
5

0
1

3
0

0
1

3
5

0
1

4
0

0
1

4
5

0
1

5
0

0
1

5
5

0
1

6
0

0
1

6
5

0
1

7
0

0
1

7
5

0
1

8
0

0
1

8
5

0
1

9
0

0
1

9
5

0
1

1
0

0
0

1

ID Pairs

P
at

h
le

n
g

th

Conventional ID Pair

Modified ID Pair

Figure 1

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.12, December 2007

272

References.
[1] Adel’son-Vel’skii, G. M. and Landis, E. M. An

Algorithm for the Organization of Information.
Soviet Mathematics Doklady. Vol. 3, 1962. PP
1259–1263.

[2] Martin, W. A. and Ness D. N. Optimal Binary
Trees Grown with a Sorting Algorithm.
Commun. of the ACM. 15, 1972. PP 88-93.

[3] Day, A. C. Balancing a Binary Tree. Computer
Journal. 19, 1976. PP 360-361.

[4] Eppinger, J. L. An Empirical Study of Insertion
and Deletion in Binary Search Trees.
Commun.of the ACM. 26, 1983. PP 663-669.

[5] Chang, H. and Iyengar, S. S. Efficient
Algorithms to Globally Balance a Binary Search
Tree. Commun. of the ACM. 27, 1984. PP 695-
702.

[6] Stout, F. and Bette, L. W. Tree Rebalancing in
Optimal Time and Space. Commun. of the
ACM. 29, 1986. PP 902-908.

[7] Knuth, D. E. The Art of Computer
Programming. Vol. 3, Searching and Sorting,
Pearson Education Asia, 1999.

[8] Vinod, P. Suri, P. and Maple, C. Maintaining a
Binary Search Tree Dynamically. Proceedings
of the 10th International Conference on
Information Visualization. London, UK. 5-7th

July 2006. PP 483-488.

Dr. Pushpa Suri is a reader in the department of
computer science and applications at Kurukshetra
University Haryana India. She has supervised a number
of PhD students. She has published a number of research
papers in national and international journals and
conference proceedings.

Vinod Prasad has Master’s
degrees in Computer Science and
Mathematics. At present, he is
pursuing his PhD in Computer
Science. His area of research is
Algorithms and Data Structure
where he is working on Binary
search tree data structures. Vinod
has published and presented a
number of papers in national and

international journals, and conference proceedings.

Abdul Khader Jilani has
Master’s degrees in Computer
Science. At present, he is
pursuing his PhD in Computer
Science. A.K.Jilani presently
working in the department of
computer science ,College of
Arts and science , University of
Nizwa, Sultanate of Oman. He
has published a number of
research papers in national and

international journals and conference proceedings.

