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Summary 
This paper presents a new technique of accurate fault location 
system using artificial neural networks (ANN) for EHV teed 
feeder transmission lines. This technique utilizes voltage and 
current waveforms from one side of the three branches of the 
network to determine the accurate fault location. Variety of fault 
conditions are analyzed, trained and tested by the radial basis 
function neural network (RBFNN) using MATLAB. Fault 
detection, branch determination, fault classification and fault 
location are practiced. Results are obtained from training and 
testing of RBFNN and using ATP-EMTP for simulation of 
faulted data from a 500KV teed feeder transmission system. 
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1. Introduction 
 
Fault location technique in transmission lines has a great 
advantage to clear the fault quickly and restore the power 
in a timely manner.  Conventional techniques of fault 
location in power transmission systems suffer a number of 
problems, due to infeed from remote end and fault 
resistance.  Similarly, teed feeders have more problems 
which are mainly related to the intermediate infeed from 
the third terminal, outfeeds, difference in line length to 
tee point and different source impedances [1]. Most of the 
work reported so far has been concerned with two 
terminal lines with less attention to teed feeders 
transmission lines configurations. These earlier studies 
proposed mainly two different techniques based on 
traveling wave theory and Wavelet analysis [2].  The 
main problems of the traveling wave method is that it 
requires high sampling rates and has a difficulty in 
distinguishing between traveling waves from both the 
fault and the remote end of the line [3]. The wavelet 
transform analysis is based on the high-frequency 
components of the faulted signals on each terminal of the 
system. The limitation stated is that at low signal-noise 
ratio (SNR), the method becomes inefficient. In all past 
studies voltages and currents waveforms are captured at 
all the three ends of the teed feeders which can affect the 
accuracy due to data synchronization problem [1]. This 
paper presents a new technique to determine the accurate 
fault location of EHV teed feeder using a single-ended 

artificial neural network (ANN) locator. Single-ended 
fault location method is preferred due to its simplicity, 
fast accomplishment and less communication requirement 
[4]. Also, the problem of data synchronization is 
eliminated.  
ANN-based techniques show a great enhancement in the 
accuracy of fault location with comparison to the 
conventional techniques [5]. This is due to the new 
features of ANN which are not existing in the 
conventional methods such as the capability of non-linear 
mapping, parallel processing and learning. 
The technique uses radial basic function (RBF) neural 
networks for determination of the faulted branch, 
classification of the fault type and locating of the fault on 
the teed feeder. The locator captures voltages and currents 
waveforms of the faulted data at one end only of the three 
branches. The neural network fault locator was trained 
and tested with a number of simulation cases by 
considering various fault conditions (faulted branch, fault 
type, fault location, fault resistance and fault inception 
angles). 
 
2. Radial Basis Function Neural Network (RBFNN) 
 
Radial basis function neural network (RBFNN) consists of 
three layers with entirely different roles.  The input layer 
is made of source nodes that connect the network with its 
environment.  The second layer, the hidden layer in the 
network that possesses an array of neurons called the 
computing units.  The number of these units can be varied 
depending on users’ requirement.  In most applications 
the hidden layers is of high dimensionality. The third 
layer is the output layer. The structure of RBFNN is 
shown in Fig.1. 
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Fig.1 The structure of RBF Neural Network 

 

Different basis functions like spline, multiquadratic, 
Gaussian functions have been studied, but most widely 
used one is the Gaussian type. 
In comparison to the other types of neural network used 
for pattern classification like back propagation feed 
forward networks, the RBF network requires less 
computation time for learning and has a more compact 
topology.  The Gaussian RBF is found suitable in 
generalizing a global mapping but also in refining local 
features without altering the already learned mapping.  
The network starts with no hidden units and adds units 
till a minimal radius is obtained by updating the 
parameters of the Gaussian function and the weights.  
Each hidden units in the network has two parameters 
called a center (m) and a width (s) associated with it.  The 
response of one such hidden unit to the network input xn 

is expressed as 
   
fk (xn) = exp  (  -1     || xn  -  mk ||

2 )               (1)                   
                         s 2

k                                      
                        
Where mkis the center vector for kth hidden unit and sk is 
the width of the Gaussian function, || || denotes the 
Euclidean norm.  The output layer comprises a number of 
nodes depending on the number of fault types to be 
classified which perform simple summation.  The 
response of each hidden unit (1) is scaled by its 
connecting weights (α’s) to the output nodes and then 
summed to produce the overall network output.  The 
overall network output is expressed as  
                                   
  K 

ƒm( xn )   = am0 + å amk fk ( xn )                  (2)
              k=1                            
                                 
Where K indicates the total number of hidden neurons in 
the network, amk is the connecting weight of the kth 
hidden unit to mth output node and αm0 is the bias 
term for the corresponding mth output neuron. 

The learning process of the RBFNN involves with the 
allocation of new hidden units and tuning of network 
parameters. The learning process is terminated when the 
output error goes under the defined threshold [6]. 
 
 
3. Power System Under Consideration 
 
The system under study is a 500 KV teed feeder overhead 
transmission lines and the power system frequency is 50 
HZ. It consists of three branches of 500 KV with 
generation sources at each end and all the three lines are 
connected at a tee joint. Typical network parameters have 
been adopted. Lengths of all three branches are shown in 
Fig.2. 
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         Fig.2 Teed feeder transmission system 

 
 
 
4. Design Process of the Required Fault Locator 
 
Fault location technique is based on utilizing voltage and 
current waveforms at the fault locator position in training 
and testing of data. The faulted waveforms will be 
simulated and generated by the well known and approved  
software (ATP-EMTP) Alternative Transient Program - 
ElectroMagnetic Transient Program. Pre-processing is 
used to extract the necessary information in a properly 
useful form. The waveform signals are filtered using anti-
aliasing digital filter to attenuate the DC and high 
frequency components. Voltage and current values are 
normalized in the intervals [-1,+1] before being applied 
by the RBFNN software for training and testing. 
 The model of the proposed fault location technique  is 
shown in Fig.3. It consists of three modules that lead to 
accurate fault location using the RBFNN approach. 
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Fig.3 Model of the proposed fault location technique 
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This paper considered the following types of faults on 
each of the three branches of the teed feeder system: 
1. Single line to ground fault 
2. Line to line fault 
3. Line to line to ground fault 
4. Three phase to ground fault 
 
For each fault type, two parameters have been considered: 
1. Inception fault angle, [0°,90°], and 
2. Fault resistance in ohms, [0Ω,100Ω]. 
 
Next, each module is discussed with the application of 
RBFNN and results are tabulated and analyzed. 
 
5. Faulted Branch Determination 
 
The determination of faulted branch technique is based on 
training of all considered types of faults (SLG, LL, LLG 
and 3LG) with all considered parameters (inception 
angles and fault resistances) for each type of fault. The 
results in the tables below is presented for each type of 
fault separately for the faulted branches determined by 
RBFNN approach with a high precision in each case. The 
effects of different inception angles and fault resistances 
and fault types are also shown for each case. From these 
results, it is clear that the accuracy of achieving faulted 
branch is very high in most cases. Moreover, the results 
demonstrate the importance of overall accuracy of the 
proposed technique over the previous mentioned 
conventional techniques. Table.1 show the results of 
calculated branches during SLG fault with different fault 
inception angles and fault resistances. 
 
Table.1. Faulted branch determination during SLG fault 

Actual 
branches 

Estimated branches Inception 
angle (◦) 

Fault 
resistance 

(Ω) 
1 2 3 1 2 3 

0 0 1 0 0 1.04 0.03 0.01 

0 0 0 1 0 0.008 0.99 0.01 

0 0 0 0 1 0.27 0.48 1.21 

0 100 1 0 0 1.001 0.005 0.001 

0 100 0 1 0 0.028 1.038 0.01 

0 100 0 0 1 0.048 0.047 1.001 

90 0 1 0 0 0.999 0.001 0 

90 0 0 1 0 0 1 0 

90 0 0 0 1 0 0 1 

90 100 1 0 0 0.999 0 0 

90 100 0 1 0 0 0.999 0 

90 100 0 0 1 0 0 0.999 

 
Table.2, Table.3 and Table.4 illustrate the results of 
estimated branches of the teed feeder system during LL, 

LLG and 3LG faults with consideration of different fault 
inception angles and fault resistances. It is clear from the 
results that the fault locator provide an inherently 
accurate determination of faulted branches of the teed 
feeder system independent of fault inception angles and 
fault resistances variations. 
  
Table.2. Faulted branch determination during LL fault 

Actual 
branches 

Estimated branches Inception 
angle (◦) 

Fault 
resistance 

(Ω) 1 2 3 1 2 3 

0 0 1 0 0 1.0007 0.001 0.002 

0 0 0 1 0 0.002 1.038 0.036 

0 0 0 0 1 0.0145 0.048 0.966 

0 100 1 0 0 0.990 0.030 0.020 

0 100 0 1 0 0.0016 0.980 0.021 

0 100 0 0 1 0.0014 0.005 0.995 

90 0 1 0 0 1.001 0.000 0.000 

90 0 0 1 0 0.013 0.962 0.050 

90 0 0 0 1 0.2139 0.155 1.058 

90 100 1 0 0 1.001 0.000 0.000 

90 100 0 1 0 0.013 0.962 0.050 

90 100 0 0 1 0.2186 0.161 1.057 

 
Table.3. Faulted branch determination during LLG fault 

Actual 
branches 

Estimated branches Inception 
angle (◦) 

Fault 
resistance 

(Ω) 1 2 3 1 2 3 

0 0 1 0 0 1.0233 0.0103 0.013 

0 0 0 1 0 0.6301 1.1817 0.448 

0 0 0 0 1 1.1819 0.927 1.254 

0 100 1 0 0 1.0033 0.0176 0.014 

0 100 0 1 0 0.0011 1.0034 0.004 

0 100 0 0 1 0.0041 0.0189 0.977 

90 0 1 0 0 1.0028 0.003 0 

90 0 0 1 0 0.0255 1.0149 0.010 

90 0 0 0 1 0.0412 0.0094 1.031 

90 100 1 0 0 1.0071 0.0053 0.001 

90 100 0 1 0 0.0022 1.0032 0.001 

90 100 0 0 1 0.0011 0.0007 1 

 
 
Table.4. Faulted branch determination during 3LG fault 

Actual 
branches 

Estimated branches Inception 
angle (◦) 

Fault 
resistance 

(Ω) 1 2 3 1 2 3 

0 0 1 0 0 1.0025 0.019 0.0215 

0 0 0 1 0 0.789 1.437 0.3528 

0 0 0 0 1 0.538 0.697 1.5682 

0 100 1 0 0 1.0098 0.036 0.0261 

0 100 0 1 0 0.0517 1.0294 0.0223 
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0 100 0 0 1 0.0103 0.0012 1.0092 

90 0 1 0 0 1.0001 0 0.0001 

90 0 0 1 0 0.0396 0.9966 0.0431 

90 0 0 0 1 0.1543 0.0832 1.0711 

90 100 1 0 0 1.0008 0.0011 0.0003 

90 100 0 1 0 0.0008 0.9995 0.0003 

90 100 0 0 1 0 0.0001 1.0001 

 
6. Fault Type (FT) and Fault Location (FL) 
Determination 
 
The two modules of the fault type (FT) detection and the 
fault location (FL) are taken into one step by the RBFNN 
technique and showed accurate results. Fault types are 
represented by numbers as shown in Table.5 for easy 
illustration of the results in Table.6 and Table.7. 
 
 
Table.5. Fault types (FT) presentation by numbers 

SLG fault LL fault LLG fault 3LG fault 

1 2 3 4 
  
6.1 Effect of Fault Resistance 
 
Table.6 illustrate the results of neural network for the 
fault type and the fault location being extracted in one 
step with the % error. It is apparent from the high 
accuracy of the results that the variation in the fault 
resistance has a negligible effect on the estimated data of 
the proposed technique. 
 
Table.6. Estimated fault type and fault location at different fault resistances 

Estimated Actual 
%Error 

FL (km) FT FL (km) FT 

Fault 
Resistance 

(Ω) 

0.00735 16.9853 0.9993 17 1 

0.00295 42.0059 1.999 42 2 

0.0518 63.1036 2.999 63 3 

0.02695 76.0539 3.999 76 4 

0 

0.015 16.97 0.9996 17 1 

0.0009 41.9982 2 42 2 

0.04635 62.9073 3.001 63 3 

0.03435 76.0687 4.0011 76 4 

100 

 
                    (Estimated Location – Actual Location) 
%Error =   --------------------------------------------------- x 100 
                                 Total length of the line 

 
6.2 Effect of Fault Inception Angle 
 
The fault locator is tested at different fault inception 
angles. Table.7 show the accuracy of estimated fault type 

and fault location with variation of fault inception angles. 
It is clearly evidence from the tabulated results that the 
accuracy achieved in fault type and fault location is very 
high where the %error is less than 0.05% in the majority 
of the cases. 
 
Table.7. Estimated fault type and fault location at different fault inception 
angles 

Estimated Actual 
% error 

FL (km) FT FL (km) FT 

Fault 
inception 
angle (°) 

0.00195 16.9961 1.0003 17 1 

0.056 42.112 2.0032 42 2 

0.0113 63.0226 3.0004 63 3 

0.01275 75.9745 3.9994 76 4 

 
 
 

0 
 
 
 

0.00005 17.0001 1 17 1 

0.00025 41.9995 2 42 2 

0.14855 63.2971 3.005 63 3 

0.00005 76.0001 4 76 4 

 
 
 

90 
  
  
  

 

 
7. Conclusion 
 
An efficient fault location technique using RBF neural 
network for EHV teed feeder transmission lines has been 
presented. The results demonstrated the ability of RBFNN 
to provide a high accuracy for the majority of practically 
encountered teed feeder systems. It also illustrated the 
effectiveness and high precision of determination and 
detection of fault location over different branches of the 
teed feeder system in a variety of fault situations including 
fault types, fault inception angles and fault resistances. 
The neural network technique uses the transient faulted 
waveforms (voltages and currents) from one end only to 
detect the fault location among the three branches of the 
teed feeder system. 
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