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Summary 
This paper presents an efficient distributed search technique for 
unstructured P2P networks. The scheme employs Q-learning, 
power peers, specialized peers, load balancing, and mobile 
agents. Walkers are selected from neighbors as well as power 
peers. Each search process updates Q-values of nodes in different 
Q-tables. The mobile agent based load balancing scheme assists 
to route the queries to least loaded power peers. The idea of TTL 
enhancement is followed for extending a search process. 
Simulation results show that the technique outperforms existing 
search schemes. 
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1. Introduction 

A P2P network, an alternative to traditional 
client/server systems, is a distributed network composed 
of a large number of distributed, heterogeneous, and 
independent peers in which participants allocate a part of 
their own resources such as processing power, storage, 
software, and files contents. A node in A P2P network can 
act as a server and a client at the same time. A P2P 
network has no central authority. Peers can join and depart 
the network at any time, at their will. Since the distribution 
of data can be random, the data stored in a P2P network is 
spread across a large number of nodes. One of the most 
popular applications of P2P networks are file sharing. The 
existing P2P systems are broadly classified into two types: 
unstructured P2P networks and structured networks. For 
unstructured networks, the data objects do not have global 
unique ids and queries are submitted as keywords. The 
peers in structured networks maintain unique identification 
tag for each object.  

Nowadays, most of the peer-to-peer applications 
function on unstructured P2P networks. This architecture 
demands a very efficient search technique for the retrieval 
of data [1]. A search for an object in a P2P network is 
successful if it discovers at least one replica of the object.  
Peers connect in an ad-hoc fashion, the location of the 
documents is not controlled by the system and no 
guarantees for the success or the complexity of a search 
are offered [2].  

Search methods for unstructured networks can be 
grouped as either blind or informed. In a blind search, 
nodes do not store any information regarding object 
locations. In informed approaches, nodes locally store 
metadata that helps in the search for the queried objects. 
Existing blind methods ravage a lot of bandwidth to 
achieve utmost performance. Every search requires 
contacting several nodes within some distance called time-
to-live (TTL), creating enormous overhead to all nodes 
involved. Informed methods use their indices to achieve 
similar quality results, and to shrink overhead. The 
limitation of most informed methods is the maintenance 
cost of the indices following peers join/leave the network 
or update the objects in the shared folder.  

This paper proposes a Distributed Search Technique 
(DST) based on mobile agents, k-walk, Q-learning, 
specialized nodes and power peers. The algorithm is 
formulated with the aim of achieving good response time, 
high hit ratio, low network traffic and adaptive behavior. 
The main contributions of the proposed search algorithm 
are: Q-learning based search, two-way load balancing, 
priority for specialized nodes, power peer concept, TTL 
enhancement, and the application of query history details. 
Like random walk, the proposed method does not select 
walkers randomly. Power peers and ordinary peers 
together join the search process. In order to achieve the 
objectives, the proposed search scheme maintains a few 
tables. The tables are updated according to search results. 
Query is routed to a power peer based on load data 
collected by mobile agents from various power peers.  

The remainder of this paper is organized as follows. 
Section 2 reviews the related work. An overview of the 
proposed search technique is given in section 3. The Q-
table update operations are discussed in section 4. The 
major steps of the P2P search algorithm are described in 
section 5. Section 6 discusses the simulation methodology.  
Section 7 concludes the paper. 

2. Related Work 

Flooding based search is extensively used in 
unstructured P2P networks like Gnutella. Flooding 
schemes generate a large amount of network traffic. To 
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overcome this problem, a random walk [3], [4] technique 
is often used. Whereas this approach manages to reduce 
messages significantly, it shows low performance because 
of its random character and inability to adjust to different 
query loads. The proposed technique makes use of Q-table 
data for selecting walkers. 

Adaptive Probabilistic Search (APS) [5] forwards a 
single file look up query probabilistically based on the 
query history and the guesses of query sources. APS can 
be viewed as an ad-hoc application of reinforcement 
learning [6]. In APS, each node maintains a local index 
containing one entry for each object it has requested, or 
forwarded. For each query word search, an update process 
takes place. Peers are required to maintain key values only 
relative to their neighbors. APS assigns equal status for all 
the nodes in the network while searching, without 
considering the nodes’ degree, number of available objects 
and storage. Our method does not follow probabilistic 
forwarding; as an alternative, it uses Q-learning for 
selecting peers.   

In Gnutella UDP Extension for Scalable Searches 
(GUESS) [7], each ultrapeer is linked to other ultrapeers 
and to set of leaf-nodes. During a search operation, 
different ultrapeers are iteratively contacted followed by 
searching in their leaf-nodes. However, the order in which 
ultrapeers are chosen is not specified [2]. In Gnutella 2.0 
[8], while a super-peer receives a query from a leaf node, 
it forwards it to appropriate leaves and to its neighboring 
super-peers. After processing queries locally, they are 
forwarded to their relevant leaves. No other nodes are 
visited.  

In Intelligent-BFS [9], nodes maintain tables to store 
query-neighborID tuples for recently responded requests 
from their neighbors. The accuracy of the algorithm 
depends on the assumption that nodes specialize in certain 
documents [2]. The proposed search scheme employs the 
concept of specialized peers. Reinforcement learning 
based search [6] explores new paths by forwarding queries 
to randomly chosen neighbors. It selects the best path from 
the returned results. 

3. Overview of DST 

Reinforcement learning (RL) is a powerful framework 
in which an agent learns most favorable actions through a 
trial and error exploration of the environment and by 
receiving rewards for its actions. The reward function 
defines what the good and bad actions are in different 
situations. The agent’s goal is to maximize the total 
reward it receives [10]. Q-learning is a new form of 
reinforcement learning algorithm that does not need a 
model of its environment. Q-learning algorithms works by 
estimating the values of state-action pairs. The value Q(s, 
a) is labeled as the expected discounted sum of future 

payoffs obtained by taking action ‘a’ from state and 
following optimal policy after that. Once these values are 
learned, the optimal action from any state is the one with 
the highest Q-value. After being initialized to some 
numbers, Q-values are estimated based on experience.  

In the context of P2P search, Q-learning is used to 
select suitable peers for searching. More than one walker 
is required to carry out a search operation. For this reason, 
rather than selecting the highest Q-value, depending on 
number of walkers, more peers are selected in line with 
their Q-values.  

3.1 Data Structures and Major Features 

The various data structures and important features of 
distributed search algorithm are discussed. 

Query Q-table: Every time user enters a query, the 
peer’s shared folder is searched and if the object is not 
found, the system checks whether an entry for the query 
keyword exists in the Query Q-table (Table 1). Incase the 
query keyword is present in the table, K walkers are 
chosen from the query Q-table in the descending order of 
Q-values. For a successful search through a neighbor, 
corresponding Q-value is modified according to number of 
hops and results; otherwise, penalty is awarded.  For all 
neighbors who have responded with successful results, 
associated entries are added to the table. The Q-table 
contains the list of most recent past queries and Q-values. 
The table grows as the entries for successful queries with 
new keywords are added.  

Neighbor Q-table:  A peer maintains a Neighbor Q-
table (Table 2) which contains Q-values of neighbors. 
Occasionally the query keyword may be a new one; hence, 
appropriate data may not be available in the Query Q-table. 
In this case, walkers are selected from both Neighbor Q-
table and power peer Q-table in the descending order of 
Q-values. The Neighbor Q-table provides an overall 
picture with reference to the performance of neighbors in 
the past.  

Power peers and Mobile Agents: Power peers are 
similar to ultrapeers but they declare themselves as power 
peers whenever some criteria are met. Existing systems 
select ultrapeers by their computing capabilities such as 
bandwidth, CPU power, and memory spaces [9]. In this 
paper, parameters such as number of neighbors (degree of 
a node), number of shared objects, and available storage 
are used to select a power peer. The presence of large 
number of objects can provide improved success rate. 
High degree peers have large number of neighbors. On the 
other hand, several peers query power peers for results. 
Even though a peer is powerful for housing large number 
of objects, it should have minimum storage available for 
hosting new objects in the future. The minimum level may 
be the user choice, say 30% of the total storage.  A peer 



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008 
 

 

130 

achieves power peer status when the number of objects, 
number of neighbors and available storage reach some 
threshold.  

Table  1: Query Q-table for 6 neighbors of a node 
 Q-values of neighbors 
Query  
Keyword N1 N2 N3 N4 N5 N6 

Peer 45 110 77 65 78 34 
Sky 62 81 117 45 56 87 
Moon 56 62 87 67 43 115 

Table 2:  Neighbor Q-table for 6 neighbors of a node 
N1 N2 N3 N4 N5 N6

175 85 78 134 50 89 
The moment a node becomes a power peer, it 

broadcasts the news to all the nodes within N hops away 
by dispatching mobile agents. Clones of mobile agents are 
created to visit several sites. The broadcast message is also 
propagated through neighbors and power peers listed in 
the power peer table. A node maintains a list for power 
peers in its power peer Q-table. The format of the table is 
same as neighbor Q-table. An entry for power peer is 
added to the table each time a node receives broadcast 
message or the requested object is found in another power 
peer, which is not listed in the power peer table. Each 
node, irrespective of its class it belongs as a power node or 
an ordinary node, maintains a variable to store the number 
of hits occurred in the node. During search if a hit occurs 
in a power peer and the entry of that peer is not listed in 
the power peer Q-table, it is added to the table with initial 
Q-value 100.  

After a hit, the node that holds the object (object node) 
transmits the reply message along the reverse path. Some 
of the parameters in the reply message include query 
source-id, message-id, address of object node, and its 
status (power peer or ordinary peer). In case, the node 
status is ‘power peer’, and the entry for that node is not 
there in the power peer table, new entry for the power peer 
is added by the nodes along the reply path. Query source-
id is required for TTL enhancement operation. 

Walker selection:  If the query to be processed is a new 
one (i.e. entry for that query is not listed in the Query Q-
table), walkers are selected from neighbor Q-table and 
power peer Q-table according to certain criteria 
(Algorithm 1). Assume K-walkers are used for searching. 
Using Q-values in appropriate tables, after setting TTL 
values, neighbors and power peers are selected as walkers. 
If not enough power peers are not available in the power 
peer table, rests of the walkers are selected from neighbor 
Q-table in accordance with Q-values.  

 
Algorithm 1: Walker Selection 

N=K, where K ≥ 1 
if K==1  

   Number of walkers from neighbor list, G=1 
   Number of walkers from power peer list, P=0 
else 
    P = round (K/2 -1)) 
    G= N-P 

 
Message identification: A query source generates K 

messages for walkers. The query source forwards the 
query to K nodes based on the walker selection policy. 
The nodes on the path forward it to only one. Since 
messages are forwarded or processed by both ordinary 
peers and power peers, it is necessary to identify the 
preceding source of query. As mentioned earlier a power 
peer merely forwards a query message to another power 
peer. The messages from the walkers selected from 
neighbor Q-table are forwarded to their neighbors. The 
neighbor may be a power peer or an ordinary peer.  

To identify the previous query resource, each message 
carries an identifier. While query source dispatches the 
message to its neighbor, the status of message is ‘0’ even 
if the neighbor is a power peer. This gives equal priority to 
all the nodes in the neighbor list. The situation changes if 
the peer in the next hop is a power peer. The power peer 
subsequently replaces the identifier value by ‘1’ and from 
there onwards, the message is simply forwarded to power 
peers. The query message dispatched from a power peer 
listed in the power peer Q-table carries an identifier value 
equal to ‘1’ and the message is further forwarded through 
power peers. Therefore, value of the identifier does not 
change until query is dropped.  

Each message generated from a query source carries a 
unique-id to identify itself from other query messages. A 
peer stores recently processed or forwarded message-ids. 
The node to which the message is routed and the address 
of previous node, which forwarded the message to the 
node, is kept in a table called message history table (Table 
3). This is useful when the result is sent back on the 
reverse path. The table follows a First-in First-out strategy 
for removing entries.  

Duplicate Messages: A duplicate message is forwarded 
to another neighbor or power peer based on Q-value of the 
node and class of message. The target peer is selected by 
excluding the nodes, which forwarded the message earlier. 
If the Q-value is greater than or equal to 100, a node with 
the next highest Q-value is chosen as the target node; 
subsequently message is forwarded to the selected node.  
If no nodes are at hand, duplicate messages are discarded. 
For example, in Table II assume node N has forwarded a 
query message first time to N1, which has the highest Q-
value in the neighbor Q-table. Next time N receives the 
same message, it is forwarded to N4 because its Q-value is 
greater than 100. Other incoming duplicate messages are 
discarded, as no other neighbor with required Q-value 
exist.  Ordinary peers and power peers follow the same 
policy for forwarding duplicate messages.  



IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008 
 

 

131

Table 3: Format of Message History Table 
Message-id Address of Node to which 

Message to be 
Forwarded 

Address of  
Previous 

node 
Specialized peers: Occasionally search process returns 

multiple results from different peers for a query. At the 
same time, a single peer may also produce more than one 
matching result. This means that the peer holds several 
similar objects of same subject area. The chance of getting 
more results for such queries is high. These nodes are 
called specialized nodes and they are given importance 
while updating Q-values. 

Load balancing: Power peers may be overcrowded by 
incoming query messages. The proposed algorithm 
performs load balancing on power peers in two ways. The 
distribution of query processing load among neighbors and 
power peers tends to reduce load among power peers. This 
method of load balancing alone is not adequate to save 
high degree power peers from crowding because queries 
are also directly passed through power peers frequently. 
So, an effective load balancing scheme using mobile 
agents is proposed.  

The scheme utilizes load information available on 
power peers. When a power peer is overcrowded, the 
system can direct the query traffic to least loaded power 
peers. A mobile agent periodically collect load data from 
power peers selected from power peer list. The scheme 
(Algorithm 2) works as follows: The average of Q-values 
(AvgQ) of peers listed in the Q-table of a power peer is 
computed. Peers with Q-values greater than or equal to 
AvgQ are selected for collecting load information. Every 
peer is provided with a mobile agent platform.  

Clones of mobile agents are dispatched from a power 
peer to collect load data from selected power peers. The 
agent collects cpu-load and free memory on each node and 
computes load metric as, load= w1* cpu_load + w2 * 
free_mem, where cpu_load is the work load on the power 
peer measured in the length of the job queue, free_mem is 
the percentage of free memory space, and w1, w2 are the 
weights of the parameters, w1 + w2 =1. The load data is 
reported back to the parent node and it replaces the 
previous data. 
 
 
 
 
 
 
 

 
 

 
 
 

Fig. 1 Neighbors and Power Peers of Node J 

 
Algorithm 2: Load balance algorithm 

i. Compute average Q-value, AvgQ 
ii. Select power nodes (n1...nk) whose Q-value ≥ AvgQ 
iii. Dispatch clones of mobile agents to selected peers 

iv. Mobile agents submit load data to source node 
v. Update Load table 

vi. Choose the least loaded power peer, Pw 
vii. Propagate Query to Pw 

Fig. 1 shows an unstructured P2P network with 
ordinary peers and power peers. Nodes E, F, J, N and R 
are power peers. J is a power peer with nodes D, M and I 
as neighbors. J has three entries in its power peer Q-table. 
The average Q-value of three power peers listed in the 
Table 4 is 71. Hence, J dispatches mobile agents to power 
peers E and F. Mobile agents submit load data to node J 
and it is stored in load table (Table 5) after deleting the 
existing data. When J receives a query, if its load is greater 
than or equal to a threshold value (Lsh), the query is routed 
to the least loaded power peer listed in the load table.  

Search termination: Random walk [3] uses a checking 
method to provide adaptive termination of a search 
process. Each checking requires a message exchange 
between a node and the requester node. All the neighbors 
and power peers who received the query message follows 
k-walk procedure for searching. As mentioned earlier a 
power peer forwards a query message to another power 
peer only. This will continue till TTL expires.  

The query message holds the address of query source. If 
the object is not found, and the TTL is expired, the power 
peer performs a checking process. It communicates with 
the requester node whether the search is to be continued 
further. Based on the result the requester node received 
from other peers, it directs the power peer to continue 
searching. Then power peer increases the TTL further by 
half of its current limit. Algorithm 3 explains the various 
steps involved in search termination. For example if TTL 
is 6, searching continues three more hops (TTL/2 = 6/2=3). 
The result is sent back to the requester node on the reverse 
path. The nodes in the path update their Q-tables 
accordingly. 

Table 4:  Power peer Q-table for node J 
Power Peers Q-value 
E 78 
F 89 
N 45 

Table  5:  Load Table for node J 
Power Peers Load data 
E 100 
F 135 
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Algorithm 3: steps in search termination 
 
t =current TTL value. 
for i = t to 1 next -1 
{ 
    if object is not found 
        forward message to another peer. 
    else 
       terminate searching. 
       send result along reverse path. 
 } 
t=i 
if t = =0 and object is not found 
{ 
   power peer sends a checking message to query source. 
   if query source transmits a  ‘proceed message’.  
//   if the query source has not received any result so far 

through neighbors, it sends a ‘proceed message’ to the power 
peer. Power peer then increments TTL // 

     { 
          TTLx = round (TTL/2) 
           for ƒ = TTLx to 1 next -1 
  { 
     propagate query message to next hop. 
     if object is found  
       { 
  terminate searching. 
  send result along reverse path. 
       }      } 
      }   } 

4. Q-Table Update 

This section explains how the Q-learning process is 
employed in ordinary peers, and power peers to compute 
rewards and update Q-values in different Q-tables [11]. 
The initial Q-value for a node is set as 100. When a 
required object is found, all peers on the reverse path 
update the Q-values. The reward computation and Q-value 
update process are discussed. 

Query Q-table update: For each hit, reward is computed 
and Q-values in Query Q-tables of each node coming 
between requester node and node, in which the object is 
found, are updated on the reverse path. Each result carries 
a reinforcement signal containing the number of hops (hp) 
visited by the peer and the number of results (nr) returned 
for the query. The reinforcement signal is translated into a 
reward (rnq) function. 
ρi = [ ai * 1/hp + (1- ai) * nr ] * 100 
rnq =sign (ρi). 
All Q-values are initially set to 100. Since less number 

of hop count results good response time, the value for ai is 
set at ai=0.2.  Specialized nodes may generate a number of 
matching results; for this reason, weight (1- ai) is 
associated to number of results (nr) returned. The Query 

Q-table is updated for a particular query word using the Q-
function Qi, t+1 ← Qi, t + α (rnq - Qi, t), where α is the 
learning rate. The Q-values of neighbors (walkers) that 
positively responded are updated. All other walkers 
receive a negative reinforcement (rnq =0). The reward of 
those nodes are zero, the Q-value is updated as Qi, t+1 ← Qi, 

t (1- α). The neighbors who have not participated in the 
search process keep the Q-values as such, i.e. Qi, t+1 ← Qi, t.  

Neighbor Q-table update: The Neighbor Q-table is 
updated for each query search operation. A hit is 
considered as reward. The Q-value of the node (walker) is 
modified as Qi, t+1 ← (Qi, t. + 10). In case the object is not 
found, the present Q-value is decremented by five i.e. Qi, 

t+1 ← (Qi, t. – 5). Thus if a hit occurs, Q-values of all the 
successful walkers are incremented by 10, otherwise 
decremented. Q-values of remaining neighbors who have 
not participated in searching remain unchanged. Update 
process in a neighbor Q-table also results addition of new 
entry into Query Q-table. Therefore, the keyword and 
appropriate Q-values of neighbors are added to the query 
Q-table as per the update process. 

Power Peer Q-table update: If past successful search 
data for the query keyword is not available in the query Q-
table, walkers are also selected from power peer list of a 
node. Q-values are updated if a hit occurs through power 
peer (walker). The hop count (hp) is used as a parameter 
for Q-value update. The steps in calculating the reward, rpq 
is explained below: 

T = TTL  
Tmax = T + round (T/2)        
where, Tmax is the maximum TTL allowed for a power 

peer, i.e. if the object is not found within the TTL limit, 
after checking process, search is extended to TTL/2 hops. 

rpq = [Tmax / hp] * 100 
For a hit, Q-value is updated as Qi, t+1 ← Qi, t + α (rpq - Qi, 

t). Q-values for the remaining walkers who have not 
produced a hit, update their Q-value as Qi, t+1 ← Qi, t (1- α). 
No power peers not participated in the search alter their Q-
values for the query. 

5. Algorithm for P2P Search 

Algorithm 4 explains the major steps involved in the 
search process. 

Algorithm 4: Distributed search 
// Total number of walkers – K; Number of walkers from neighbor list 

– G; Number of walkers from power peer list – P; Number of nodes in 
Power Peer Table – T; Query Keyword – Q; Query Source – S // 

 
1. User submits a query 
2. Search Query node for Q 
3. If Q is not in S 
   3.1  search for Q in the Query Q-table  
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   3.2  if Q is found 
            select K walkers from Query Q-table  
               in the descending order of Q-values 
            generate K query messages;   
            search starts with K walkers  
         else 
           compute G and P  
           if  T <  P 
              select rest of walkers from Neighbor Q-table 
            search starts with walkers from both tables 
            if object is not found after expiry of TTL  
   power peer performs a checking process    
   if object is not yet found 
                  power peer increases its TTL  
      continue search with increased TTL 
4. if a hit occurs, sent back result on the reverse path. 
5. all nodes on the path, update appropriate Q-tables. 

6. Simulation Methodology 

We describe the simulation environment and 
performance evaluation of distributed search technique. 

6.1 Simulation setup 

The performance of the proposed algorithm is evaluated 
using a simulator developed in Java and IBM’s Aglet 
Workbench. Aglets project is a Java based implementation 
that was originally developed by IBM Japan. An aglet can 
be dispatched to any remote host that supports the Java 
Virtual Machine. This requires from the remote host to 
pre-install Tahiti, a tiny aglet server program implemented 
in Java and provided by the Aglet Framework. To allow 
aglets (mobile agents) to be fired from within applets, the 
IBM Aglet team provided the so-called “FijiApplet”, an 
abstract applet class that is part of a Java package called 
“Fiji Kit”. FijiApplet maintains some kind of an aglet 
context. From within this context, aglets can be created, 
dispatched from and retracted back to the FijiApplet. 

Table  6. Simulation Parameters 
Parameters Default Values 
Topology Random 
Network type Unstructured 
No. of nodes 3000 
TTL  06 
No. of objects 100 
Object Replication   Autonomous replication  

using Q-learning 
Initial Q-value 100 
Load balancing Mobile agent based 
Peers Ordinary peers, power peers 
Power peer  
selection 

Node degree ≥7;  
available storage ≥ 30% of total 
storage allocated to the shared 
folder;  
No. of objects in a node ≥ 30 

We simulated the search algorithms using random 
graphs that have 3000 nodes. There are 100 objects 
replicated to various nodes. The objects are replicated 
based on autonomous replication [11] with a bit variation; 
rather than replicating an object immediately after a node 
receives an object; the node waits till the same object in its 
shared folder is accessed three times by other nodes for 
different queries. This reduces the speed of replication 
process; however, popular objects are replicated fast. The 
query sources are chosen randomly. We assume that 80% 
of the nodes are up during simulation. The Q-values of 
neighbors and power peers in the corresponding tables are 
initialized with the value 100. Table 6 lists the various 
simulation parameters and their default values. 

6.2 Performance evaluation 

We performed extensive simulations to assess the 
efficacy of proposed Distributed Search Technique (DST). 
The performance of the algorithm is compared with that of 
random walk and Adaptive Probabilistic Search (APS). 
The numbers of walkers vary from 1 to 15. All nodes 
participating in the search process, irrespective of the class 
they represent, benefit from the outcome of search, and as 
a result, Q-values are updated. Initially nodes with low Q-
values are excluded from walker selection; but when a 
node receives a duplicate message; it is forwarded to a 
node with next higher Q-value. Thus, low priority nodes 
can also participate in search process.   

The search process follows two way searching: in case 
the keyword is not found in the query Q-table, walkers are 
deployed from neighbor Q-table and power peer Q-table. 
The selected walkers might have higher Q-values. This 
increases the chance of finding the object near the query 
source. The message traffic due to broadcasting of power 
peer status and collecting load data from power peers by 
mobile agents is very slight since the messages are not 
produced frequently. In addition, the mobile agent allows 
disconnected operation after it is dispatched from the 
message source. There is no association between object 
updates and Q-values; Q-values are updated based on 
search results. The query is propagated to neighboring 
nodes and power peers simultaneously, which increases 
the possibility of finding rare objects from ordinary peers.  

The simulation results are plotted as graphs and shown 
in Fig. 2, 3,4,5,6, 7 and 8. The success rates of three 
algorithms are presented in Fig. 2. DST has high success 
rate even for small K values and it outperforms both 
random walk and APS. In random walks, about 70% of 
the walkers fail and waste TTL messages each [5]. It is 
observed from Fig. 3 that average number of messages 
created by DST for a search operation is not as much of 
APS and somewhat greater than random walk. This is 
because of the two-way search scheme followed, and use 
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of past query data. Therefore, the majority of search 
actions create hits before they arrive at the TTL limit.  
Besides, the mobile agent based load balancing scheme 
assists the search process to keep away from heavily 
loaded power peers to diminish network traffic. 
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Fig. 2  Success rate vs. number of deployed walkers 

The number of objects discovered per query for 
different number of walkers is presented in Fig. 4. The 
distributed search algorithm generates more precise results 
than random walk and APS. DST achieves this much of 
performance by effectively utilizing Q-values of better 
performing nodes including that of specialized peers. Fig. 
5 compares the average number of hops visited for a 
search operation by the three search schemes. Performance 
of DST is superior to both APS and random walk. This is 
attained by exploiting the Q-tables data, load balancing 
and two-way searching. Power peers host several objects 
as compared to ordinary peers. 
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Fig. 3  Message per query vs. number of deployed walkers 

Fig. 6 shows the link between query hits and hop 
distance for three search schemes. The distributed search 
algorithm finds out large number of objects for short hop 
distances. This reduces the number of messages for search 
operation. In case of random walk, this cannot be achieved 
because no knowledge about objects in other nodes is 
available while walkers are deployed. In case of DST, 
neighbors and power peers together participate in a search 
operation. The participation of both categories of nodes is 
essential for a successful search in case the query keyword 
is a new one. The responsibility of neighbors in a search 
process increases with the presence of large number of 
keywords in query Q-table. This is implicit from Fig. 7, 
where the number of hits through neighbors augments 

when more number of queries are processed. Hence, load 
on power peers is also minimized.   
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Fig. 4  Number of hits per query vs. number of deployed walkers 

APS discards duplicate message while processing a 
query. However, DST forwards the message to possible 
nodes as per the node selection policy for duplicate 
messages. Query is effectively routed through neighbors 
and power peers. This causes reduction in number of 
duplicate messages during searching. This is evident from 
Fig. 8. 
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Fig. 6  Hits per query vs. hop distance from requesters 

0

10

20

30

40

50

60

70

80

1000 2000 3000 4000 5000 6000

No. of Queries

%
 o

f h
its

 th
ro

ug
h 

N
ei

gh
bo

rs
 a

nd
 P o

w
er

 
Pe

er
s

Neighbors

Pow er Peers

 
Fig. 7  Share of neighbors and power peers on number of hits 
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Fig. 8  Percentage of duplicate messages generated per hop 

7. Conclusions 

In this work, we introduced an effective distributed 
search technique for unstructured P2P networks. 
Simulation results are also presented. The search scheme 
uses power peers, specialized peers, TTL enhancement 
and mobile agent based load balancing. Basic idea is to 
distribute the search processing load on ordinary peers and 
power peers. The target nodes are selected based on past 
performance of nodes. Another important feature of the 
search algorithm is application of Q-learning. Each search 
operation updates the Q-values of nodes in the 
corresponding Q-tables. The simulation results show that 
DST outperforms Adaptive Probabilistic Search (APS) 
and Random Walks in terms of success rate, message 
reduction, and search delay. 
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