
IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

128

Manuscript received January 5, 2008

Manuscript revised January 20, 2008

An Effective Distributed Search Technique for Unstructured
Peer-to-Peer Networks

Sabu M. Thampi†, and Chandra Sekaran K††

†L.B.S College of Engineering (Kannur University), Kasaragod, Kerala-671542, India

††National Institute of Technology Karnataka, Surathkal, Karnataka-575025, India

Summary
This paper presents an efficient distributed search technique for
unstructured P2P networks. The scheme employs Q-learning,
power peers, specialized peers, load balancing, and mobile
agents. Walkers are selected from neighbors as well as power
peers. Each search process updates Q-values of nodes in different
Q-tables. The mobile agent based load balancing scheme assists
to route the queries to least loaded power peers. The idea of TTL
enhancement is followed for extending a search process.
Simulation results show that the technique outperforms existing
search schemes.
Key words:
Q-learning, Searching, TTL, Unstructured P2P, Load balancing,
Reinforcement Learning.

1. Introduction

A P2P network, an alternative to traditional
client/server systems, is a distributed network composed
of a large number of distributed, heterogeneous, and
independent peers in which participants allocate a part of
their own resources such as processing power, storage,
software, and files contents. A node in A P2P network can
act as a server and a client at the same time. A P2P
network has no central authority. Peers can join and depart
the network at any time, at their will. Since the distribution
of data can be random, the data stored in a P2P network is
spread across a large number of nodes. One of the most
popular applications of P2P networks are file sharing. The
existing P2P systems are broadly classified into two types:
unstructured P2P networks and structured networks. For
unstructured networks, the data objects do not have global
unique ids and queries are submitted as keywords. The
peers in structured networks maintain unique identification
tag for each object.

Nowadays, most of the peer-to-peer applications
function on unstructured P2P networks. This architecture
demands a very efficient search technique for the retrieval
of data [1]. A search for an object in a P2P network is
successful if it discovers at least one replica of the object.
Peers connect in an ad-hoc fashion, the location of the
documents is not controlled by the system and no
guarantees for the success or the complexity of a search
are offered [2].

Search methods for unstructured networks can be
grouped as either blind or informed. In a blind search,
nodes do not store any information regarding object
locations. In informed approaches, nodes locally store
metadata that helps in the search for the queried objects.
Existing blind methods ravage a lot of bandwidth to
achieve utmost performance. Every search requires
contacting several nodes within some distance called time-
to-live (TTL), creating enormous overhead to all nodes
involved. Informed methods use their indices to achieve
similar quality results, and to shrink overhead. The
limitation of most informed methods is the maintenance
cost of the indices following peers join/leave the network
or update the objects in the shared folder.

This paper proposes a Distributed Search Technique
(DST) based on mobile agents, k-walk, Q-learning,
specialized nodes and power peers. The algorithm is
formulated with the aim of achieving good response time,
high hit ratio, low network traffic and adaptive behavior.
The main contributions of the proposed search algorithm
are: Q-learning based search, two-way load balancing,
priority for specialized nodes, power peer concept, TTL
enhancement, and the application of query history details.
Like random walk, the proposed method does not select
walkers randomly. Power peers and ordinary peers
together join the search process. In order to achieve the
objectives, the proposed search scheme maintains a few
tables. The tables are updated according to search results.
Query is routed to a power peer based on load data
collected by mobile agents from various power peers.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. An overview of the
proposed search technique is given in section 3. The Q-
table update operations are discussed in section 4. The
major steps of the P2P search algorithm are described in
section 5. Section 6 discusses the simulation methodology.
Section 7 concludes the paper.

2. Related Work

Flooding based search is extensively used in
unstructured P2P networks like Gnutella. Flooding
schemes generate a large amount of network traffic. To

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

129

overcome this problem, a random walk [3], [4] technique
is often used. Whereas this approach manages to reduce
messages significantly, it shows low performance because
of its random character and inability to adjust to different
query loads. The proposed technique makes use of Q-table
data for selecting walkers.

Adaptive Probabilistic Search (APS) [5] forwards a
single file look up query probabilistically based on the
query history and the guesses of query sources. APS can
be viewed as an ad-hoc application of reinforcement
learning [6]. In APS, each node maintains a local index
containing one entry for each object it has requested, or
forwarded. For each query word search, an update process
takes place. Peers are required to maintain key values only
relative to their neighbors. APS assigns equal status for all
the nodes in the network while searching, without
considering the nodes’ degree, number of available objects
and storage. Our method does not follow probabilistic
forwarding; as an alternative, it uses Q-learning for
selecting peers.

In Gnutella UDP Extension for Scalable Searches
(GUESS) [7], each ultrapeer is linked to other ultrapeers
and to set of leaf-nodes. During a search operation,
different ultrapeers are iteratively contacted followed by
searching in their leaf-nodes. However, the order in which
ultrapeers are chosen is not specified [2]. In Gnutella 2.0
[8], while a super-peer receives a query from a leaf node,
it forwards it to appropriate leaves and to its neighboring
super-peers. After processing queries locally, they are
forwarded to their relevant leaves. No other nodes are
visited.

In Intelligent-BFS [9], nodes maintain tables to store
query-neighborID tuples for recently responded requests
from their neighbors. The accuracy of the algorithm
depends on the assumption that nodes specialize in certain
documents [2]. The proposed search scheme employs the
concept of specialized peers. Reinforcement learning
based search [6] explores new paths by forwarding queries
to randomly chosen neighbors. It selects the best path from
the returned results.

3. Overview of DST

Reinforcement learning (RL) is a powerful framework
in which an agent learns most favorable actions through a
trial and error exploration of the environment and by
receiving rewards for its actions. The reward function
defines what the good and bad actions are in different
situations. The agent’s goal is to maximize the total
reward it receives [10]. Q-learning is a new form of
reinforcement learning algorithm that does not need a
model of its environment. Q-learning algorithms works by
estimating the values of state-action pairs. The value Q(s,
a) is labeled as the expected discounted sum of future

payoffs obtained by taking action ‘a’ from state and
following optimal policy after that. Once these values are
learned, the optimal action from any state is the one with
the highest Q-value. After being initialized to some
numbers, Q-values are estimated based on experience.

In the context of P2P search, Q-learning is used to
select suitable peers for searching. More than one walker
is required to carry out a search operation. For this reason,
rather than selecting the highest Q-value, depending on
number of walkers, more peers are selected in line with
their Q-values.

3.1 Data Structures and Major Features

The various data structures and important features of
distributed search algorithm are discussed.

Query Q-table: Every time user enters a query, the
peer’s shared folder is searched and if the object is not
found, the system checks whether an entry for the query
keyword exists in the Query Q-table (Table 1). Incase the
query keyword is present in the table, K walkers are
chosen from the query Q-table in the descending order of
Q-values. For a successful search through a neighbor,
corresponding Q-value is modified according to number of
hops and results; otherwise, penalty is awarded. For all
neighbors who have responded with successful results,
associated entries are added to the table. The Q-table
contains the list of most recent past queries and Q-values.
The table grows as the entries for successful queries with
new keywords are added.

Neighbor Q-table: A peer maintains a Neighbor Q-
table (Table 2) which contains Q-values of neighbors.
Occasionally the query keyword may be a new one; hence,
appropriate data may not be available in the Query Q-table.
In this case, walkers are selected from both Neighbor Q-
table and power peer Q-table in the descending order of
Q-values. The Neighbor Q-table provides an overall
picture with reference to the performance of neighbors in
the past.

Power peers and Mobile Agents: Power peers are
similar to ultrapeers but they declare themselves as power
peers whenever some criteria are met. Existing systems
select ultrapeers by their computing capabilities such as
bandwidth, CPU power, and memory spaces [9]. In this
paper, parameters such as number of neighbors (degree of
a node), number of shared objects, and available storage
are used to select a power peer. The presence of large
number of objects can provide improved success rate.
High degree peers have large number of neighbors. On the
other hand, several peers query power peers for results.
Even though a peer is powerful for housing large number
of objects, it should have minimum storage available for
hosting new objects in the future. The minimum level may
be the user choice, say 30% of the total storage. A peer

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

130

achieves power peer status when the number of objects,
number of neighbors and available storage reach some
threshold.

Table 1: Query Q-table for 6 neighbors of a node
 Q-values of neighbors
Query
Keyword N1 N2 N3 N4 N5 N6

Peer 45 110 77 65 78 34
Sky 62 81 117 45 56 87
Moon 56 62 87 67 43 115

Table 2: Neighbor Q-table for 6 neighbors of a node
N1 N2 N3 N4 N5 N6

175 85 78 134 50 89
The moment a node becomes a power peer, it

broadcasts the news to all the nodes within N hops away
by dispatching mobile agents. Clones of mobile agents are
created to visit several sites. The broadcast message is also
propagated through neighbors and power peers listed in
the power peer table. A node maintains a list for power
peers in its power peer Q-table. The format of the table is
same as neighbor Q-table. An entry for power peer is
added to the table each time a node receives broadcast
message or the requested object is found in another power
peer, which is not listed in the power peer table. Each
node, irrespective of its class it belongs as a power node or
an ordinary node, maintains a variable to store the number
of hits occurred in the node. During search if a hit occurs
in a power peer and the entry of that peer is not listed in
the power peer Q-table, it is added to the table with initial
Q-value 100.

After a hit, the node that holds the object (object node)
transmits the reply message along the reverse path. Some
of the parameters in the reply message include query
source-id, message-id, address of object node, and its
status (power peer or ordinary peer). In case, the node
status is ‘power peer’, and the entry for that node is not
there in the power peer table, new entry for the power peer
is added by the nodes along the reply path. Query source-
id is required for TTL enhancement operation.

Walker selection: If the query to be processed is a new
one (i.e. entry for that query is not listed in the Query Q-
table), walkers are selected from neighbor Q-table and
power peer Q-table according to certain criteria
(Algorithm 1). Assume K-walkers are used for searching.
Using Q-values in appropriate tables, after setting TTL
values, neighbors and power peers are selected as walkers.
If not enough power peers are not available in the power
peer table, rests of the walkers are selected from neighbor
Q-table in accordance with Q-values.

Algorithm 1: Walker Selection

N=K, where K ≥ 1
if K==1

 Number of walkers from neighbor list, G=1
 Number of walkers from power peer list, P=0
else
 P = round (K/2 -1))
 G= N-P

Message identification: A query source generates K

messages for walkers. The query source forwards the
query to K nodes based on the walker selection policy.
The nodes on the path forward it to only one. Since
messages are forwarded or processed by both ordinary
peers and power peers, it is necessary to identify the
preceding source of query. As mentioned earlier a power
peer merely forwards a query message to another power
peer. The messages from the walkers selected from
neighbor Q-table are forwarded to their neighbors. The
neighbor may be a power peer or an ordinary peer.

To identify the previous query resource, each message
carries an identifier. While query source dispatches the
message to its neighbor, the status of message is ‘0’ even
if the neighbor is a power peer. This gives equal priority to
all the nodes in the neighbor list. The situation changes if
the peer in the next hop is a power peer. The power peer
subsequently replaces the identifier value by ‘1’ and from
there onwards, the message is simply forwarded to power
peers. The query message dispatched from a power peer
listed in the power peer Q-table carries an identifier value
equal to ‘1’ and the message is further forwarded through
power peers. Therefore, value of the identifier does not
change until query is dropped.

Each message generated from a query source carries a
unique-id to identify itself from other query messages. A
peer stores recently processed or forwarded message-ids.
The node to which the message is routed and the address
of previous node, which forwarded the message to the
node, is kept in a table called message history table (Table
3). This is useful when the result is sent back on the
reverse path. The table follows a First-in First-out strategy
for removing entries.

Duplicate Messages: A duplicate message is forwarded
to another neighbor or power peer based on Q-value of the
node and class of message. The target peer is selected by
excluding the nodes, which forwarded the message earlier.
If the Q-value is greater than or equal to 100, a node with
the next highest Q-value is chosen as the target node;
subsequently message is forwarded to the selected node.
If no nodes are at hand, duplicate messages are discarded.
For example, in Table II assume node N has forwarded a
query message first time to N1, which has the highest Q-
value in the neighbor Q-table. Next time N receives the
same message, it is forwarded to N4 because its Q-value is
greater than 100. Other incoming duplicate messages are
discarded, as no other neighbor with required Q-value
exist. Ordinary peers and power peers follow the same
policy for forwarding duplicate messages.

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

131

Table 3: Format of Message History Table
Message-id Address of Node to which

Message to be
Forwarded

Address of
Previous

node
Specialized peers: Occasionally search process returns

multiple results from different peers for a query. At the
same time, a single peer may also produce more than one
matching result. This means that the peer holds several
similar objects of same subject area. The chance of getting
more results for such queries is high. These nodes are
called specialized nodes and they are given importance
while updating Q-values.

Load balancing: Power peers may be overcrowded by
incoming query messages. The proposed algorithm
performs load balancing on power peers in two ways. The
distribution of query processing load among neighbors and
power peers tends to reduce load among power peers. This
method of load balancing alone is not adequate to save
high degree power peers from crowding because queries
are also directly passed through power peers frequently.
So, an effective load balancing scheme using mobile
agents is proposed.

The scheme utilizes load information available on
power peers. When a power peer is overcrowded, the
system can direct the query traffic to least loaded power
peers. A mobile agent periodically collect load data from
power peers selected from power peer list. The scheme
(Algorithm 2) works as follows: The average of Q-values
(AvgQ) of peers listed in the Q-table of a power peer is
computed. Peers with Q-values greater than or equal to
AvgQ are selected for collecting load information. Every
peer is provided with a mobile agent platform.

Clones of mobile agents are dispatched from a power
peer to collect load data from selected power peers. The
agent collects cpu-load and free memory on each node and
computes load metric as, load= w1* cpu_load + w2 *
free_mem, where cpu_load is the work load on the power
peer measured in the length of the job queue, free_mem is
the percentage of free memory space, and w1, w2 are the
weights of the parameters, w1 + w2 =1. The load data is
reported back to the parent node and it replaces the
previous data.

Fig. 1 Neighbors and Power Peers of Node J

Algorithm 2: Load balance algorithm

i. Compute average Q-value, AvgQ
ii. Select power nodes (n1...nk) whose Q-value ≥ AvgQ
iii. Dispatch clones of mobile agents to selected peers

iv. Mobile agents submit load data to source node
v. Update Load table

vi. Choose the least loaded power peer, Pw
vii. Propagate Query to Pw

Fig. 1 shows an unstructured P2P network with
ordinary peers and power peers. Nodes E, F, J, N and R
are power peers. J is a power peer with nodes D, M and I
as neighbors. J has three entries in its power peer Q-table.
The average Q-value of three power peers listed in the
Table 4 is 71. Hence, J dispatches mobile agents to power
peers E and F. Mobile agents submit load data to node J
and it is stored in load table (Table 5) after deleting the
existing data. When J receives a query, if its load is greater
than or equal to a threshold value (Lsh), the query is routed
to the least loaded power peer listed in the load table.

Search termination: Random walk [3] uses a checking
method to provide adaptive termination of a search
process. Each checking requires a message exchange
between a node and the requester node. All the neighbors
and power peers who received the query message follows
k-walk procedure for searching. As mentioned earlier a
power peer forwards a query message to another power
peer only. This will continue till TTL expires.

The query message holds the address of query source. If
the object is not found, and the TTL is expired, the power
peer performs a checking process. It communicates with
the requester node whether the search is to be continued
further. Based on the result the requester node received
from other peers, it directs the power peer to continue
searching. Then power peer increases the TTL further by
half of its current limit. Algorithm 3 explains the various
steps involved in search termination. For example if TTL
is 6, searching continues three more hops (TTL/2 = 6/2=3).
The result is sent back to the requester node on the reverse
path. The nodes in the path update their Q-tables
accordingly.

Table 4: Power peer Q-table for node J
Power Peers Q-value
E 78
F 89
N 45

Table 5: Load Table for node J
Power Peers Load data
E 100
F 135

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

132

Algorithm 3: steps in search termination

t =current TTL value.
for i = t to 1 next -1
{
 if object is not found
 forward message to another peer.
 else
 terminate searching.
 send result along reverse path.
 }
t=i
if t = =0 and object is not found
{
 power peer sends a checking message to query source.
 if query source transmits a ‘proceed message’.
// if the query source has not received any result so far

through neighbors, it sends a ‘proceed message’ to the power
peer. Power peer then increments TTL //

 {
 TTLx = round (TTL/2)
 for ƒ = TTLx to 1 next -1
 {
 propagate query message to next hop.
 if object is found
 {
 terminate searching.
 send result along reverse path.
 } }
 } }

4. Q-Table Update

This section explains how the Q-learning process is
employed in ordinary peers, and power peers to compute
rewards and update Q-values in different Q-tables [11].
The initial Q-value for a node is set as 100. When a
required object is found, all peers on the reverse path
update the Q-values. The reward computation and Q-value
update process are discussed.

Query Q-table update: For each hit, reward is computed
and Q-values in Query Q-tables of each node coming
between requester node and node, in which the object is
found, are updated on the reverse path. Each result carries
a reinforcement signal containing the number of hops (hp)
visited by the peer and the number of results (nr) returned
for the query. The reinforcement signal is translated into a
reward (rnq) function.
ρi = [ai * 1/hp + (1- ai) * nr] * 100
rnq =sign (ρi).
All Q-values are initially set to 100. Since less number

of hop count results good response time, the value for ai is
set at ai=0.2. Specialized nodes may generate a number of
matching results; for this reason, weight (1- ai) is
associated to number of results (nr) returned. The Query

Q-table is updated for a particular query word using the Q-
function Qi, t+1 ← Qi, t + α (rnq - Qi, t), where α is the
learning rate. The Q-values of neighbors (walkers) that
positively responded are updated. All other walkers
receive a negative reinforcement (rnq =0). The reward of
those nodes are zero, the Q-value is updated as Qi, t+1 ← Qi,

t (1- α). The neighbors who have not participated in the
search process keep the Q-values as such, i.e. Qi, t+1 ← Qi, t.

Neighbor Q-table update: The Neighbor Q-table is
updated for each query search operation. A hit is
considered as reward. The Q-value of the node (walker) is
modified as Qi, t+1 ← (Qi, t. + 10). In case the object is not
found, the present Q-value is decremented by five i.e. Qi,

t+1 ← (Qi, t. – 5). Thus if a hit occurs, Q-values of all the
successful walkers are incremented by 10, otherwise
decremented. Q-values of remaining neighbors who have
not participated in searching remain unchanged. Update
process in a neighbor Q-table also results addition of new
entry into Query Q-table. Therefore, the keyword and
appropriate Q-values of neighbors are added to the query
Q-table as per the update process.

Power Peer Q-table update: If past successful search
data for the query keyword is not available in the query Q-
table, walkers are also selected from power peer list of a
node. Q-values are updated if a hit occurs through power
peer (walker). The hop count (hp) is used as a parameter
for Q-value update. The steps in calculating the reward, rpq
is explained below:

T = TTL
Tmax = T + round (T/2)
where, Tmax is the maximum TTL allowed for a power

peer, i.e. if the object is not found within the TTL limit,
after checking process, search is extended to TTL/2 hops.

rpq = [Tmax / hp] * 100
For a hit, Q-value is updated as Qi, t+1 ← Qi, t + α (rpq - Qi,

t). Q-values for the remaining walkers who have not
produced a hit, update their Q-value as Qi, t+1 ← Qi, t (1- α).
No power peers not participated in the search alter their Q-
values for the query.

5. Algorithm for P2P Search

Algorithm 4 explains the major steps involved in the
search process.

Algorithm 4: Distributed search
// Total number of walkers – K; Number of walkers from neighbor list

– G; Number of walkers from power peer list – P; Number of nodes in
Power Peer Table – T; Query Keyword – Q; Query Source – S //

1. User submits a query
2. Search Query node for Q
3. If Q is not in S
 3.1 search for Q in the Query Q-table

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

133

 3.2 if Q is found
 select K walkers from Query Q-table
 in the descending order of Q-values
 generate K query messages;
 search starts with K walkers
 else
 compute G and P
 if T < P
 select rest of walkers from Neighbor Q-table
 search starts with walkers from both tables
 if object is not found after expiry of TTL
 power peer performs a checking process
 if object is not yet found
 power peer increases its TTL
 continue search with increased TTL
4. if a hit occurs, sent back result on the reverse path.
5. all nodes on the path, update appropriate Q-tables.

6. Simulation Methodology

We describe the simulation environment and
performance evaluation of distributed search technique.

6.1 Simulation setup

The performance of the proposed algorithm is evaluated
using a simulator developed in Java and IBM’s Aglet
Workbench. Aglets project is a Java based implementation
that was originally developed by IBM Japan. An aglet can
be dispatched to any remote host that supports the Java
Virtual Machine. This requires from the remote host to
pre-install Tahiti, a tiny aglet server program implemented
in Java and provided by the Aglet Framework. To allow
aglets (mobile agents) to be fired from within applets, the
IBM Aglet team provided the so-called “FijiApplet”, an
abstract applet class that is part of a Java package called
“Fiji Kit”. FijiApplet maintains some kind of an aglet
context. From within this context, aglets can be created,
dispatched from and retracted back to the FijiApplet.

Table 6. Simulation Parameters
Parameters Default Values
Topology Random
Network type Unstructured
No. of nodes 3000
TTL 06
No. of objects 100
Object Replication Autonomous replication

using Q-learning
Initial Q-value 100
Load balancing Mobile agent based
Peers Ordinary peers, power peers
Power peer
selection

Node degree ≥7;
available storage ≥ 30% of total
storage allocated to the shared
folder;
No. of objects in a node ≥ 30

We simulated the search algorithms using random
graphs that have 3000 nodes. There are 100 objects
replicated to various nodes. The objects are replicated
based on autonomous replication [11] with a bit variation;
rather than replicating an object immediately after a node
receives an object; the node waits till the same object in its
shared folder is accessed three times by other nodes for
different queries. This reduces the speed of replication
process; however, popular objects are replicated fast. The
query sources are chosen randomly. We assume that 80%
of the nodes are up during simulation. The Q-values of
neighbors and power peers in the corresponding tables are
initialized with the value 100. Table 6 lists the various
simulation parameters and their default values.

6.2 Performance evaluation

We performed extensive simulations to assess the
efficacy of proposed Distributed Search Technique (DST).
The performance of the algorithm is compared with that of
random walk and Adaptive Probabilistic Search (APS).
The numbers of walkers vary from 1 to 15. All nodes
participating in the search process, irrespective of the class
they represent, benefit from the outcome of search, and as
a result, Q-values are updated. Initially nodes with low Q-
values are excluded from walker selection; but when a
node receives a duplicate message; it is forwarded to a
node with next higher Q-value. Thus, low priority nodes
can also participate in search process.

The search process follows two way searching: in case
the keyword is not found in the query Q-table, walkers are
deployed from neighbor Q-table and power peer Q-table.
The selected walkers might have higher Q-values. This
increases the chance of finding the object near the query
source. The message traffic due to broadcasting of power
peer status and collecting load data from power peers by
mobile agents is very slight since the messages are not
produced frequently. In addition, the mobile agent allows
disconnected operation after it is dispatched from the
message source. There is no association between object
updates and Q-values; Q-values are updated based on
search results. The query is propagated to neighboring
nodes and power peers simultaneously, which increases
the possibility of finding rare objects from ordinary peers.

The simulation results are plotted as graphs and shown
in Fig. 2, 3,4,5,6, 7 and 8. The success rates of three
algorithms are presented in Fig. 2. DST has high success
rate even for small K values and it outperforms both
random walk and APS. In random walks, about 70% of
the walkers fail and waste TTL messages each [5]. It is
observed from Fig. 3 that average number of messages
created by DST for a search operation is not as much of
APS and somewhat greater than random walk. This is
because of the two-way search scheme followed, and use

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

134

of past query data. Therefore, the majority of search
actions create hits before they arrive at the TTL limit.
Besides, the mobile agent based load balancing scheme
assists the search process to keep away from heavily
loaded power peers to diminish network traffic.

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K

Su
cc

es
s

R
at

e
(%

)

Random w alk APS DST

Fig. 2 Success rate vs. number of deployed walkers

The number of objects discovered per query for
different number of walkers is presented in Fig. 4. The
distributed search algorithm generates more precise results
than random walk and APS. DST achieves this much of
performance by effectively utilizing Q-values of better
performing nodes including that of specialized peers. Fig.
5 compares the average number of hops visited for a
search operation by the three search schemes. Performance
of DST is superior to both APS and random walk. This is
attained by exploiting the Q-tables data, load balancing
and two-way searching. Power peers host several objects
as compared to ordinary peers.

0
5

10
15
20

25
30
35
40

45
50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K

M
es

sa
ge

s
pe

r q
ue

ry

Random w alk

APS

DST

Fig. 3 Message per query vs. number of deployed walkers

Fig. 6 shows the link between query hits and hop
distance for three search schemes. The distributed search
algorithm finds out large number of objects for short hop
distances. This reduces the number of messages for search
operation. In case of random walk, this cannot be achieved
because no knowledge about objects in other nodes is
available while walkers are deployed. In case of DST,
neighbors and power peers together participate in a search
operation. The participation of both categories of nodes is
essential for a successful search in case the query keyword
is a new one. The responsibility of neighbors in a search
process increases with the presence of large number of
keywords in query Q-table. This is implicit from Fig. 7,
where the number of hits through neighbors augments

when more number of queries are processed. Hence, load
on power peers is also minimized.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K

H
its

 p
er

 Q
ue

ry

Random w alk

APS

DST

Fig. 4 Number of hits per query vs. number of deployed walkers

APS discards duplicate message while processing a
query. However, DST forwards the message to possible
nodes as per the node selection policy for duplicate
messages. Query is effectively routed through neighbors
and power peers. This causes reduction in number of
duplicate messages during searching. This is evident from
Fig. 8.

#hops till success

0

2

4

6

8

10

12

Random walk APS DST
Fig. 5 Search delay Comparison

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

Hop Distance

H
its

 p
er

 q
ue

ry

Random walk
APS

DST

Fig. 6 Hits per query vs. hop distance from requesters

0

10

20

30

40

50

60

70

80

1000 2000 3000 4000 5000 6000

No. of Queries

%
 o

f h
its

 th
ro

ug
h

N
ei

gh
bo

rs
 a

nd
 P o

w
er

Pe

er
s

Neighbors

Pow er Peers

Fig. 7 Share of neighbors and power peers on number of hits

IJCSNS International Journal of Computer Science and Network Security, VOL.8 No.1, January 2008

135

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6

Hop

%
 o

f d
up

lic
at

es

Random walk

APS

DST

Fig. 8 Percentage of duplicate messages generated per hop

7. Conclusions

In this work, we introduced an effective distributed
search technique for unstructured P2P networks.
Simulation results are also presented. The search scheme
uses power peers, specialized peers, TTL enhancement
and mobile agent based load balancing. Basic idea is to
distribute the search processing load on ordinary peers and
power peers. The target nodes are selected based on past
performance of nodes. Another important feature of the
search algorithm is application of Q-learning. Each search
operation updates the Q-values of nodes in the
corresponding Q-tables. The simulation results show that
DST outperforms Adaptive Probabilistic Search (APS)
and Random Walks in terms of success rate, message
reduction, and search delay.

References

[1] Prakash. A, “A Survey of Advanced Search in P2P
Networks,” Available:
www.medianet.kent.edu/surveys/IAD06S-p2psearch-
alok/index.html.

[2] Tsoumakos.D and Roussopoulos.N, “Analysis and
Comparison of P2P Search Methods,” in 2006
Proc.1st Int. Conf. Scalable Information Systems
(INFOSCALE 2006), Article No. 25.

[3] Lv. C, Cao.P, Cohen.E, Li.K, and Shenker. S. “Search
and replication in unstructured peer-to-peer
networks,” in 2002 Proc.16th Int. Conf.
Supercomputing, pp. 84-95.

[4] Gkantsidis. C, Mihail. M, and Saberi.A, “Random
walks in peer-to-peer networks,” in 2004 Proc.23rd
Annual Joint Conference of the IEEE Computer and
Communications Societies, Volume 1, Page. 130.

[5] Tsoumakos. D, and Roussopoulos. N, “Adaptive
Probabilistic Search for Peer-to-Peer Networks,” in
2003 Proc.3rd Int. Conf. P2P Computing, pp. 102 –
109.

[6] Li. X, and Wu. J, “Improve Searching by
Reinforcement Learning in Unstructured P2Ps,” in
2004 Proc.26th Conf. Distributed Computing Systems
(ICDCSW), pp. 75.

[7] Daswani. S and Fisk. A, Guess protocol specification,
Available: http://groups.yahoo.com/group/the
gdf/files/ Proposals/ GUESS/ guess 01.txt.

[8] Stokes. M, Gnutella2 Specifications Part One,
Available: http://www.gnutella2.com/gnutella2.

[9] Kalogeraki. V, Gunopulos. D and, Zeinalipour-Yazti.
D, “A local search mechanism for peer-to-peer
networks,” in 2002 Proc.11th Conf. Information and
knowledge management, pp. 300-307.

[10] Galstyan. A, Czajkowski. K, and Lerman. K,
“Resource Allocation in the Grid Using
Reinforcement Learning,” in 2004 Proc.3rd Conf.
Autonomous Agents and Multiagent Systems
(AAMAS'04) - Volume 3, pp.1314-1315.

[11] Sabu M. Thampi and Chandra Sekaran. K,
"Autonomous Data Replication Using Q-Learning for
Unstructured P2P Networks," in 2007 Proc.6th Conf.
IEEE International Symposium on Network
Computing and Applications (NCA 2007), pp. 311-
317.

[12] Ross. C and Dunne, “Using mobile agents for
network resource discovery in peer-to-peer
networks,” in ACM SIGecom Exchanges Volume 2,
Summer 2001, pp 1-9.

Sabu M. Thampi received the B.E. and M.E. degrees, from
Madurai Kamaraj University in 1992 and 2001, respectively. He
also did M.S in Systems & Information at BITS, Pilani. He is an
Assistant Professor in the Department of Computer Science &
Engineering, L.B.S College of Engineering, Kannur University
since 2001. His research interest includes mobile agents,
steganography, and distributed computing. He has several
publications in International and National proceedings.

Chandra Sekaran. K is a Professor of Computer Engineering at
National Institute of Technology Karnataka, India. His research
includes Computer Networks, Dependable Network /Distributed
computing, Autonomic computing and Community Informatics.
He has 20 years of teaching and research and one year Industry
experience. He has published more than 86 publications in
International and National proceedings and authored two books.
He was the Organizing Chair of 14th International Conference
ADCOM 2006, International Symposium on Ad Hoc and
Ubiquitous Computing ISAHUC'06. He also served as a member
of PC in various International conferences, reviewer in many
Journals. He has supervised sponsored projects and IT consultant
to some corporates in this region of India.

