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Summary 
In this paper we propose a Reduced-Complexity Differential 
Evolution (DE) for localization of multi-hop sensor networks. In 
relatively smaller population size of DE algorithm (Np<50). We 
study scenarios where the nodes do not receive signal from 
anchors directly (i.e., multi-hop). The nodes with unknown 
positions use a new algorithm based on non-linear least squares 
(NLLS) method for deriving their estimated location. We 
consider the problem of minimizing a cost function based on 
distance measurements between these nodes and some definite 
anchors. We use Reduced Complexity Differential Evolution 
(RCDE) to find the global minimum of this cost function which 
corresponds to the nodes estimated coordinates. The main 
characteristic of the DE algorithm is that it can get close to the 
optimal solution with low complexity, if the steps of the 
algorithm are designed appropriately. In this paper we show that 
the DE optimization method can be used in ad hoc sensor 
networks to estimate the location of nodes accurately. The 
performance in terms of mean localization squared error is 
evaluated by simulations for different scenarios. The sensitivity 
of the estimated position to the uncertainty on distance 
measurements, radio transmission, and irregular area are also 
evaluated.  
 
Key words: Wireless Sensor Networks, Localization, Non-Linear 
Least Squares, Optimization, Differential Evolution (DE). 

1. Introduction 

Wireless sensor networks have recently come into 
prominence because they hold the potential to 
revolutionize many segments of our economy and our 
lives. Many novel applications are emerging: 
environmental monitoring, precision agriculture, health 
monitoring, smart building failure detection, target 
tracking and personal localization, etc. In these 
applications, it is necessary to accurately orient the nodes 
with respect to a global coordinate system in order to 
report data that is geographically meaningful [1]. Since 
gathering physical measurements without attaching 
coordinates to the collected data might be of little use, 
“sensing data without knowing the sensor location is 
meaningless” [2]. Further, knowledge of sensor location 
can be used to facilitate network functions such as packet 
routing [3], and collaborative signal processing [4]. 

This paper presents a new technique for sensor 
localization. We propose to use Differential Evolution 
algorithm technique to optimize a cost function in order to 
estimate the location of the sensor nodes. Initially all 
nodes, except the anchors, are assigned a random estimate 
of the location. A cost function, which represents the 
quantitative measure of the "goodness" of the coordinate 
estimate, was formulated using the estimated coordinates 
of the nodes and their measured distances with respect to 
anchors. Differential Evolution is used to optimize this 
cost function which corresponds to the estimation of the 
node's coordinate. 

Differential Evolution (DE) is one of the recent 
population-based techniques. DE was invented by K. Price 
and R. Storn in 1995 as an heuristic method for 
minimizing nonlinear and non differentiable continuous 
space functions. DE algorithm is considered as a stochastic 
optimization method minimizing an objective function that 
can model the problem's objectives while incorporating 
constraints. The algorithm mainly has three advantages; 
finding the true global minimum regardless of the initial 
parameter values, fast convergence, and using a few 
control parameters. 

The proposed algorithm for sensor localization is 
implemented in a centralized architecture, where all nodes 
send their measurements to a central station for 
localization.  

The rest of the paper is organized as follows: Section 2 
presents prior work in positioning algorithm for sensor 
networks. Section 3 discusses the design goals of the 
positioning protocol developed, we described in detail the 
Positioning algorithms associated to optimality criteria. 
Differential Evolution for Non-Linear Optimization and 
the used parameter for DE algorithms are given in Section 
4. Section 5 presents simulation; we performed and 
analyze the results for different scenarios, while Section 6 
concludes the paper. 
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2. Related Work 
 
Many positioning systems for sensor networks have been 
proposed in the literature [5] - [8]. In this section, we 
briefly present the most important ones and focus more 
specially on the solutions that use centralized architectures 
that use hop-counts as distances, as they are the most 
closely related to our proposal. All the solutions can be 
broadly classified into two categories: connectivity based 
approaches and measurement based approaches. 
 
2.1 Connectivity based multi-hop localization 
approach’s 
 

Connectivity based (called also "range free") 
localization algorithms use the connectivity information 
[9]. The principle of these algorithms is: a sensor being in 
the transmission range of another sensor defines a 
proximity constraint between both sensors, which can be 
exploited for localization. The GPS-less low cost 
localization system described in [10] is an example of a 
connectivity based system. In this system, a set of 
pre-deployed, location aware reference nodes transmit 
spatially overlapped beacon signals. Other nodes with 
unknown locations can localize themselves at the centroid 
of the reference nodes from which they can receive beacon 
signals. The best results are obtained when the nodes are 
arranged in a mesh pattern. 

He et al in [11], proposed a new technique called APIT 
for large sensor localization. The main idea of APIT is to 
divide the whole network into triangular regions among 
anchors, and then to determine the possible position where 
a sensor locates via the aggregation of the two distinct 
triangular regions. Consequently, the position of a sensor 
can be estimated by calculating the center of gravity of the 
intersections of the triangles where a sensor resides. 

A method inspired by a data analysis technique, 
multidimensional scaling (MDS), is proposed in [12]. The 
algorithm, called MDS-MAP starts with rough estimations 
of distance between each pair of sensors by means of the 
all-pairs shortest-paths algorithm. Classical MDS is then 
used to derive node locations. 

 
2.2 Distance-based multi-hop localization approaches 
 

The core of distance-based localization algorithms is the 
use of inter-sensor distance measurements in a sensor 
network to locate the entire based on the approach of 
processing the individual inter-sensor distance data, 
distance-based localization algorithms can be considered 
in two main classes: centralized algorithms and distributed 
algorithms. Distributed algorithms rely on self localization 
of each node in the sensor network, while centralized 
algorithms use a single central processor to collect all the 

individual inter-sensor distance data and produce a map of 
the entire sensor network. 
 
2.2.1 Distributed algorithms 
 

To estimate the node-anchor distance, many researchers 
have found "hop count" to be a useful way to compute 
inter-node distances1. In the DV-hop method developed by 
Niculescu and Nath [13], the anchor propagates their 
location information inside the network. Each node 
forwards the anchor information to its neighbours and 
maintains a table with the anchor ID, location, and hop 
distance. When an anchor receives one of the propagated 
packets with the position of a different anchors. It uses that 
information to calculate the average hop-distance between 
the two anchors. The computed average hop distance is 
broadcasted back into the network as a correction to 
previously know hop distances. The nodes that receive this 
message use the average hop distances to each of the 
anchors to estimate their distances to the anchors. 

This information is then used to triangulate the node 
location [5]. The DV-distance approach is similar to 
DV-hop but uses the measured distances between two 
adjacents nodes [13]. 

The Euclidean propagation method uses the true 
distance measurement to an anchor. In this case, nodes that 
have at least two distance measurements to nodes that have 
distance estimates to an anchor can use simple 
trigonometric relationships to estimate their locations. 
Another approach described in [14] uses an algorithm 
similar to DV-Hop called Hop-TERRAIN in combination 
with a least squares refinement. 
 
2.2.2 Centralized algorithms 
 

Various techniques have been developed for designing 
centralized localization. Most of these methods are based 
on minimizing some global error functions (called 
objective function), which can be different when the model 
of uncertainty changes. Depending on the kind of 
optimization problem being formulated, the characteristic 
and computation complexity varies. For example, the 
maximum likelihood estimation for sensor network 
localization problem is a non-convex optimization 
problem [15]. In fact, most previous approaches adopt 
global optimization techniques such as non-linear least 
square methods. 

An alternate approach, called the semi-definite 
programming (SDP) method has been proposed for sensor 
localization [16]. In [16] the distance-based sensor 
network localization problem is formulated in a quadratic 
form and solved using SDP; and in [15] the result in [16] 

                                                        
1 The transmission range of each node is limited by energy constraint. 
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is improved using a gradient search procedure to fine-tune 
the initial solution obtained using SDP. 

The stochastic optimization approach suggests an 
alternative formulation and solution of the distance-based 
localization problem using combinatorial optimization 
notions and tools. The main tool used in this approach is 
the simulated annealing (SA) technique [17], which is a 
generalization of the well known Monte Carlo method in 
combinatorial optimization. One particular property of the 
SA method is its robustness against converging to a false 
local minimum. 

In this paper we show that the reduced-complexity 
Differential Evolution optimization method can be used in 
ad hoc sensor networks to estimate the location of nodes 
accurately. 

 

3 Positioning algorithms associated to 
optimality criteria 

 
The algorithm presented here creates a virtual 

coordinate system for sensor networks. We consider a 
static2, random network with no isolated nodes3 (Fig. 2). 
For each node, we call neighbours the set of nodes within 
its transmission range. To improve the accuracy of 
estimation, we use different number of anchor percentage. 

In practice a popular method for estimating node 
location is using the method of non-linear least squares 
(NLLS). This approach assumes that the node located at 

),( yx calculate a relative distance form different anchors 

by multi-hop. These M  anchors are located at 

),(),,(),,( 2211 MM yxyxyx L As a performance 

measure we consider the function: 
22 )ˆ()ˆ()( yyxxdzf iiii -+--= .           (1) 

where 
id  distance from 

thi anchor and )ˆ,ˆ( yxz = . 

Basically, )(zf i
is an estimation of the error between the 

measured distance 
id  of node to 

thi anchor, and the 

estimated distance 22 )ˆ()ˆ( yyxx ii -+- , where )ˆ,ˆ( yx  

represent the estimated location of the node. Hence to 
obtain a location estimate the following cost function is 
used: 

å
=

=
M

i
ii zfzF

1

22 )()( a .          (2) 

where is the weight which may reflect the 
thi  mea- 

surement distance accuracy. For our analysis we propose 
that this parameter is inversely proportional to the number 

                                                        
2 The nodes can be mobile; in this case the process of localization must be 
brought up to date in a regular way. 
3 If node is isolated from network it is impossible to locate it. 

 

of hop ( hopN ) between node and any anchor. In other 

word, we penalize the distance measurement where the 
number of hop is great, the evident explication that the 

error measurement propagate with hopN .  

 Other objective function )(zF  can be formed replacing, 

for example, )(2 zf i
 with |)(| zf i

. However, these 

methods usually do not perform as well as minimizing the 
sum of squares [18]. 

The estimated location of node is obtained by 

minimizing the cost function )(zF  given in (2). To 

determinate the estimated location many algorithms have 
been developed using others objectives functions. For 
example, Cheng et al [19] use Gauss-Newton method for 
sensor positioning. Each sensor updates its estimated 
location by computing the Gauss-Newton step for a local 
cost function and choosing a proper step length. Then it 
transmits the updated estimate to all the neighbouring 
sensors. In [20], an iterative non-linear least-squares 
method is proposed to estimate sensor locations. 

The gradient-based algorithms can also be employed for 
position estimation. One is the Davidon-Fletcher-Powell 
(DFP) Quasi-Newton algorithm [21] which has been used 
in the UWB precision assets location system developed by 
Multispectral Solution, Inc [22]. 
   In this paper we use stochastic research based on 
Reduced-Complexity Differential Evolution (will be 
described in the next section) to find global minima of 
model (2) (Fig. 1). It should be noted that this 
least-squares approach is statistically more justifiable that 
the usual ad hoc procedure of finding intersection of 
multiple circles or ellipse and then using least-squares 
method on the reduced intersection data (see Fig. 2). This 
is because the estimated distances using DV-distance are 
always greater than the true distance; also an additive error 
caused by inter-nodes error distance measurements is 
collapsed the estimated distance.  

 

 
Figure1: Plot of Cost Function F(z) for Radiolocation Illustrating Global 

Minima (Normalized log(F(z))). 
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Fig. 2: Ambiguity in localization, as all the circles do not intersect at one 

point (shaded region). 
 

4 Differential Evolution for Non-Linear 
Optimization 

 
Differential Evolution (DE) is one of the recent 

population-based techniques. DE was invented by K. Price 
and R. Storn in 1995 as an heuristic method for 
minimizing nonlinear and non differentiable continuous 
space functions. DE algorithm is considered as a stochastic 
optimization method minimizing an objective function that 
can model the problem's objectives while incorporating 
constraints. The algorithm mainly has three advantages; 
finding the true global minimum regardless of the initial 
parameter values, fast convergence, and using a few 
control parameters. 

The DE algorithm is a population based algorithm like 
genetic algorithms using the similar operators; crossover, 
mutation and selection. The main difference in 
constructing better solutions is that genetic algorithms rely 
on crossover while DE relies on mutation operation. This 
main operation is based on the differences of randomly 
sampled pairs of solutions in the population. Unlike the 
binary chromosomes typical of genetic algorithms, an 
individual in DE is generally comprised of a real-valued 
chromosome. 

DE is a simple evolutionary algorithm that creates new 
candidate solutions by combining the parent individual and 
several other individuals of the same population. A 
candidate replaces the parent only if it has better fitness. 
This is a rather greedy selection scheme that often 
outperforms traditional EAs. 

The algorithm uses mutation operation as a search 
mechanism and selection operation to direct the search 
toward the prospective regions in the search space. The 
DE algorithm also uses a non-uniform crossover that can 
take child vector parameters from one parent more often 
than it does from others. By using the components of the 
existing population members to construct trial vectors, the 
recombination (crossover) operator efficiently shuffles 

information about successful combinations, enabling the 
search for a better solution space. 

An optimization task consisting of D parameters can be 
represented by a D-dimensional vector. In DE, a 
population of Np solution vectors is randomly created at 
the start. This population is successfully improved by 
applying mutation, crossover and selection operators. The 
main steps of the DE algorithm are given in algorithm 1. 

 
Algorithm. 1: Outline of DE’s main procedure 

 
%Differential Evolution 
1: Evaluate the initial population P of random individuals. 
2: While stopping criterion not met, do: 
  2.1. For each individual Pi (i = 1, . . ., popSize) repeat: 
     (a) Create candidate C from parent Pi. 
     (b) Evaluate the candidate. 
     (c) If the candidate is better than the parent, the candidate replaces 
        the parent.  
        Otherwise, the candidate is discarded. 
  2.2. Randomly enumerate the individuals in P. 

 
Although several DE algorithms exist we only describe 
one version of the algorithm based on the DE/rand/1/bin 
scheme [23]. The different variants of the DE algorithm 
are described using the shorthand DE/x/y/z, where x 
specifies how the base vector to be perturbed is chosen 
(rand if it is randomly selected or best if the best individual 
is selected), y is the number of difference vectors used, 
and z denotes the crossover scheme used (bin for crossover 
based on independent binominal experiments, and exp for 
exponential crossover). DE/rand/1/bin version is used in 
our simulation (described in Algorithm. 2). 
 
Algorithm. 2: Outline of the candidate creation in scheme DE/rand/1/bin 

 
%Candidate creation 
Input: Parent Pi 
1: Randomly select three individuals Pi1, Pi2, Pi3 from P, 
2: Calculate candidate C as C = Pi1 + F. (Pi2 − Pi3), where F is a 
scaling factor. 
3: Modify the candidate by binary crossover with the parent using    
crossover probability CR. 
Output: Candidate C 

 

   At the start of this algorithm, a population of N , d- 

dimensional vectors ),...,,( 21 idiij xxxX = , nj ,...,1= , 

is randomly initialised and evaluated using a fitness 
function f. During the search process, each individual ( j ) 

is iteratively refined. The modification process has three 
steps: 

1) Create a variant solution, using randomly selected 
members of the population. 

2) Create a trial solution, by combining the variant 
solution with j (crossover step). 

3) Perform a selection process to determine whether 
the trial solution replaces j in the population. 
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Under the mutation operator, for each vector )(tX j , a 

variant solution )1( +tV j  is obtained using equation: 

))()(()()1( tXtXFtXtV lkmj -+=+          (3) 

where, Nmlk ,...,1,, Î are mutually different, randomly 

selected indices, and all the indices j¹  ( )(tX m is 

referred to as the base vector, and )()( tXtX lk - is 

referred to as a difference vector). Variants on this step 
include the use of more than three individuals from the 
population, and/or the inclusion of the highest-fitness point 
in the population as one of these individuals [21]. The 

difference between vectors )(tX k  and )(tX l  is 

multiplied by a scaling parameter F . The scaling factor 

controls the amplification of the difference between )(tX k  

and )(tX l , and is used to avoid stagnation of the search 

process. 
Following the creation of the variant solution, a trial 

solution ),...,,()1( 21 jdjjj uuutU =+  is obtained 

using: 

î
í
ì

¹>

=£
=+

)irnbr(jCRrandX

)irnbr(jCRrandV
tU

jn

jn

jn )(and)(if,

;)(or)(if,
)1(         (4) 

where n=1,2,…,d, rand is drawn from a uniform random 
number generator in the range (0,1), CR is the 
user-specified crossover constant from the range (0,1), and 
rnbr(i) is a randomly chosen index chosen from the range  
(1,2,…, n). 
    The random index is used to ensure that the trial 

solution differs by at least one component from )(tX i . The 

resulting trial solution replaces its predecessor, if it has 
higher fitness (a form of selection), otherwise the 
predecessor survives unchanged into the next iteration of 
the algorithm (equation 5). 
 

î
í
ì +<++

=+
otherwise),(

));1(())1((if),1(
)1(

tX

tXftUftU
tX

i

iii

i

          (5) 

Sometimes, the newly created candidate falls out of 
bounds of the variable space. In such cases, many 
approaches of constraint handling are possible. We address 
this problem by simply replacing the candidate value 
violating the boundary constraints with the closest 
boundary value. In this way, the candidate becomes 
feasible by making as few alterations to it as possible. 
Moreover, this approach does not require the construction 
of a new candidate. 
 Generally, the DE algorithm has three parameters, the 
population size (Np), the crossover rate (CR), and the 
scaling factor (F). Higher values of CR tend to produce 
faster convergence of the population of solutions. For our 
simulation Np=50, F=0.8, and CR=0.8 were taken. 

5 Simulations 
 
   In this section we state and solve (via simulations) the 
location problem for the two-dimensional case. We assume 
that the sensors are deployed randomly over a 
two-dimensional monitored area (i.e., on the ground). 
However, we can be easily extended to three-dimensional 

space. The N  nodes are randomly placed monitored area. 

However the M anchors are placed at known location.  
The anchors are necessary prerequisite to locate a network 
in a global coordinate system. Their placement can often 
have a significant impact on localization [12]. 
  In most cases the nodes do not receive signal from 
anchors directly (hence no direct distance estimation). 
However, many groups have found hop count to be a 
useful way to compute inter-node distances. Hence, we 
will use multi-hop to estimate the distance between any 
node and anchors. 
  The local connectivity information provided by the 
radio defines an unweighted graph, where the vertices are 
sensor nodes, and edges represent direct radio links 

between nodes. The hop count ( ijh ) between sensor nodes 

is and js  is then defined as the length of the shortest 

path in the graph between is  and js . Naively, if the hop 

count between is and js is ijh then the distance between 

is and js , ijd , is less than ijhR ´ , where R  is again the 

maximum radio range. If the distance between two nodes 

is less than radio range R , a noisy measurement of the 
distance is given by [15]: 
 

)1(ˆ h´+= randndd ijij
.           (6) 

 
22 )()( jijiij yyxxd -+-= .           (7) 

 
where ),( ii yx , and ),( jj yx  are the coordinates of two 

(adjacents) different nodes, ijd , ijd̂ are the true and 

measured distance respectively, h  (called noise factor) is 

a given number related to the accuracy of the distance 
measurement and randn is a standard normal random 
variable with zero mean and unit variance. 
  For estimate distance between node and anchor we use 
Dijkstra's algorithm to find this shortest path [24]. Hence, 
the estimated distance between any node and the all 

anchors is the sum of estimated distance ijd  between all 

inter node ( i and j ) along the shortest path. 

  The proposed algorithm should be run in centralized 
architecture. We suppose that the central node is equipped 
with large resources (i.e., memory, computation, power...) 
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to be able to make all computation. Since the proposed 
algorithm is centralized, each node needs to communicate 
the list of its radio neighbours to the central unit in charge of 
the computation. This information is necessary first to build 

the distance matrix CD  from node i  to anchor j  with 

elements given by { } ),(, jidistd jic = , and the hop 

-count between each nodes of network and anchors, Then 
for each node the central node sort the shortest path to the 
nearest anchors (four for our simulation) and it’s the 

distance corresponding to this path.  The matrix CD  and 

number of hop are the only input parameter required by the 
localization algorithm. Algorithm 3 contains the 
pseudo-code of the localization scheme.  
 

Algorithm. 3: DE Based Localization 
 
% Initialization 
1: noOfNodes, noOfAnchors, NoiseFactor, Radio,  
2: DE parameters (NP , Iter, F, C). 
% Main Loop 
3: for all nodes noOfNodes do 

4:     =),( nn yx  random () 

5: end for 
6: for all Anchors noOfAnchors do 

7:     =),( mm yx  random () 

8: end for 

9: Input: matrix CD  Distance matrix { } ),(
,

jidistd
jic = , hop 

count ( ia ) to nearest four Anchors  % Using Dijkstra's algorithm 

10: for i = 1: to noOfNode do 
      11:   for Anchors j to four nearest Anchors of i (M=4) do 

12:    22 )ˆ()ˆ()ˆ,ˆ( yyxxdyxf jjji -+--= .  

13:    å
=

=

=
4

1

22 )ˆ,ˆ()ˆ,ˆ(
M

i
iii yxfyxF a  

14:    ))ˆ,ˆ(min(arg]ˆ,ˆ[ yxFyx i=  % Using DE     

algorithms 
     15:   end for 
     16: end for 

 

The estimation location error (%) of positioning algorithm 
was computed as: 
 

%)ˆ()ˆ(
100

1

22å
=

-+-
´

=
N

i
iiii yyxx

RN
err           (8) 

 
First, in Fig. 3, we show an example of 400 nodes 

randomly deployed in a regular square area 100100´ . The 
anchors are represented by a blue square. First, when no 
noise is introduced and only one-hop is used to estimate 
the distance, which is far from reality (an ideal situation). 
It can be seen that the proposed algorithms converge to the 
nearest position of each node (the estimated positions are 
represented by a red star). However an exact localization is 

impossible because of measurement noise and 
imperfection of multi-hop distance estimations.  
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Fig. 3: Estimation results based on RCDE using distances between 

neighbors for noise factor = 0%, Ratio transmission =60. The 20 blue 
nodes are anchors; remaining nodes are non-anchors. 

 
Now for the same problem we suppose that the 

measured distance between to adjacent node is inaccurate 

(which is more realistic) , Hence for each ijd below the 

radio range is collapsed by a Gaussian noise with mean 
zero and variance equal to 5 % of the actual distance 
( 05.0=h ). The transmission range is fixed to 10. In this 

case, the estimation positions are represented by a red star 
and an error offset line has been drawn between the true and 
the estimated locations (Fig. 4. (a)). 

  

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

X-axis

Y
-a

x
is

 
Fig. 4: Estimation results based on RCGA using distances between 

neighbors for N=200, Noise factor = 5%, Transmission Range =10.  The 
20 blue nodes are anchors; the original location of node is in black circle, 

the estimate locations are presented by red. 
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5.2 Performance under different transmission ranges 
 

The connectivity (witch mean the number of neighbors 
per node) depends on the number of nodes per area (node 
density) and their radio transmission range.  

In the sensor network if the transmission power of a 
node is increased, it will typically achieve a higher 
transmission range and therefore reach more other nodes 
via a direct link. On the other hand, if we make the 
transmission power of a node very low, the node may 
become isolated without any link to other nodes. Higher 
transmission range will cause more routing overhead and 
more interference to other nodes and therefore reduces the 
overall capacity of the network. 

In practice, increasing the transmission range make the 
localization result more satisfactory. A relationship of 
transmission range versus connectivity is given in Table .1. 
These values are the calculated from 100 random 
configurations based on deployment of 200 nodes. 

 
Table 1: Radio transmission versus connectivity averaged from 100 

random configurations, with N=200 nodes. 
 

Transmission 
Range 

12 14 16 18 20 

Min 8 11 14 17 21 
Average 9.11 11.85 14.89 18.26 22.07 
Max 10 13 16 20 24 

 
Figure. 5 (a) shows the results for different transmission 
ranges, for different noise factor. As we would expect, the 
accuracy is higher when the transmission range is larger, 
which is higher network density.  
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Fig. 5 (a): Variation of estimation error (RMSE) with transmission range 
for N=200 node, and 5 % of anchors and with 100 random realizations. 

 
As the average connectivity level increases, the variation 
error decreases (Fig 5. (b)). Indeed, this shows that dense 
networks can provide more consistent average error values. 
This is due to the fact that dense networks have smaller 
multi-hop regions (two and more), which in turn lead to 

more accurate shortest path distances. These distances 
therefore improve the RCDE positing algorithm results, 
since more accurate distances translate into more accurate 
position estimation. However, since the transmission range 
is determined by transmission power, there is a tradeoff 
between energy-efficiency and localization accuracy. 
5.3 Performance under different percentage of 
anchors 
 
Given a sensor network with a few anchors; most nodes 
with unknown position should eventually drive good 
estimates of their positions. Locations near anchor and /or 
more near form many anchors should be most accurate, 
but the positioning accuracy should decline gracefully for 
more remote nodes.  
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Fig. 5 (b): Variation of estimation error (RMSE) with connectivity for 
N=200 node, and 5 % of anchors and with 100 random realizations. 
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Fig. 6: Variation of estimation error (RMSE) with number of anchor 

randomly placed for N=200 node, Radio range R=15 for different noise 
factor and with 100 random realizations.  

 
In practice, increasing the number of anchors makes 
localization result more satisfactory, but this also implies 
growing of the network cost.  However it should be noted 
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that the localization depends closely with the type of 
desired application. 

Figure 6 presents the average of estimation error as 
function of percentage anchor in networks. We see that 
whatever the noise error, increasing the percentage of 
anchors reduces the RMSD of error location. This 
reduction is, however, more important for high anchor 
percentage. 

 
5.4 Performance under irregular area 
 

In order to validate the performance of the proposed 
algorithm, we evaluate the localization algorithms under 
two irregular areas resulting from the presence of large 
obstacles in the region of the deployment. The first one is 
random C-shaped networks the second one is more 
complicated W-shaped maps, the both area are called soft 
and hard irregular area (Fig. 7 (a), and (b)).  
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Fig. 7 (a): Example of random nodes deployment in “soft” irregular area 

(C-shaped maps), 20 blue nodes are anchors; remaining nodes (200) 
non-anchors. 
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Fig. 7 (b): Example of random nodes deployment in “hard” irregular area, 
(W-shaped maps), 20 blue nodes are anchors; remaining nodes (200) 

non-anchors. 

An example of estimation results based on RCGA in 
“soft” irregular area (C-shaped maps) for one 
configuration is shown in Fig. 8. Twenty blue nodes are 
anchors; remaining nodes (i.e., 200) are non-anchors, 
hence 10% anchor fraction is considered. The noise factor 
is equal to 5% and transmission range is fixed at 15.  
Discrepancies between the original and estimated nodes 
are indicated by red solid lines. 

Figure. 9 shows the variation of estimation error 
averaged from 100 random realizations by increasing the 
measurement noise while varying the number of anchor 
5 % and 10 % for both C-shaped maps and W-shaped 
maps irregular areas, where the radio range is fixed at 15. 
We can see that in both case the variation of estimation 
error increase while the of range error (noise factor) 
increase, however, the variation of estimation error for 
W-shaped maps is more sensitive to error range than 
C-shaped maps. 
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Fig. 8: Estimation results based on RCGA in “soft” irregular area 

(C-shaped maps) for one configuration. 
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Fig. 9: Variation of RM estimation error (RMSE) with noise factor (from 
2 to 8 %) for different number of anchor randomly placed, and for N=200 

nodes, and R=15, 100 random realizations. 
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5.7 Comparison with others centralized methods 
 

As mentioned above, the centralized algorithms for 
localization in wireless sensor has been already 
investigated in literature. However, is quite interesting to 
compare the performances of the proposed RCDE based 
localization algorithm with other centralized algorithms. 
The most cited centralized algorithm is Semidefinite 
Programming. Thus we compare the performance of 
RCDE algorithm with SDP results. 

The simulations were performed in a sensor network of 
200 nodes randomly distributed in a square of size. the 
noise factor is taken to 10%. The results of these 
simulations were compared with the ones obtained using 
the SDP approach with gradient search improvement [15], 
[16]. 
 In Fig. 10, where the location estimation error is 
normalized by the transmission range while varying the 
percentage of anchor form 5 to 10%. All four 
combinations are quite sensitive to the radio range 
(connectivity). The sensitivity to the anchor fraction is 
quite similar. More anchors ease the localization task, 
especially for SDP. However RCDE algorithm has better 
accuracy than the SDP algorithm with gradient search 
particularly for low radio transmission and/or few anchors. 
For example, RCDE gives 72.66% of estimation error with 
5% of anchor and a minimum connectivity of 8 nodes, 
while SDP gives 185.44%, this error was reduced to 30.2% 
for 10% of anchor fraction for RCDE versus 55.44% for 
SDP. This is an expected result of robustness of DE against 
convergence to false local minima compared to SDP; 
however increasing transmission ranges (and/or anchor 
fraction) the difference of error between both techniques 
decreases to gives approximately the same performances.  

12 14 16 18
0

40

80

120

160

200

 Transmission Range

E
rr

o
r 

(%
 T

ra
n
s
m

is
s
io

n
 R

a
n
g
e
)

RCDE - Anchor= 5%

RCDE - Anchor= 10%

SDP - Anchor= 5%

SDP - Anchor= 10%

 
Fig. 10: Variation of estimation error (RMSE) results of RCDE and SDP 
algorithms, N= 200-node random uniform networks and 10 % of Noise 

Factor. 

Finally, we compare RCDE with DV-hop and 
DV-distance using a standard least-squares approach. 
These last two algorithms are generally executed in 

distributed manner. However, for a legal comparison 
between the all techniques, we suppose that the DV-hop 
and DV-distance algorithms are also executed in 
centralised architecture. 

The results of DV-hop and DV-distance are quite similar 
to the ones in [13]. While RCDE and DV-distance using 
local distance measures with 5% errors, DV-hop use only 
connectivity information. Since it (i.e., DV-hop) does not 
use range measurements, it is completely insensitive to this 
source of errors (see Section 2).  

The results are shown in Figure 11 the RCDE algorithm 
is consistently much better than DV-hop and DV-distance. 
The RCDE’s variations of estimation errors are just 
smaller of those estimated using a classical DV-distance 
when the transmission range is low (i.e., connectivity less 
than 8 nodes), RCDE’s algorithm provides 55% of 
estimated error versus at least 150% for DV-hop and 
DV-distance. However it is worth noting that the 
computational cost of the DE approach is relatively higher 
than both algorithms. 
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Fig. 11: Comparison of RCGA, DV-hop, and DV-distance on 200-node 

random uniform networks with 5% errors. 5% of anchor fraction. 

 
6. Conclusion and future works 
 

Wireless sensor network localization has attracted 
significant research interest. This interest is expected to 
grow further with the proliferation of wireless sensor 
network application. This paper describes a new 
centralized algorithm for WSN localization based on 
centralized Differential Evolution optimization.  

Indeed, using the approach based a nonlinear 
least-squares optimization (RCDE) is statistically more 
justifiable that the usual procedure of finding intersection 
circles or hyperbolas (i.e., DV-distance). This approach 
becomes difficult if the hyperbolas or circles do not 
intersect at a point (i.e., due to measurement errors). 
Starting from this point, we have derivate an algorithm for 
sensor localization based on measurement approach 
between two adjacent nodes, multi-hop distance estimation 
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and number of hop between any node and some anchors. 
We consider the problem of minimizing a cost function 
based on above parameters.  

We use reduced complexity Differential Evolution form 
number of population and iteration point of view, to find 
the global minimum of this cost function which 
corresponds to the nodes estimated coordinates. 

The performance in terms of mean localization squared 
error is evaluated by simulations for different scenarios. 
The sensitivity of the estimated position to the uncertainty 
on distance measurements, radio transmission, number of 
anchors, tested in regular and irregular areas are evaluated. 
We have confirmed via simulations that DE based 
algorithm gives better accuracy for sensor localization in 
particular for low noise, high radio range and with more 
anchors. 

Several directions for future work present themselves. 
First, we would like to make analysis of the performance 
under irregular radio transmission caused by devices and 
the propagation media (sending power, antenna gains, 
receiver sensitivity…). This assumption is more realistic 
since each node can use its own power transmission range. 
This analysis is also important since the relationship 
between radio range and accuracy of localization is highly 
correlated. We try also to analyze in more detail the impact 
of network connectivity for the localization accuracy and 
the impact of irregular shape area.  
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