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Summary 
The QRS complex is the most prominent wave component within 
the electrocardiogram. It reflects the electrical activity of heart 
during the ventricular contraction and the time of its occurrence. 
Its morphology provides information about the current state of 
the heart. The identification of QRS-complexes forms the basis 
for almost all automated ECG analysis algorithms. The presented 
algorithm employs a modified definition of slope, of ECG signal, 
as the feature for detection of QRS. A sequence of 
transformations of the filtered and baseline drift corrected ECG 
signal is used for extraction of a new modified slope-feature. 
Two feature-components are combined to derive the final QRS-
feature signal. Multiple quantized amplitude thresholds are 
employed for distinguishing QRS-complexes from non-QRS 
regions of the ECG waveform. An adequate amplitude threshold 
is automatically selected by the presented algorithm and is 
utilized for delineating the QRS-complexes. A QRS detection 
rate of 98.56% with false positive and false negative percentage 
of 0.82% and 1.44% has been reported. 
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1. Introduction 

A standard scalar electrocardiogram is shown in fig.1. 
It consists of P-wave, PR-interval, PR-segment, QRS-
complex, ST-segment, ST-interval and T-wave. The P-
wave represents atrial depolarization, the QRS-complex 
represents left ventricular depolarization and the T-wave 
represents the left ventricular repolarization.  

Various methods, for QRS detection, are found in 
literature using slope or derivative of ECG signal [1,2], 
filters [3-9], transforms [10-14], pattern recognition 
[15,16], Artificial Neural Networks [17,18], Genetic 
Algorithm [19], Hidden Markov Model [20], morphology 
operators [21,22], and Support Vector Machines [23-26]. 
The algorithm reported in this paper uses new modified 
slope feature and it overcomes the limitations and 
drawbacks of slope based QRS detection algorithms 
reported in the literature [1,2].  
 

 
Fig.1  Standard scalar electrocardiogram 

In the presented algorithm, filtering procedure based 
on moving averages [27] provides smooth spike-free ECG 
signal, which is suitable for slope feature extraction. 
Reduction of baseline drift is desirable for implementing 
amplitude-threshold strategy. In this approach, first of all 
the constituent components of the required feature signal 
are derived by using a number of transformations on 
filtered and baseline corrected ECG signal and then 
extracting the proposed slope feature from these 
transformed signals. Two constituent components are then 
combined and refined to yield the desired feature signal FQ. 
The basis of identifying QRS complexes is the amplitude 
threshold of the QRS-feature signal FQ.  

2. Procedure  

The following steps are taken in the presented 
algorithm for the detection of QRS-complexes:  
1. Extract slope feature from the filtered and drift 

corrected ECG signal, by processing and transforming 
it, in such a way that the extracted feature signal is 
prominently enhanced in QRS region and suppressed 
in non-QRS region.  

2. Detect the QRS-complexes by using an adequate value 
of amplitude threshold of the feature signal FQ as 
detailed in the following steps.  
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3. Normalize the feature signal, by dividing it by its 
maximum peak amplitude so that the maximum of the 
peak value in the entire sample range is referred to as 1, 
whatever may be the absolute signal peak amplitude. 

4. Discard the normalized feature signal below 5% 
amplitude to ensure the exclusion of small noise that 
may have been left during filtering. This elimination 
ensures a low value of False Positive (FP) detections. 
Wherever the amplitude of the remaining normalized 
feature signal is above 5% it is marked as QRS 
candidate using rectangular marking pulses CQ.  

5. Presented algorithm performs the task of the 
elimination of weak QRS-candidates on the basis of 
multiple quantized amplitude-thresholds for the feature 
signal peak amplitude. If the peak amplitude of the 
candidate exceeds the threshold it is delineated as 
QRS-complexes, otherwise, the algorithm eliminates it 
by reducing the candidate marking pulse amplitude to 
zero.  

6. In the presented algorithm, QRS-complexes are 
simultaneously detected for 14 quantized amplitude-
thresholds, named as t21, t24, t27, t30, t33, t36, t39, 
t42, t45, t48, t51, t54, t57 and t60 corresponding to 
21%, 24%, 27%, 30%, 33%, 36%, 39%, 42%, 45%, 
48%, 51%, 54%, 57% and 60% proportion, of the 
maximum value of the normalized amplitude of the 
QRS-feature signal FQ respectively. The QRS detection 
results corresponding to each of these thresholds are 
automatically tabulated, in the lead-wise order, by the 
algorithm. A range of 14 quantized amplitude-
thresholds is chosen so that a large number of 
observations (QRS-detection results) are available for 
statistical computations and thus a higher success rate 
is ensured. The detection with a limited detection rate 
may be achieved by using lesser number of thresholds.  
After obtaining QRS-detection results, for all the 12 

single-leads of a case, the statistical computations are 
performed by the algorithm on the tabulated array of QRS-
detection results. This is a 12 rows and 14 columns array 
automatically tabulated, in the lead-wise order, by the 
algorithm (Table 1). The 12 rows represent lead-wise 
QRS-detection results, and the 14 columns represent 14 
thresholds.  

The median and standard deviation of the QRS-
detection results, of all the 12 single-leads for a case, are 
computed for each of the amplitude threshold of the 
algorithm. When the standard deviation of detections for a 
threshold is zero, the detection is correct and the value of 
the median of detections for that threshold represents the 
correct number of QRS-complexes in that case. Hence the 
correct number of QRS-complexes in a case is 
automatically decided by the algorithm and a reliable 
QRS-detection is achieved.  

Out of multiple quantized amplitude thresholds at least 
one threshold, in most of the cases, correctly detects all the 
QRS-complexes without failing. The results of QRS-
detection, with this particular threshold, are automatically 
selected by the algorithm as final QRS-detection, on the 
basis of zero value of the standard deviation of the 
detection results. This makes the presented algorithm 
virtually adaptive, that is, an adaptive amplitude threshold 
is automatically selected out of many quantized thresholds.  

In the cases, where QRS-detections are correct (or 
standard deviation is zero) for more than one quantized 
threshold, the results of the first threshold (in ascending 
order) are taken as the final detection. Hence, the 
presented algorithm may be named as adaptive quantized 
amplitude threshold strategy or simply adaptive threshold 
strategy, where the adaptive value of the amplitude 
threshold is in steps (quantified) rather than being 
continuous. However, if a zero value of the standard 
deviation of the QRS-detection results is not obtained for 
any threshold for the case under investigation, the 
detections with minimum value of the standard deviation 
among 14 quantized thresholds is automatically selected as 
the final QRS-detection result by the algorithm.  

The present work has been tested on CSE ECG 
database [28], which contains 125 cases of 12-lead 
simultaneously recorded ECG of 10 seconds duration each, 
sampled at a rate of 500 samples/sec. Thus each of the 
1500 (125x12) records has 5000 sampling instants. 

3. Algorithm For Feature-Extraction  

1. Acquire filtered and drift reduced ECG signal S(n), 
(Fig. 2a). 

Where, n = 1, 2, 3, …, 5000,  for 5000 samples of 
ECG signal for each lead of a case under investigation. 

2. Derive transformed signal TS1(n) by squaring the 
signal S(n) at each sampling instant n (Fig. 2b): 
  TS1(n) = S(n) * S(n) ;    n=1, 2, …, 5000         … (1) 

3. Evaluate gradient ‘G1’ of ‘TS1’ by using a 
rectangular sliding window, by the following relation 
(Fig. 2c):  
  G1(n) = TS1max(w) – TS1min(w); 
  n=1, 2, …, 5000               … (2) 

Where, w is a sliding window of 11 sample points’ 
size from (n–5) to (n+5), with center at (n) the nth 
sample point. TS1max is the maximum value of TS1 
signal within this window and TS1min is the minimum 
value of TS1 signal within this window – thereby 
providing the steepest windowed gradient.  

4. Compute filtered value FG1 of the gradient G1 to 
smoothen it (Fig. 2d) by moving averages method 
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with a rectangular sliding window of 11 sample 
points’ size from (n–5) to (n+5), with center at (n): 
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n=1, 2, …, 5000               … (3) 

5. Compute the normalized values of S, TS1, G1 and 
FG1 by dividing their all the sample values by their 
respective maximum peak amplitude so that the 
unipolar values fall between 0 and 1 and the bipolar 
values between –1 and 1. Plot these normalized values 
as seen in Fig. 2. 

6. Derive transformed signal ‘TS2’ by evaluating the 
following sigmoid function at the signal sample points 
(Fig. 3b):  
  TS2(n) = 1 – {2/(e2S(n)+1)};   
  n=1, 2, …, 5000               … (4) 

7. Evaluate gradient ‘G2’ of ‘TS2’ with the method of 
step 3 above (Fig. 3c):  
  G2(n) = TS2max(w) – TS2min(w); 

n=1, 2, …, 5000               … (5) 
8. Filter the gradient values by moving averages method 

to evaluate filtered gradient ‘FG2’ with the method of 
step 4 above (Fig. 3d). 

9. Compute the normalized values of TS2, G2 and FG2 
by dividing all their samples by their respective 
maximum peak amplitude (Fig. 3). 

10. Derive transformed signal ‘TS3’ by multiplying the 
ECG signal ‘S’ with filtered gradient ‘FG2’ (Fig. 4b):  
  TS3(n) = FG2(n) * S(n);    n=1, 2, …, 5000     … (6) 

The advantage of this multiplication can be clearly 
seen in fig. 4(b) that the tall and prominent T-waves 
have almost disappeared with respect to QRS 
complexes. 

11. Evaluate gradient ‘G3’ of ‘TS3’ with the method of 
step 3 above (Fig. 4c):  

G3(n) = TS3max(w) – TS3min(w); 
n=1, 2, …, 5000               … (7) 

12. Filter the gradient values by moving averages method 
to evaluate filtered gradient ‘FG3’ with the method of 
step 4 above (Fig. 4d).  

13. Compute the normalized values of TS3, G3 and FG3 
by dividing all their samples by their respective 
maximum (Fig. 4). 

14. Attain the desired feature signal FQ by using the two 
constituent feature signals, namely, the filtered 
gradients ‘FG1’ and ‘FG3’ (Fig. 5d):   
(a) Derive transformed signal TS4 by adding filtered 

gradients FG1 and FG3: 
TS4(n) = FG1(n) + FG3(n);  n=1, 2, …, 5000    … (8) 

(b) Derive TS4m by applying median correction on 
TS4, that is, shifting TS4 vertically by 
subtracting median value of TS4 from it: 

TS4m(n) = TS4(n) – m;    n=1, 2, …, 5000        … (9) 
Where, m = median(TS4(n)). 
(c) Derive the Pre-final feature signal Pre_FQ by 

normalizing TS4m (Fig. 5c): 
Pre_FQ(n) = TS4m(n)/max(abs(TS4m(n))); 
n=1, 2, …, 5000             … (10) 
 Where, max(abs(TS4m(n))) is the maximum peak 

amplitude of absolute value of TS4m in the entire 
sampling interval from 1 to 5000. This fixes the 
extreme values of amplitude of  Pre_FQ between 
–1 and +1.  

(d) Derive the desired final QRS feature signal FQ by 
retaining the amplitude values of Pre_FQ 
exceeding 5% of its maximum peak amplitude 
and reducing the remaining to zero (Fig. 5f):  

⎢⎣
⎡ >

=
otherwise                0,

0.05  (n)Pre_F  if  (n),Pre_F
(n)F QQ

Q  

 n=1, 2, …, 5000             … (11) 

The signal FQ is the proposed feature signal (fig. 5f) 
employed for identifying the QRS candidates and 
detecting the true QRS-complexes out of these candidates 
within the ECG signal.  

The effect of applying sigmoid function on signal S(n) 
can be seen explicitly in Fig. 3 (b) in the form of the 
Transformed Signal TS2(n):  
(i) It enhances slope of the steepest parts of the signal 

and reduces slope of the remaining parts of the signal 
S(n), where n is the nth sampling instant.  

(ii) According to property of sigmoid function: as S(n) 
approaches to –∞, TS2(n) goes to –1, and as S(n) 
approaches to + ∞, TS2(n) goes to +1. 

As a result, the smaller but sharp and peaky P-waves 
and QRS are enhanced in magnitude as compared to the 
tall T-waves with greater magnitude but not sharp in 
nature, as seen in fig. 3(b).  

4.  Algorithm for QRS-Detection 

1. Demarcate ‘FQ’ by QRS candidate marking pulses CQ. 
of unit amplitude, marking the QRS candidate region, 
using the relation: 

⎢⎣

⎡=
>

otherwise  0,

0.05)(F if  1,
)(C Q

Q
n

n  

 n = 1, 2, …, 5000             … (12) 

Demarcated ‘FQ’ represent candidate QRS complexes. 
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Fig. 2   Normalized values of  (a) Filtered and baseline drift corrected ECG signal S (b) Squared signal TS1 (c) Gradient G1 of TS1 (d) FG1: 

Gradient G1 after filtering – the first constituent component of QRS-feature signal FQ  

 
Fig. 3   Normalized values of  (a) Filtered and baseline drift corrected ECG signal S (b) Transformed signal TS2 by applying sigmoid function on 

signal S (c) G2: Gradient of TS2 (d) FG2: Gradient G2 after filtering – intermediate component of the QRS feature signal FQ 

 
Fig. 4   Normalized values of (a) Filtered and baseline drift corrected ECG signal S (b) Transformed signal TS3: obtained by multiplying TS2 with 

signal S (c) G3: Gradient of TS3 (d) FG3: Gradient G3 after filtering – the second constituent component of the QRS-feature signal FQ 
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Fig. 5   Normalized values of (a) Filtered and baseline drift corrected ECG signal S (b) FG1 – First constituent component of the feature (c) FG3 – Second 

constituent component of the feature (d) Transformed signal TS4: obtained by adding FG1 and FG3 in order to attain FQ (e) Pre_ FQ: The pre-final QRS 
feature signal (f) The pre-final QRS feature signal FQ  

2. Define a range of normalized adaptive amplitude-
thresholds t21, t24, t27, t30, t33, t36, t39, t42, t45, t48, 
t51, t54, t57 and t60 representing 0.21, 0.24, 0.27, 0.30, 
0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.54, 0.57 and 
0.60 fractional proportion of the maximum peak value 
of normalized FQ. Testify for QRS-membership, among 
all QRS-candidates, within each demarcated ‘FQ’.  

3. Taking one threshold at a time, testify the crossing of 
the threshold by the peak value of ‘FQ’ within all the 
QRS-candidate marking pulses CQ in the entire 
sampling duration from 1st to 5000th sampling instants 
as follows:   

if FQ, max(cmp) < t 
DQ(cmp) = 0   else   DQ(cmp) = 1;  

end               
… (13) 

   Here, t = thresholds from t21 to t60 as described 
above 
   cmp = QRS-candidate marking pulses duration from 
CQ_begin to CQ_end, in the sampling range of 1 to 
5000  

   FQ,max(cmp) = maximum value of normalized FQ 
within each marking pulse CQ  
   DQ(cmp) = Detected QRS marking pulse, which is 
nothing but a QRS candidate marking pulse that is 
preserved by assigning ‘1’ if designated threshold is 
crossed; and eliminated by assigning ‘0’ if the 
designated threshold is not crossed by the peak 
amplitude of ‘FQ’ within (cmp).  
The number of adaptive thresholds mentioned above 

may be reduced with some reduction in rate of successful 
QRS-detections but inclusion of all the above thresholds 
help in more reliable automated QRS-detection, based on 
statistical calculations (refer step 5 & 6 of this algorithm).  
4. Demarcate DQ for all the 12 leads of a given case, 

count and list the number of DQ, that is, number of 
QRS detections and compute statistical properties for 
these number of detections for the case:  
(a) Median (m1) and Standard Deviation (sd1) of 

number of QRS detections for all the 12 leads of 
the case 

(b) Median (m2) and Standard Deviation (sd2) of 
medians of QRS detections  
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(c) Median (m3) & Standard Deviation (sd3) of 
standard deviations of QRS detections (that is, 
median & standard deviation of sd1 for t21, t24, ..., 
t60) 

5. Select all the QRS detections, demarcated by QRS-
detection marking pulses DQ of the given case with: 
(a) Minimum value of standard deviation sd1  
(b) The corresponding value of median m1 equal to 

the correct and reliable number of QRS complexes 
QN in that case, evaluated by algorithm (Section 6)  

(c) Demarcate the first (in the order of columns of 
Table 1) column out of these QRS detections with 
QRS Marking Pulses MPQ. That is, the first out of 
many correct QRS detections demarcated by DQ 
are declared as the final QRS detection and the 

corresponding marking pulses are designated as 
MPQ. 

Note: The cases in which the value of both m3 and sd3 are 
zero, in those cases all the QRS detections, for thresholds 
t21, t24, ..., t60, are correct and the following unique 
condition holds good for such cases:  

m1 = m2 =  unambiguous number of QRS complexes 
in that case.              
… (14) 

6. Use these final QRS marking pulses MPQ to delineate 
the given ECG signal. The portions of the ECG signal 
within these marking pulses MPQ are the detected QRS 
complexes with the presented algorithm.  

Table 1   Number of QRS detections, for all the 12 leads of the case MO1_063, and their statistical parameters under each threshold. 

 Column→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14
  Thresholds 

Row Lead ↓ t21 t24 t27 t30 t33 t36 t39 t42 t45 t48 t51 t54 t57 t60
1 L1 9 9 9 9 9 9 9 9 9 9 9 9 9 9
2 L2 18 18 18 18 18 18 17 16 16 15 10 9 9 9
3 L3 9 9 9 9 9 9 9 9 9 9 9 9 9 9
4 aVL 9 9 9 9 9 9 9 9 9 9 9 9 9 9
5 aVR 9 9 9 9 9 9 9 9 9 9 9 9 9 9
6 aVL 9 9 9 9 9 9 9 9 9 9 9 9 9 9
7 V1 9 9 9 9 9 9 9 9 9 9 9 9 9 9
8 V2 9 9 9 9 9 9 9 9 9 9 9 9 9 9
9 V3 9 9 9 9 9 9 9 9 9 9 9 9 9 9
10 V4 9 9 9 9 9 9 9 9 9 9 9 9 9 9
11 V5 9 9 9 9 9 9 9 9 9 9 9 9 9 9
12 V6 9 9 9 9 9 9 9 9 9 9 9 9 9 9
13 Median   m1 9 9 9 9 9 9 9 9 9 9 9 *9 9 9
14 Std. Dev. sd1 2.6 2.6 2.6 2.6 2.6 2.6 2.3 2.0 2.0 1.7 0.3 *0 0 0

 
Fig. 6  Normalized values of  (a) Filtered and baseline drift corrected ECG signal S (b) QRS detection with 21% threshold t21 (c) QRS detection 

with 33% threshold t33 (d) QRS detection with 48% threshold t48 (e) QRS detection with 60% threshold t60 
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5. Algorithm for Computation of Correct 

Number of QRS-Complexes 

1. Compute median m1 and standard deviation sd1 under 
each of the 14 columns of QRS detections already 
tabulated in Table 1.  

2. Compute median m2 and standard deviation sd2 of the 
row containing all m1 values.  

3. Compute median m3 and standard deviation sd3 of the 
row containing all sd1 values.  

4. Compute correct number of QRS complexes QN for a 
given case by applying the following condition:  

        if (sd2 < 1) & (m3 < 1) 
            QN = m2;  
        End                 … (15) 

The number of QRS complexes QN, computed 
automatically by the algorithm were verified manually for 
all the 125 cases of the CSE database dataset-3 and found 
to be correct in cent percent cases. Hence, the automatic 
computation of the number of QRS complexes, for a given 
case, by the algorithm presented in this paper, is correct 
and reliable.  

For this reason, the number of false negative (FN) and 
false positive (FP) computations and therefore the 
performance evaluation of the algorithm are credible.  

6. Automatic Selection of Final QRS-Detection 
Result 

In most of the cases, the QRS-complexes are correctly 
detected by multiple values of thresholds. One out of these 
detections is automatically selected as the final QRS-
detection result, for delineating the detected QRS-
complexes and displaying the delineated result graphically, 
using the following algorithm: 

– Select the row of standard deviations sd1 and compute 
their minimum value 

– Select the median value m1 corresponding to the first 
of these minimum sd1, if this m1 is equal to QN – the 
correct number of QRS-complexes in the case  

– Select all the detected QRS-complexes corresponding 
to its column number, that is, the column with the same 
index number as that of m1 and sd1 in the preceding 
step above – this decides that the final QRS-detection is 
done by which threshold. 

– Designate the corresponding detected QRS marking 
pulses DQ as the final QRS-detection marking pulses 
MPQ. 

7. Case Study 

Fig. 7 shows the QRS detection in presence of tall P-
waves and smaller T-waves. Both the feature signal 
components FG1 and FG3 are a bit larger in P-wave region 
and hence the final feature signal FQ contains considerable 
amplitude in P-wave region. This leads P-waves to be 
considered as potential QRS candidates by the algorithm. 
But finally the tall and prominent P-waves have been 
successfully rejected of their candidature all of the QRS 
complexes are correctly detected by the algorithm.  

8. Analytical Results of QRS Detection 

Table 2 presents combined overall results of final QRS-
detections for the entire CSE library dataset-3 The table 
presents the performance of detections indicating false 
negative (FN), false positive (FP) and true positive (TP) 
detections.  

Two standard parameters of measuring the performance 
of the detection results, namely detection rate (DR) and 
positive predictivity (+P), are also presented in Table 2.  

This can be clearly seen from the table that the false 
negative and false positive percentage is extremely low, 
that is, 1.44% and 0.82% respectively. 
 

 
Table 2  Combined overall results of final QRS-detection for the entire CSE dataset-3 

Actual No. of 
QRS 

complexes 

True 
Positive 

TP 

False 
Negative 

FN 

False 
Positive

FP 

Total
Errors

TE 

Percent
FN 

Percent
FP 

Detection 
Rate 

DR 

Positive 
Predictivity

+P 

17988 17729 259 148 407 1.44% 0.82% 98.56% 99.18% 

DR = TP/(TP+FN),   +P = TP/(TP+FP),   TE = Total Errors = FN + FP 
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Fig. 7 (a)  Filtered and baseline drift corrected ECG signal S  (b) FG1 – First constituent component of the feature  (c) FG3 – Second constituent 
component of the feature  (d) Final QRS feature signal FQ, QRS candidate marking pulse CQ  (e) Finally detected QRS-complexes delineated by 

QRS marking pulse MPQ 

 
9. Conclusion 

The paper presents a derivative based new approach 
for QRS detection in ECG signals. The algorithm reported 
overcomes various shortcomings of the derivative based 
algorithms reported in the literature. It has been tested on 
all leads of 125 cases of CSE ECG library dataset 3 
containing wide varieties of QRS morphologies of normal 
as well as 32 categories of cardiac ailments.  

It has detection rate and positive predictivity of 98.56% 
and 99.18% respectively.  

The information obtained by this method is very useful 
for ECG classification and cardiac diagnosis. This 
information can also serve as an input to a system that 
allows automatic cardiac diagnosis. 
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