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Summary 
In this paper, well-known PSO algorithms reported in the literature 
for solving continuous function optimization problems were 
comparatively evaluated by considering real world data clustering 
problems. Data clustering problems are solved, by considering 
three performance clustering metrics such as TRace Within criteria 
(TRW), Variance Ratio Criteria (VRC) and Marriott Criteria (MC). 
The results obtained by the PSO variants were compared with the 
basic PSO algorithm, Genetic algorithm and Differential evolution 
algorithms. A detailed performance analysis has been carried out to 
study the convergence behavior of the PSO algorithms using run 
length distribution.    
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1. Introduction 

Clustering is a technique that attempts to organize 
unlabeled data objects into clusters or groups of similar 
objects. A cluster is a collection of data objects that are 
similar to one another with in the same cluster and are 
dissimilar to objects in other clusters. Clustering techniques 
have been used in a variety of fields like machine learning, 
artificial intelligence, web mining, image segmentation, life 
science and medicine, earth science, social science and 
economics. A comprehensive review of the state-of-the-art 
clustering methods can be found in Xu and Wunsch, [1]. In 
recent years, due to the increasing computational speed of 
computers, heuristics are used to solve clustering problems.  
Various heuristic algorithms have already been proposed in 
the literature such as Genetic Algorithm (GA), Ant Colony 
Optimization (ACO), Differential Evolution (DE) and 

Particle Swarm Optimization (PSO). Clustering techniques 
based on Evolutionary Computing and Swarm Intelligence 
algorithms have outperformed many classical methods of 
clustering.  

PSO was first introduced to optimize various continuous 
nonlinear functions by Kennedy and Eberhart [2]. PSO 
algorithms have shown to successfully optimize a wide 
range of continuous functions. Many variants of PSO 
algorithms were developed over the years and applied to 
solve the various optimization problems. Literature review 
reveals that only few attempts has been made to solve the 
clustering problem using PSO algorithms and also there is 
no cross comparison among many PSO variants derived 
over the years for solving clustering problems. The 
performance of the well-known PSO algorithms are studied 
with the consideration of three clustering metrics such as 
TRace Within criteria (TRW), Variance Ratio Criteria 
(VRC) and Marriott Criteria (MC) using real world data 
sets. The results are compared with the published results of 
the basic PSO, GA and DE for all the clustering metrics. A 
detailed performance analysis of the PSO algorithms has 
been carried out based on Run Length Distribution (RLD). 

 The remaining part of the paper is organized as follows: 
Section 2 defines the formal clustering problem.  In Section 
3, the basic PSO algorithm and its variants are discussed. 
Section 4 describes the PSO algorithm for data clustering. 
Section 5 presents the benchmark data sets and parameter 
settings used for experimentation. Section 6 presents the 
results obtained by PSO variants. A detailed analysis based 
on Run Length Distribution (RLD) is provided. In Section 
7 some conclusions from this study are reported. 
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2. Data clustering problem formulation 

2.1 Notations Used: 

N  the number of data objects to be clustered. 

D  the dimension of each of the data objects. 

K  the number of clusters . 

O  set of N  data objects to be clustered, where, 

{ }1 2, ,......., NO O O O=
r r r

.   

Each data object is represented as: 

}{ 1 2, .............i i i idO o o o=
r

,   

where, ido  represents value of data i at dimension d. 

C  set of K partitions with data objects assigned to 

each partition { },..............,i KC C C= . 

Z  Cluster centers to which data objects are assigned, 

{ }1 2, ..........., kZ Z Z Z=
r r r

. 

Each cluster center is represented as: 

}{ 1 2, .............i i i idZ z z z=
r

,  

where idz  represents value of cluster i at dimension d. 

Given O  the set of data objects, the goal of partitional 

clustering is to determine a partition { },..............,i KC C  

with the following constraints. 

kC f¹  , }{1,......,k K=  

i jC C fÇ º , where i j¹ , }{1,.....,i K=  and }{1,.....,j K=  

1

K

k
k

C O
=

=U  

1
i i

i iO C
i

Z O
n Î

= å
rr

, where }{1,.....,i K= , in is the number of 

elements belonging to cluster iC . 

In general, the data objects are assigned to clusters based on 
distance measures like Manhattan distance, Euclidean 
distance and Minkowski distance [3]. In our study, the 
objects are assigned to cluster using the Euclidean distance 
measure. Different statistical criteria or fitness measures 
have been proposed in the literature to measure goodness 
of a partition. In this paper, we have considered the fitness 
measures considered by Sandra and Krink [4] for 
comparing partitions generated by different clustering 
algorithms. The various fitness measures considered in this 
paper are as follows: 

Minimization of TRace Within criteria (TRW): This 
criterion is based on pooled within groups scatter matrix W. 
The pooled within scatter matrix W is defined as 

1
KW W
k k

= å =
, where kW is the variance matrix of the 

data object allocated to cluster kC , where }{1,......,k K= .   
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(Vector of the centroid for the cluster kC ).  

Maximization of Variance Ratio Criteria (VRC): This 
criterion is based on pooled within groups scatter matrix W 
and between group scatter matrixes B. The between scatter 
matrix B is defined as  

( )( )
'

1

K k k

k
k

B n O O O O
=

= - -å
ur ur ur ur

,   (2) 

where 
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r
. 

 The total scatter matrix T of N data objects is defined as 

T B W= +  . 

( )( )
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Minimization of Marriott’s Criteria (MC): This 
criterion is based on pooled within groups scatter matrix 
W and total scatter matrix T. 

 
( )( )
( )( )

2
det

det

W
MC K

T
= ´    (4) 

3. Introduction to PSO 

PSO is a population based, cooperative search heuristic 
introduced by Kennedy and Eberhart [2] to find optimal or 
near solutions to an unconstrained optimization problem. 
The ideas that underlie PSO are inspired by the social 
behavior of bird flocking and fish schooling. PSO is an 
iterative method that is based on the search behavior of the 
swarm in a multidimensional space. A particle i  called 

Current, at time step ‘ t ’ has a position vector t

ix
r

 and a 

velocity vector t

iv
r

. The fitness function ‘ f ’determine the 

quality of a particle’s position, i.e., a particle’s position 
represents a solution to the problem being solved. Each 
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particle ‘ i ’ has a vector ip
ur

called Best that represents its 

own best position and has an associated fitness value.  The 

best position, the swarm has visited is stored in a vector g
ur

 

called G-Best. For each particle t

ix
r

 the velocity vector is 

updated according to (5). The particle moves to their new 

position according to (6). For each particle t

ix
r

the objective 

function ‘ f ’ is evaluated. The best position of the particle 

ip
ur

 and global best position g
ur

are updated.  

  ( ) ( )1

1 1 2 2

t t t t

i i i i iv v c r p x c r g x+ = + × - + × -
r r r r r r r r

  (5) 

  1 1t t t

i i ix x v
+ +
= +

r r r
     (6) 

Two constants 1c and 2c  are called cognitive and social 

acceleration coefficients, 1r  and 2r  are two uniformly 

distributed random vectors. The algorithm iterates by 
updating the velocities and positions of the particles until 
the stopping criteria is met. 

3.1 PSO Variants 

Several variations of this basic PSO scheme have been 
proposed in the literature for solving continuous 
optimization problems. Shi and Eberhart [5,6] introduced 
the idea of a time varying inertia weight PSO model. This 
was done to adjust the swarm’s behavior from initial 
exploration of entire search space to exploitation of 
promising regions. Eberhart and Shi [7] proposed another 
inertia weight variation approach in which inertia weight is 
randomly selected according to a uniform distribution in the 
range [0.5, 1]. Clerc and Kennedy [8] introduced the 
constriction factor in PSO to control the convergence 
properties of the particles. The constriction factor is 
multiplied by the entire equation 5 instead of inertia weight 
ω in order to control the overall velocity of the swarm. In 
the Fully Informed Particle Swarm Optimizer proposed by 
Mendes et al. [9], a particle uses information from all its 
topological neighbors rather than the best one to contribute 
to its velocity adjustment. Ratnaweera et al. [10] proposed a 
Self-organizing Hierarchical Particle Swarm Optimizer 
with time varying acceleration coefficients where only the 
social and cognitive part of the particle are considered to 
estimate the new velocity of each particle.  The particles are 
reinitialized when there is stagnation in the search space. 
Janson and Middendorf [11] proposed an Adaptive 
Hierarchical Particle Swarm Optimizer with dynamic 
adaptation of population topology. The topology 
considered is a tree like structure where each node of the 
tree represents a particle. Particles move up or down in the 
hierarchy of the tree depending on its solution quality. 
Recently, Chatterjee and Siarry [12] have proposed a new 
non-linear variation of inertia weight PSO model.  

3.2 PSO algorithm in Clustering 

PSO based clustering algorithm was first proposed by 
Merwe et al. [13]. Xiao et al. [14] proposed a hybrid 
approach to cluster the gene data. Self Organizing Maps 
(SOM) trains the weights of the nodes in the first stage and 
weights were optimized using PSO approach. Chen and Ye 
[15] employed a PSO representation in which each particle 
corresponds to the centroids of the clusters. Two-
dimensional and three-dimensional data were used for 
evaluation. Orman et al. [16] proposed a dynamic 
clustering system based binary PSO and K-means 
algorithm. The algorithm automatically identifies the 
number of clusters and employs a validity index to evaluate 
the clusters. Cohen et al., [17] proposed a Particle Swarm 
Clustering (PSC) algorithm where each particle represents 
a centroid in the input data space. The whole population is 
needed to present the final clustering solution. Sandra and 
Krink [4] compared the performance of Differential 
Evolution (DE), Random Search (RS), PSO and GA for 
partitional clustering problems. The empirical results show 
that PSO and DE perform better compared to GA and K-
means algorithms. Recently, Swagatham et al. [18] 
proposed an automatic clustering technique using an 
improved differential evolution algorithm. In this work, we 
have considered the data sets used by Sandra and Krink [4] 
to evaluate the performance of the following PSO variants.  

a) Time varying inertia weight PSO model (SE-PSO) 
proposed by Shi and Eberhart [5,6].  

b) Stochastic inertia weight PSO model (ES-PSO) 
proposed by Eberhart and Shi [7].  

c) Constriction type PSO model (CK-PSO) proposed by 
Clerc and Kennedy [8]. 

d) Self-organizing Hierarchical Particle Swarm Optimizer 
(R-PSO) with time varying acceleration coefficients 
proposed by Ratnaweera et al [10].  

e) Non linear inertia weight PSO model (CS-PSO) 
proposed by Chatterjee and Siarry [12]. 

4. General Structure of PSO algorithm for 
data clustering 

Notations used: 

t  iteration counter. 

T  maximum number of iterations. 

S  swarm size. 

D  maximum numbers of dimensions in each data 
object.  

K  maximum number of clusters. 

N  number of data objects to be clustered.  

The data objects to be clustered are represented as a set: 
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{ }1 2, ,......., NO O O O=
r r r

. 

Each data object is represented as: 

}{ 1 2, .............i i i idO o o o=
r

,  

where ido  represents value of data i in dimension d . 

t

nx  position of Current Particle n  (Current) at 

iteration t . 

( )t

nf x  value of objective function for particle n (Current) 

at iteration t . 

np  Best position of particle n  till iteration t .  

( )nf p  value of objective function for np . 

g  G-Best position of the swarm. 

( )f g    value of objective function for g . 

4.1 General Structure 

Step1: Generate 2 1S+  initial solutions randomly according 
to the swarm size S . 

Step2:  For each of the 2 1S+  initial solutions, evaluate for 
its fitness measure. 

Step3:  Initialize Current ( t

nx ), Best ( np ) and the G-Best 

( g ) positions from the 2 1S+  initial solutions, where 

}{1,......,n S= . 

Step4:   While (termination condition not met)  

 For each particle }{1,......,n S=  

Update the position and velocity vectors of the 

current particle t

nx  using PSO heuristics (SE-PSO, 

ES-PSO, CK-PSO, R-PSO, CS-PSO)  

Evaluate the particle based on fitness measure 
(TRW, VRC, MC). 

Update Best ( np ) and the G-Best ( g ) positions. 

Step5:  Return G-Best ( g ) particle.  

5. Experimental setup 

Five different variants of PSO algorithms are considered in 
this study for comparative evaluation in correspondence to 
the three criteria’s such as TRW, VRC and MC. To 
evaluate the performance of the PSO variants we have 
considered benchmark data sets reported by Sandra and 
Krink [4]. By considering maximum number of functional 
evaluations as 100000, Sandra and Krink reported the best 
results by running basic version of PSO introduced by 

Kennedy and Eberhart [2], with a population size of 50. 
Sandra and Krink reported the best results by running GA 
with a population size of 100. For DE, Sandra and Krink 
reported best results by considering crossover factor as 0.9, 
scaling factor as 0.3 and the population size of 50. The four 
real world datasets considered in this study are listed in the 
Table 1. For a fair comparison, all the PSO algorithms 
considered in this paper were repeated 50 times with the 
maximum number of functional evaluations as 100000 for 
evaluating the performance measures. 

Table 1. Real World data sets 

Data Set 
Number 
of data 

Number 
of Features 

Number 
of clusters 

Fisher Iris data 150 4 3 
Vowel data 871 3 6 
Wisconsin Breast Cancer 
data 

683 9 2 

Ripley’s glass data  214 9 6 

Performance of the PSO variants are measured based on the 
following criterion:  

1. Mean best fitness value of TRW, VRC and MC 
measure. 

2. Mean percent relative increase in objective value of 
TRW, VRC and MC measure. 

3. Percentage of number of runs (i.e., success %) that 
reach best known objective function value over 50 
simulations. 

4. Run Length Distribution (RLD) as proposed by Hoos 
and Stutzle [19]. 

6. Performance analysis of PSO variants  

6.1 Mean best fitness value 

All the PSO variants were coded in C++ and are allowed to 
run for a maximum of 100000 functional evaluations. 
Experiments were repeated for 50 times and mean best 
fitness value for each algorithm has been calculated with 
respect to the objective functions considered in this paper. 
The mean best fitness values for the PSO variants were 
reported in the Table 2. The results were compared with the 
Basic PSO algorithm (B-PSO), Genetic Algorithm (GA) 
and Differential Evolution (DE) Algorithms. For a fair 
comparison we have tested the PSO variants using the 
same experimental setup considered by Sandra and Krink. 
The results indicate PSO variants considered in this study 
are performing better than the basic PSO, GA and DE 
algorithms. It is evident from the Table 2 that PSO variants 
improve the best known VRC and MC measure for all the 
benchmark problems. The PSO variants yield solutions of 
same quality for the cancer dataset for the TRW measure. 
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Improved quality for Vowel dataset for the TRW measure 
is also reported in the Table 2. 

6.2 Mean percent relative increase in objective 
value 

The mean percentage relative increase in objective function 
values for the benchmark problems are given in Table 3, 
and are calculated as follows: 

Let the heuristic solutions yielded by the C-K PSO, S-E 
PSO, R-PSO, C-S PSO and E-S PSO for a given problem 
be denoted by F1, F2, F3, F4 and F5 respectively. These 
solutions are relatively evaluated as given below. 

Mean percentage relative increase in objective function 
value of the solution yielded by the approach i for a 
minimization problem is  

( )( )
( )

min , 1,2,3, 4 and 5
100

min , 1,2,3,4 and 5

i k

k

F F k

F k

- =
= ´

=
  (7) 

Similarly, mean percentage relative increase in objective 
function value of the solution yielded by the approach i for 
the maximization problem is  

( )( )
( )

max , 1,2,3,4 and 5
100

max , 1,2,3, 4 and 5

k i

k

F k F

F k

= -
= ´

=
  (8) 

The results indicate R-PSO considered in this study 
performs better for the Iris data sets. For the Cancer data set 
CS-PSO perform better for TRW, VRC and MC criterion. 
For the Vowel dataset SE-PSO performs better than the 
other variants. 

6.3 Success Percentage: 

Table 4 reports the Percentage of number of runs (i.e., 
success %) that reach best known objective function value 
over 50 simulations. The best known value reported by 
Sandra and Krink [4] is used for evaluation. The results 
shown in Table 4 indicate that the PSO variants considered 
in this study perform well for the MC and VRC measure. 
All the variants are able to reach almost 100% success for 
the VRC and MC measure for all the data sets.  For the 
TRW measure, cancer and vowel datasets perform better 
compared to iris and glass dataset. 

6.4 Run Length Distribution (RLD) 

To study the behavior of stochastic algorithms with respect 
to solution quality and number of functional evaluations, 

run length distribution plots are used. In this paper we have 
adopted the methodology proposed by Hoos and Stutzle 
[19] to plot the RLD. RLD’s were plotted for all the data 
sets with respect to the objective under consideration.   

RLD plot shows the convergence of the PSO algorithm 
with respect to the number of functional evaluations and 
also indicates the probability of reaching a pre-specified 
objective function value over specified number of 
functional evaluations. The probability value (success rate) 
is the ratio between the number of runs finding a solution of 
certain quality and the total number of runs. In this paper 
we have considered the best known objective function 
values reported by Sandra and Krink [4] as pre-specified 
values for plotting RLD’s for the performance measures 
considered in this paper. RLD plots for the benchmark 
datasets are shown in the Figure 1 to Figure 12. 

Run Length Distribution for each of the PSO variants on 
iris data set for TRW metrics are shown in Figure 1. The 
distribution shows that S-E PSO is the fastest first hitting 
algorithm for the best known value and C-S PSO has a 
slow increasing curve to reach best known value. All the 
PSO variants are able to find a solution of required quality, 
but no variant is capable of finding solution of required 
quality with a probability of 1.0. C-S PSO and C-K PSO 
reach solution of required quality with a probability of 0.60. 
Figure 2 shows the run length distribution of cancer data set 
for TRW measure. The distribution shows that S-E PSO is 
the fastest first hitting algorithm for the best known value 
and C-S PSO has  slow increasing curve to reach best 
known value. All the PSO variants are able to reach the 
best-known value with a probability of 1.0.  

Run Length Distribution of glass data set for TRW measure 
is shown in Figure 3. The distribution shows that S-E PSO 
has the fastest first hitting time for the best-known value 
and C-S PSO has slow increasing curve to reach best-
known value. All the PSO variants are able to reach the 
best-known value and C-S PSO finds the best-known value 
with a probability of 0.32.  Figure 4 shows the run length 
distribution of vowel data set for TRW measure. The 
distribution shows that S-E PSO is the fastest first hitting 
algorithm for the best known value, and C-S PSO has slow 
increasing curve to reach best known value. All the PSO 
variants are able to reach a solution of required quality and 
E-S PSO reach a solution of required quality with a 
probability of 0.94. Run Length Distribution of iris data set 
for VRC measure is shown in Figure 5. 
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Table 2. Comparison of mean best fitness of PSO Variants with GA, DE and Basic PSO algorithm 

Mean best fitness 
Dataset Criteria 

GA DE B-PSO C-K PSO S-E PSO  R-PSO C-S PSO E-S PSO  

MC 0.1984 0.1984 0.198 0.0642 0.0643 0.0630 0.0671 0.0635 

TRW 7885.14 7885.14 7885.14 7885.31 7885.38 7885.48 7885.31 7885.34 Iris 

VRC 561.63 561.63 561.63 628.56 628.60 628.72 628.59 628.53 

MC 0.3565 0.3546 0.3527 0.1674 0.1666 0.1720 0.1660 0.1664 

TRW 19323 19323 19324 19323 19323 19323 19323 19323 Cancer 

VRC 1026.26 1026.26 1026.26 1621.17 1621.19 1620.87 1621.19 1621.18 

MC 0.02661 0.01984 0.03176 0.0058 0.0056 0.0056 0.0085 0.0058 

TRW 341.09 336.06 339.04 348.48 345.19 351.11 348.23 346.87 Glass 

VRC 121.94 124.62 122.74 145.58 146.75 145.07 147.88 148.63 

MC 0.3199 0.2906 0.3032 0.1613 0.1612 0.1765 0.1730 0.1626 

TRW 30943106 30690785 30734068 30689689 30689234 30692132 30688873 30688417 Vowel 

VRC 1450.45 1465.55 1463.33 1602.42 1603.12 1598.24 1599.17 1601.76 

 

Notes: 

MC Marriott’s Criteria (Minimization Objective) 

TRW TRace Within Criteria (Minimization Objective) 

VRC Variance Ratio Criteria (Maximization Objective) 

GA Genetic Algorithms results reported in Sandra and Krink, (2006) 

DE Differential Evolution results reported in Sandra and Krink, (2006) 

B-PSO Basic PSO results reported in Sandra and Krink, (2006) 

S-E PSO  Time varying inertia weight PSO model proposed by Shi and Eberhart (1998 and 1999)  

E-S PSO   Stochastic inertia weight PSO model proposed by  Eberhart and Shi (2001)  

C-K PSO  Constriction type PSO model proposed by Clerc and Kennedy (2002) 

R-PSO  Self-organizing Hierarchical Particle Swarm Optimizer with time varying acceleration coefficients proposed by Ratnaweera et. al (2004)  

C-S PSO   Non linear inertia weight PSO model proposed by Chatterjee and Siarry (2006)  

Table 3. Mean percent relative increase in objective function value of heuristics 

Dataset Criteria C-K PSO S-E PSO  R-PSO C-S PSO E-S PSO  

MC 1.8253 1.9748 0.0000 6.4227 0.7714 

TRW 0.0250 0.0188 0.0000 0.0208 0.0303 Iris 

VRC 0.0000 0.0009 0.0021 0.0000 0.0004 

MC 0.8449 0.3364 3.6218 0.0000 0.2485 

TRW 0.0013 0.0001 0.0198 0.0000 0.0002 Cancer 

VRC 0.0000 0.0000 0.0000 0.0000 0.0000 

MC 2.8924 0.2485 0.0000 52.3322 4.2574 

TRW 2.0514 1.2668 2.3955 0.5021 0.0000 Glass 

VRC 0.9528 0.0000 1.7133 0.8789 0.4868 

MC 0.0761 0.0000 9.4818 7.3552 0.8896 

TRW 0.0442 0.0000 0.3044 0.2467 0.0848 Vowel 

VRC 0.0041 0.0027 0.0121 0.0015 0.0000 
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The distribution shows that R-PSO and S-E PSO are the 
fastest first hitting algorithms for the best-known value and 
C-S PSO has a slow increasing curve to reach best-known 
value. All the PSO variants are able to find a solution of 
required quality with a probability of 1.0.  

Table 4 reports the Percentage of number of runs (i.e., success %) that 
reach best known objective function 

Dataset Criteria 
Best Known 

Value 
C-K PSO S-E PSO R-PSO C-S PSO E-S PSO 

MC 0.198 100 100 100 100 100 

TRW 7885.14 60 44 20 60 52 Iris 

VRC 561.63 100 100 100 100 100 

MC 0.3527 100 100 100 100 100 

TRW 19323 100 100 100 100 100 Cancer 

VRC 1026.26 100 100 100 100 100 

MC 0.01984 100 100 100 100 100 

TRW 336.06 14 22 8 32 20 Glass 

VRC 124.62 98 100 100 100 100 

MC 0.2906 100 100 100 100 100 

TRW 30690785 90 90 58 88 94 Vowel 

VRC 1465.55 96 92 98 98 98 

The run length distribution of cancer data for VRC criterion 
is shown in Figure 6. All the variants reach the best-known 
value within 100 function evaluations. Figure 7 shows the 
run length distribution of glass dataset for VRC criterion. 
The distribution show that S-E PSO is the fastest first 
hitting algorithm for the  best known value  and C-S PSO 
has slow increasing curve to reach optimal value for the 
dataset. All the PSO variants are able to find a solution of 
required quality with a probability of almost 1. Figure 8 
shows the run length distribution of vowel dataset for VRC 
criterion. The distribution shows that S-E PSO has the 
fastest first hitting algorithm for the best known value and 
C-S PSO has slow increasing curve to reach best known 
value. All the PSO variants are able to find a solution of 
required quality with a probability of 0.90.   

The run length distribution of iris data for MC criterion is 
shown in Figure 9.  All variants find the best-known value 
within 100 function evaluations. All the PSO variants are 
able to find a solution of required quality with a probability 
of 1. The run length distribution of cancer data for MC 
criterion is shown in Figure 10. All variants finds the best 
know value within 2000 function evaluations. Figure 11 
shows the run length distribution of glass dataset for MC 
criterion. The distributions show that E-S PSO is the fastest 
first hitting algorithm for the best known value and C-K 
PSO has slow  increasing curve to reach optimal value.  All 
the  PSO  variants are able to find a solution of  required 
quality with a probability of  1. 

Figure 12 shows the run length distribution of vowel 
dataset for MC criterion. The distributions show that S-E 
PSO is the fastest first hitting algorithm for the best known 
value and C-S PSO has slow increasing curve to reach the 
best known value. All the PSO variants are able to find a 
solution of required quality with a probability of 1.  

Interesting observations can be made from the RLDs for 
TRW measure. All PSO variants reach the best-known 
value as reported by Sandra and Krink [4]. For all the 
benchmark data sets S-E PSO has the fastest hitting time 
and C-S PSO has the slowest hitting time to reach the best-
known value. It is also observed that the convergence of the 
R-PSO is poor for most of the benchmark data sets. 
Another interesting observation from the RLDs is that C-S 
PSO has the maximum probability of finding best-known 
value for most of the datasets. For TRW measure all PSO 
variants show strong stagnation behavior. 

By considering VRC measure, S-E PSO has the fastest 
hitting time and C-S PSO has the slowest hitting time for 
the reported best-known value. It is also found that E-S 
PSO and CS-PSO has the maximum probability of finding 
best-known value for all the datasets. The convergence of 
the PSO variants for the VRC measure is faster comparing 
with the TRW measure for most of the benchmark 
problems. For the MC measure, the convergences of the 
PSO variants are slower compared to the VRC measure. 
All variants reach the reported best-known value with a 
probability of 1. 

7. Conclusion  

Few attempts have been made to solve data clustering 
problem using PSO algorithms. In this paper the 
performance evaluation of well-known PSO variants for 
data clustering using real world data sets has been studied.  
The performances of the PSO variants were compared with 
the basic PSO algorithm, GA and DE algorithm.  The 
comparative evaluation shows, the PSO variants perform 
better for most of the benchmark datasets for the VRC, 
TRW and MC criterion and also improves the best-known 
solution available in the literature for the VRC and MC 
measures. Run Length Distribution analysis has been 
carried out to study the stagnation behavior and 
convergence speed of the PSO variants. Run Length 
Distribution (RLD) plot of the PSO variants indicate the 
convergence is faster in the case of SE-PSO when a 
termination criterion is fixed to lesser number of functional 
evaluations. As the number of functional evaluation 
increases, results of comparison reveals that no PSO variant 
dominates all the others on all benchmark datasets.  
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Figure 1. RLD of IRIS data set for TRW measure 

Figure 2. RLD of CANCER data set for TRW measure 

Figure 3. RLD of GLASS data set for TRW 

Figure 4. RLD of VOWEL data set for TRW measure 

Figure 5. RLD of IRIS data set for VRC measure 

 Figure 6. RLD of CANCER data set for VRC measure 

Figure 7. RLD of GLASS data set for VRC 

Figure 8. RLD of VOWEL data set for VRC measure 
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 Figure 9. RLD of IRIS data set for MC measure 

Figure 10. RLD  of CANCER data set for MC measure 

Figure 11. RLD of GLASS data set for MC measure 
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