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Summary 

This paper proposes a public key cryptosystem based on the 
symmetric group Sn, and validates its theoretical foundation. The 
proposed system benefits from the algebraic properties of Sn such 
as non commutative, high computational speed and high 
flexibility in selecting keys which make the Discrete Logarithm 
Problem (DLP) resistant to attacks by algorithms such as Pohlig-
Hellman. Against these properties, the only disadvantage of the 
scheme is its relative large memory and bandwidth requirements. 
Due to the similarities in the algebraic structures, many other 
cryptosystems can be translated to their symmetric group analogs, 
and the proposed cryptosystem is in fact the Generalized El-
Gamal cryptosystem which is based on Sn instead of GF(p). 
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1 Introduction 
  

1.1 Background of Public-Key Cryptosystems and 
Related Works  

Until the late 1970's, the only cryptosystems for message 
transmission were symmetric key systems. In symmetric key 
cryptography, any two users who require communicating a 
message must have a same key to cipher or decipher the 
message. In 1976, Diffie and Hellman [14] invented a key-
exchange system that was entirely a new type of 
cryptography. The system called the public-key was based 
on exponentiation in the finite fields. In Diffie-Hellman key 
exchange, a finite field GF(p) and a generator g ÎGF(p) are 
chosen and made public. Suppose that two users "A" and 
"B" wish to agree upon a key. User "A" selects a random 
integer 2 ≤ x ≤ p-2, and transmits gx to "B" over a public 
channel. User "B" also selects a random integer 2≤ y ≤p-2, 
and transmits gy to "A". The users "A" and "B" having 
common key gxy, compute (gy) x =gxy and (gx) y =gxy 
respectively. Clearly, finding an efficient discrete logarithm 
algorithm would make this system insecure, since g, gx and 
gy are all known, and x, y or gxy can be computed. Another 
way for breaking this scheme is to compute gxy from gx and 
gy , without computing either x or y. This problem is called 
the Diffie-Hellman problem. The difficulty of this problem 
is equivalent to computing the discrete logarithms, even 
though it remains unproven. The partial results about the 
equivalence of these problems are presented in [15] and [16]. 

A public-key cryptosystem that is essentially a variant 
of Diffie-Hellman scheme was introduced by T. El-Gamal 
[17]. The algorithm performs as follows: Suppose GF(q) is 
known by public. User "A" selects a generator g ÎGF(q), 
and an integer a. It then publishes (g, ga) as the public-key 
and keeps a secret. User "B", who requires to send a 
message m ÎGF(q) to "A", selects an integer 2 ≤ k ≤ q-2 
randomly, computes m.(ga)k=m.gak , and sends the pair  
 (gk, m.gak) to "A". User "A" who knows a, recovers m by 
computing m.gak.(gk )-a=m.gak.g-ak. 

A public-key system that is based on knapsack problem 
or subset sum problem has been invented by Merkle and 
Hellman [20]. The problem is as follows: Given a set of 
positive integers {m1, m2, …, mn} and an integer w, find a 

n-bit integer N=(bnbn-1...b1)2 , such that 
=1

=
n

i ii
b m wå . 

Generally in this public-key system, an instance of the 
knapsack problem that is easy to solve is selected. It is then 
transformed to an instance of general knapsack problem 
which is difficult to solve. The later knapsack set can serve 
as a public key. The general knapsack problem is NP-hard. 
However, its generality has later been contradicted. Shamir 
[22] presented an algorithm for the knapsack problem that 
is polynomial in n. In 1988, another type of knapsack 
cryptosystem was developed by Chor and Rivest [24], 
which was broken by Vaudenay [26] at 1998. 

Two public key cryptosystems with their security based 
on intractability of integer factorization, are RSA [27] and 
Rabin public key encryption [28]. It has been proven that 
breaking the Rabin public key encryption is as difficult as 
integer factorization, but no such equivalence for the RSA 
has been proven. The overview of major attacks on the 
RSA encryption and signatures are presented in [30]. 

Another important public key cryptosystem is Elliptic 
Curve Cryptosystem (ECC). The first elliptic curve scheme 
was proposed by Koblitz [33] and Miller [34] 
independently. The elliptic curve systems are based on a 
group of points on an elliptic curve which are defined over 
a finite field. Systems such as Diffie-Hellman key 
exchange or El-Gamal can be easily modified to work in 
these groups. As stated in next subsection, there is no 
subexponential-time algorithm that could solve the 
Discrete Logarithm Problem (DLP) in these groups. 
Therefore, the use of an elliptic curve group that is smaller 
in size and maintains same level of security offers potential 
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reductions in bandwidth, storage, processing power, 
electrical power and message sizes. 

 

1.2 The Discrete Logarithm Problem (DLP) 

The security of many modern cryptosystems depends on 
the intractability of the Discrete Logarithm Problem (DLP) 
[9]). Let G denotes a cyclic group of order n and g ÎG  be 
a generator of G with γ ÎG. The discrete logarithm of γ to 
the base g that denotes by loggγ, is an integer  
0 ≤  x < n, such that γ =gx. The discrete logarithm problem 
can be stated as follows: Given γ ÎG, find an integer x that 
satisfies γ =gx. The discrete logarithm has some properties 
that are similar to any ordinary logarithm. For example 
logga.b= logga+ loggb and logga

k=k.logga. In the 
Generalized Discrete Logarithm Problem (GDLP), G is an 
arbitrary group and g ÎG is not necessarily a generator. In 
this case, the integer x may not exists. In last two decades, 
there have been substantial improvements in discrete 
logarithm algorithms. However, the problem still appears 
to be intractable. This section briefly discusses the 
complexity of some algorithms for solution of discrete 
logarithm. Suppose G is a cyclic group of order n and  
a, b ÎG. The aim is to solve a x=b. Consider the field 
GF(p) where p is a prime. Assuming a ÎGF(p) is a 
generator for this field, then for any 1 ≤ b ≤ p-1 , an 
explicit form for the discrete logarithm function exists as 
follows [19]: 

2
1

=1

(1 ) (mod )log
p

i i

i

pab a b
-

-º -å  

However, this formula is computationally intensive and 
practically useless. The simplest algorithm, the brute-force 
search is to successively compute 1, a1 , a2, …  until b is 
obtained. This algorithm will clearly finds x. However, 
since it requires O(n) group of operations, it would be 
inefficient for large n's. A faster algorithm is the baby-step 
giant-step algorithm [4] having a running time and 
memory requirement of O(Ön). Therefore it is a time-
memory trade-off of the brute-force search method [3]. See 
[5] for appropriate data structure fort the implementation of 
this algorithm. 

Another algorithm is Pollard's r-algorithm [6]. The 
expected running time of this algorithm is equal to the 
baby-step giant-step method, but its memory requirement 
is negligible. The Pollard's algorithm uses a heuristic 
function. Oorschot and Wiener in [7] have indicated if t  

processors are employed, then the Pollard's r-method can 
be parallelized so the expected number of steps required by 
each processor for the calculation of the discrete logarithm 
becomes ( )O n t . Some algorithms use the basis of smooth 

numbers. If l≥0 is a real number, and a a positive integer, 
then a is a l-smooth number if for every prime p|a , p≤ l. 

The Pohlig-Hellman algorithm introduced by Pohlig 
and Hellman [8], is an algorithm that takes advantage of 
the factorization of order n of the group G. Let; 

1 2
1 2= > 0, = 1, ,k

k in p p p i k
l l l

lK K  

be the prime factorization of n. The execution time of this 

algorithm is 
=1

( (lg ))
k

i ii
O n pl +å , and it can be adopted 

to require a negligible amount of memory. The Pohlig-
Hellman algorithm in case the order n of group G is a 
smooth integer, is computationally efficient. However it 
can simply avoid such orders of n. For example, let G be 
GF(2m) and m can be selected such that 2m-1 be a prime. 
Thus the order of generator a of G is n=2m-1, which is a 
big prime, and the algorithm is clearly inefficient for G. 

The most efficient algorithm known to the date for 
solving the discrete logarithm over finite fields is the 
index-calculus algorithm. According to [9], the index-
calculus algorithm was initially introduced by Kraitchik. 
This algorithm also uses the idea of smooth numbers. It 
selects a small B ÍG, which is called the factor base, in 
such a way that a relatively large subset of elements of G 
can be expressed as the products of elements of B. Then, 
the logarithms of elements of B are computed as follows: 

1) Select a random integer 0 ≤  i ≤  n-1, and compute a i. 

2) Express a i as; 
| |

=1

= 0
B

i k
k k k

k

p p B
s

a s ³ ÎÕ         (1) 

If it can be calculated, then take logarithms of both 
sides of Eq. (1) in order to obtain:  

| |

=1

= 0log
B

k k k k
k

i p p Bas s ³ Îå        (2) 

3) Repeat steps 1 and 2 till a set of equations of the 
form Eq. (2) are obtained. Then solve a system of 
equations to find the logarithms of elements of B. At 
final stage, logab is computed as follows: 

· Select a random integer 0 ≤  i ≤  n-1, and 
compute b.a i . 

· Try to express b.a i as follows: 
| |

=1

. = 0
B

i k
k k k

k

p p B
y

b a y ³ ÎÕ        (3) 

If it can not be calculated, go to step (1), or otherwise 
take logarithms of both sides of Eq. (1) and obtain:  

| |

=1

= 0log log
B

k k k k
k

p i p Ba ab y y- ³ Îå       (4) 

The index-calculus algorithm was also suggested 
independently by Pollard [6] and Adelman [10]. This 
algorithm is adopted specially for multiplicative group of 
finite field GF(pn), which p is a prime. Due to the heuristic 
nature of this algorithm, the execution time is often 
computed asymptotically. The complexity estimation is 
often expressed in term of L-function:  

1[ ; ] = exp{( (1))(ln ) (ln ln ) }s s
qL s c c o q q -+  

The first description of an index-calculus algorithm for 
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extension fields *
np
F  with p fixed, is given by [11]. Blake et 

al. [12] made some improvements to index-calculus 

algorithm in 
2

*
nF , although they do not improve the 

execution time asymptotically. The algorithm was 
substantially improved later by Coppersmith [13]. He 
estimated the expected execution time of the improved 

algorithm is 
2

1
[ ; ]
3

nL c  for some c<1.587. In general, the 

Coppersmith algorithm can also be used for GF(pn) with 

asymptotic running time 1
[ ; ]
3

np
L c  (with fixed p and 

n®¥). As shown above, the index-calculus method has 
sub-exponential running time for a variety of discrete 
logarithm problems. However, an important case where the 
index-calculus for treating the discrete logarithm problem 
has been unsuccessful is, elliptic curves over a finite field 
[31]. An extension of index-calculus method for ECDL 
(Elliptic Curve Discrete Logarithm), was introduced by 
Silverman[32]. This algorithm was analyzed in [21] and 
shown to be inefficient. In general, no attack more efficient 
than Pollard's r-method is known for ECDL [6].  

 

2 A Novel Step: DLP in Symmetric Group nS  

By definition, Sn is a group of all bijections 
 Hn® Hn , where Hn ={1,2,…,n} and the group operation is 
ordinary composition of mappings. The elements of Sn are 
called permutations. Let i1,i2,…,ik , k≤n be distinct elements 
of Hn. Then, (i1,i2,…,ik) denotes the permutation that maps 
i1 ®i2, i2 ®i3,…, ik-1 ®ik and ik ®i1 and every other 
elements of Hn to itself. By definition, Hn is called a cycle 
of length k or a k-cycle, and a 2-cycle is denoted as 
transposition. It can be proven that if q is a k-cycle, then 
q k=1. The permutations q1,q2,…,qs of Sn are said to be 
disjoint if for every 1 ≤ i ≤ s, and every kÎHn , qi(k) ¹ k 
implies qj(k)=k for all j¹i. It is apparent that if cycles s1 , s2 

Î Sn are disjoint, then s1.s2=s2.s1. The proof of the 
following theorems and corollaries are stated in [1] and [2]. 

Theorem 2.1. Every nonidentity permutation q of Sn can be 
uniquely expressed as the product of disjoint cycles of a 
length of at least 2. 

Corollary 2.2. Let s Î Sn be the product of disjoint cycles 
q1,q2,…,qk which qi is an mi-cycle, i=1,…,k. Then the order 
of s is |s|=lcm(m1,m2,…,mk). 

Therefore, in order to obtain the order of sÎ Sn, it is first 
decomposed to disjoint cycles and then the least common 
multiple of orders of its disjoint cycles are computed. Let 
Gq ={q i | i=1,…,| q |} be the cyclic subgroup of Sn 
generated by q ÎSn . The solution is as follows:  

0= ,x
nS xa b a b ³Î ÎZ  (5) 

where Z≥0 denotes a set of nonnegative integers. If  b Ï Ga , 

then Eq. (5) has no solution. Therefore, discussion is 
restricted to b ÎGa and 0 ≤  x ≤  |a|. As with many other 
groups, a distinct mathematical solution for Eq. (5) in Sn is 
not available and it is examined by algorithms introduced 
in subsection 1.2. Note that | Ga | can be very large for large 
values of n, since the disjoint cycles of a can be selected in 
such a way that their least common multiple be very large. 
Therefore general purpose algorithms such as the brute-
force search, Pollard's r-method and the baby-step giant-
step algorithm with execution times of O(| Ga |), O(Ö|Ga |)  
and O(Ö|Ga |) respectively, are inefficient to solve Eq. (5). 
The Pohlig-Hellman algorithm uses the smoothness of the 
order of a. As already illustrated, the limitation that |a| 
should not be a smooth number has led to suggestions that 
2m-1 is a prime. Primes of the form 2m-1 are called the 
Mersenne primes. The main drawback is the existence of 
wide gap between the consecutive Mersenne primes, and 
relatively few of them are known. Therefore, the idea is to 
use values of m for which 2m-1 is not a prime and has a 
large prime factor. The factorization of 2m-1 should be 
known for large enough of m's. Having 2m-1, one cannot 
have an arbitrary degree of smoothness and in symmetric 
group Sn , cyclic subgroups with orders of arbitrary 
smoothness do exist. 

Theorem 2.3. Let p be a prime; then, for a large number of 
n's, a cyclic subgroup H of Sn which its order is p-smooth 
and is not (p-1)-smooth can be constructed. 

Proof. Let n≥p and a p-cycle s Î Sn exist. Also, let 
d,q1,q2,…,qk be the disjoint cycles in which q iÎSn  is an 

mi-cycle (1 ≤ mi ≤ p, i=0,…,k), and 
=1

k

ii
m n p£ -å . Then, 

for any permutation s=dq1q2…qk, if q is a prime and 
q|lcm(p,m1,m2,…,mk)=|Gs|, then q ≤ p. Therefore the order 
of H=Gs is p-smooth, but it is not (p-1)-smooth, since  
p | |Gs| and p � p-1.  

According to Theorem 2.3, we can generate the base a 
so Eq. (5) can be resistant to attacks generated by Pohlig-
Hellman algorithm. The basic step in the index-calculus 
method is to obtain the factor base B. Suppose that 
a=q1q2…qk which q1q2…qk are disjoint cycles, then at first 
glance, one may select B={q1,q2,…,qk} since it is small and 
all the elements of Ga can be expressed as the products of 

elements of B. However, for any 1 ≤ d ≤ |a|, 
=1

=
kd d

ii
a qÕ , 

taking logarithms of both sides, we have 
=1

= log
k

i
d d aqå , 

hence, 
=1

1= log
k

i aqå . Clearly, this relation does not cover 

the logarithms of the B elements. Furthermore, in general, 
the logarithms of some elements of B may not exist at all. 
Suppose for example, a Î S6 and a = (1234)(56). Then, 
|a |=4 and it is clear that there is no xÎ{1, 2, 3, 4}, such 
that a x=(1234) or  a x=(56). 

Let Ci={all the distinct i-cycle of Sn} and 
=1

=
n

S iin
A CU . 

Theorem 2.1 states that every element of Sn can be 
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expressed as the product of disjoint cycles. Therefore each 
elements of Sn can be expressed as the product of elements 
of 

Sn
A . This indicates that 

Sn
A  can be chosen as another 

candidate for the factor base. 

Theorem 2.4.  For 2n ³ ,: 

1
| |= 2

1

n
t

Sn

t t
A e e dt n

t

¥
- -

- +
-ò  

Proof. It is easy to see that |C1|=1 and 

!
| |= = ( 1)!

( )!
i

nn
C i

ii n i

æ ö
-ç ÷

- è ø

. Thus: 

=2 =2

| |= 1 | |= 1 ( 1)!.
n n

S in
i i

n
A C i

i

æ ö
+ + -ç ÷

è ø
å å          (6) 

Let  
=2

= ( 1)!
n

n i

n
a i

i

æ ö
-ç ÷

è ø
å , then: 

     

1

1
=2

1

=2

=2

=2

=2

= 1

1
= ( 1)!

  = ( 1)!

  = ( 1)!

1
  = !

1
  = ( 1)!

( )!

1
  = ( 1)!{ }

!

1 1
  = ( 1)! (1 )

( 1)

n

n
i

n

i

n

i

n

n
i

n

n
i

n
k n

n

n
a i

i

nn i
i

in

nn i
i

in

n
a i

in

a n
n i

a n e
k

a n e
n n n

-

-

-

¥

-

-æ ö
-ç ÷

è ø

æ ö-
-ç ÷

è ø

æ ö-
-ç ÷

è ø

æ ö
- ç ÷

è ø

- -
-

- - -

- - - + + +
+

å

å

å

å

å

å

L

 

Let 1 1
=1

( 1)
nb

n n n
+ + +

+
L , then 

1 = ( 1)!n n na a n e b- - - +  or: 

1= ( 1)! .n n na a n e b- + - -                     (7) 

We can rewrite bn as 1 1
= 1 (1 (1 ) )

1
nb

n n
+ + +

+
L L . It is 

clear that 
1

1
= 1n nb b

n
++  or; 

                     
1

= 1
=

> 1
n

n

e n
b

nb n n
+

ì
í

-î
 (8) 

By expanding Eq. (8), we obtain: 
 

2

=0 =0

= ( 1)! ( ) = ( 1)! ( ,1) 1
in

n
i j

b n e n j n e e n
-

- - - - - G +åÕ  (9) 

 

in which ( 1)( , ) = t x

y
x y e t dt

¥
- -G ò . Using Eq. (9) in Eq. (7), 

produces 
1= ( ,1) 1n na a n- + G - . Thus: 

=2

1

1
=2

1

1
=2

1

= ( ,1) 1

  = 1

  = { } 1

  = 1
1

n

n
k

n
t k

k

n
t k

k

n
t

a e k n

e e t dt n

e e t dt n

t t
e e dt n

t

¥
- -

¥
- -

¥
-

G - +

- +

- +

-
- +

-

å

åò

åò

ò

 

and from Eq. (6) we obtain | |= 1S nn
A a +  which leads to the 

desired result.  

Theorem 2.5. For n≥2, | | / | | 1S nn
A S £  and  

| |
= 0lim

| |

Sn

n
n

A

S®¥

 

Proof. From Eq. (6) of the Theorem 2.4 we have: 

=2 =2

| | 1 1 1 1
= ( 1)!=

| | ! ! ! ( )!

n n
Sn

i in

A n
i

iS n n n i n i

æ ö
+ - +ç ÷

-è ø
å å      (10) 

Let 
=2

1
=

( )!

n

n i
a

i n i-
å  , then; 

1

1 =2 =2 =2

1 1
= = =

( 1)! ( )! ( )!

n n n

n ni i i

n i
a na

i n i i n i n i

-

-

-
-

- - - -
å å å  

It is apparent that 
=2

1

( )!

n

i
e

n i
£

-
å , therefore: 

1 2

1 1
=

2
n n

e
a a a

n n
-£ +                (11) 

Expansion of Eq. (11) results in: 

1

2

1 1 1
(1

1 ( 1)( 2)

1 1
)

( 1)! !

n n

e
a a

n n n n n

e

n n n

-£ + + + +
- - -

+ £ +
-

L

    (12) 

From Eqs. (12) and (10) respectively, we have 
21 2

0 <| | / | |=
! !

S n nn

e
A S a

n n n
+ £ +  hence | |

= 0lim
| |

Sn
n

n

A

S
®¥

. 

According to the Theorem 2.5, the set 
nSA  is small relative 

to Sn , specially for large n's (Fig. 1). Therefore, it seems to 
be appropriate for a factor base. However, the main 
problem is the size of Sn. The |Sn|=n! is very big even for a 
moderate n's, and although | |Sn

A  is small relative to |Sn|, it 

does not mean | |Sn
A  is small itself. For example 

50
| |SA =16879443598573819537292518245363209803917

31190310161954249338066, and 156

100
| |>10SA . For n>104, 

which is a typical value in Eq. (5), the size of 
nSA  will be 

intractable. However, an algorithm that can select an 
appropriate subset of 

nSA  for factor base is not yet 

available and it is likely to be difficult to develop such an 
algorithm. 
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3 Integer Representation of nS  

There have been several attempts to introduce an effective 
permutations representation [29]. In this section, a bijection 
between integers and elements of symmetric groups is 
introduced which enables to represent the elements of 
symmetric groups by integers, and vice versa.  

 

 

Fig. 1: Vertical and horizontal axes show  

| | / | |S n
n

A S  and n respectively. 

 
3.1 Factoradic: A Mixed Radix Number System 

A number system is a framework for representing 
numerals. Number systems can be divided into two general 
categories: a fixed radix and mixed radix number systems. 
In fixed radix number systems, a positive integer is 
represented as: 

1
1 1 0 0 <

= 0, ,

n n
n n ia r a r a r a a r

i n

-
-+ + + + £L

K
 

where r is known as the radix or base. This system is also 
called a positional base system in which the digit weights 
are rn, rn-1,…, r1,r0. Now consider a positional base in 
which each value is a factorial. Every number in this 
system is represented as: 

1 1! ( 1)! 1! 0

= 1, ,

n n ia n a n a a i

i n

-+ - + + £ £L

K
       (13) 

Here the radices are n, n-1,…,1 and the place values are  
n!, (n-1)!,…,1!. This mixed radix number system is called 
Factoradic and the k-digit representation dkdk-1…d2d1 of an 
integer is called the k-factoradic. Eq. (13) can be rewritten 
as 

1 21!( 2( ( ) )na a n a+ + +L L , so transforming an integer m 

to this system can be performed similar to fixed radix 
systems i.e., by successive divisions where divisions are 
performed by 2, 3, 4 and so on. The following describes 
some properties of the factorial base system. 

Lemma 3.1. If a= dndn-1…d2d1 is a number in factorial 
base system, then 0 ≤ a ≤ (n+1)!-1. 

Proof. Since di ≥ 0, i=1,…,n, thus 

=1 =1
= ! 0 != 0

n n

ii i
a d i i³ ´å å . On the other hand,  

di ≤ i,   i =1, 2, …, n. Therefore: 

=1 =1

= ! !
n n

i
i i

a d i i i£ ´å å  

   
=1

= (( 1) 1) !
n

i

i i+ - ´å  

   
=1

= (( 1)! !)
n

i

i i+ -å  

   = ( 1)! 1n + -  

and the proof is complete. 

Corollary 3.2. If a= dndn-1…d2d1 is a number in factorial 
base system, then dn.n! ≤ a ≤ (dn+1).n!.   

Proof. Let b= dn-1dn-2…d2d1. From Lemma 3.2, it is known 
that 0 ≤ b < n!. We also have a=dnn!+b, hence  
dn.n! ≤ a ≤ (dn+1).n! . 

Like any other numbering systems, assume there is no 
leading zero in factorial base representation. That is, zero 
has unique representation 0 ´1!. The following theorem 
states the one-to-oneness between positive integers and 
factorial base numbers. 

Theorem 3.3. Every positive integer a has a unique 
representation in a factorial base system. 

Proof. Let a=dmdm-1…d2d1, dm¹0 and  
a'=d'md'm-1…d'2d'1,   d'm¹0  be two representations of a 
positive integer a. If n<m, then by Lemma 3.1 and 
Corollary 3.2, a≥dmm! ≥ m! ≥(n+1)!>a'. Therefore a>a' and 
similarly m<n become a contradiction and hence n=m. The 
proof will be limited to a and a' having the same number of 
digits. Induction on number of digits is employed. If d1 and 
d'1 are two representations of a then d1´1! = d'1 ´1!. Thus, 
d1= d'1 , and the two representations are the same. Now 
suppose that if a positive integer a has a k-digit 
representation, then this representation becomes unique. 
Let b=dk+1dk…d2d1, dk+1¹0  and  b'=d'k+1d'k…d'2d'1,  d'k+1¹0  
be the two representations for positive integer b.  
If dk+1>d'k+1, then by Corollary 3.2, 
b≥dk+1(k+1)!≥(d'k+1+1)(k+1)!>b'  yields to a contradiction. 
By a similar discussion, dk+1 < d'k+1 does not hold. 
Therefore, dk+1 = d'k+1  yields to b-dk+1 (k+1)! = b'-d'k+1 

(k+1)!. Thus dkdk-1…d2d1 and d'kd'k-1…d'2d'1  represent the 
same integer and by the induction hypothesis, they are the 
same. That is, dk= d'k,…, d1= d'1. Therefore, it has been 
shown that b and b' are the same representations of b and 
the proof is complete. 

 

3.2 Mapping Factorial Base Numbers to Members 
of Sn 

A basic idea for representing permutations is the use of 
subexceedant functions. 

Definition 3.4. Suppose that In={1,…,n}. A subexceedant 
function f on In is a map : n nf I Ia  such that  

1 ≤  f(i ) ≤ i   for all 1 ≤  i  ≤ n. 

To simplify the discussion, it is assumed that a 
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subexceedant function f on In to be the map of 

: {0}n nf I I Èa  such that 0≤ f(i ) ≤i  for all 1≤ i ≤ n. Let 

Fn be a set of all subexceedant functions on In and the 
subexceedant function f over In is represented by the word 
f(n).f(n-1)…f(1). For example, f=201 is a subexceedant 
function over I3 in which f(3)=2, f(2)=0 and f(1)=1. It is 
apparent that |Fn | =(n+1)!. In the following, a bijection 
between Fn and Sn+1, originated from [23], will be 
introduced. 

Lemma 3.5.  Let 
1: n nSy +aF  be a map associated with 

the subexceedant function f. The permutation qf defined as 
the product of transpositions by:  
qf=(1 f(1))(2 f(2))…(n f(n)), then y is a bijection from Fn 
onto Sn+1.   

Proof. Since |Fn | =|Sn+1|=(n+1)!, it is sufficient to prove 
that y is injective. Let f1, f2Î Fn, and  
y( f1)= y( f2)  . Thus: 

1 1 1

2 2 2

(1 (1))(2 (2)) (  ( )) =

(1 (1))(2 (2)) (  ( ))

f f n f n

f f n f n

L

L
             (14) 

Since y( f1)= y( f2)  , then y( f1)(n)= y( f2)(n). By 
definition, y( f1)(n)= f1(n) and y( f2)(n)= f2(n), so f1(n)= 
f2(n). If both sides of (14) are multiplied on the right, by 
permutation, (n f1(n))= (n f2(n)),. Therefore: 

1 1 1

2 2 2

(1 (1))(2 (2)) (( 1) ( 1)) =

(1 (1))(2 (2)) (( 1) ( 1))

f f n f n

f f n f n

- -

- -

L

L
     (15) 

Now, applying the same process to (15) leads to f1(n-1)= 
f2(n-1). Iteration concludes that f1(i)= f2(i) for all 1 ≤  i  ≤ n. 
Thus f1= f2.  

Let q  be the permutation of symmetric group Sn+1 and f=y-

1(q ). Then f can be constructed as below: 

· Set  f (n)=q (n).  

· Multiply q on the right by transposition (n  f(n)) in 
order to obtain new permutation q1 in which n na . 

Thus, q1 can be considered as a permutation of Sn. 
Then set f(n-1)=q1(n-1).  

· Apply the same process to q1 by multiplying by ((n-1)  
f(n-1)), in order to obtain f(n-2). By iteration, f(i) will 
be determined for all the 1 ≤  i  ≤ n. 

Now, let a=dndn-1…d2d1 be an n-digit number in factorial 
base system. It is known by definition that 0 ≤  di ≤ i, for 
all 1 ≤  i  ≤ n. Thus, a=dndn-1…d2d1 can be interpreted as a 
subexceedant function representation f(n)f(n-1)…f(1), in 
which 
 f(n)= dn , f(n-1)=dn-1,…, f(1)=d1. Therefore, according to 
lemma 3.5, the number a=dndn-1…d2d1 can be uniquely 
mapped to a permutation q ÎSn+1. In this way, there is a 
bijection between n-digit factorial base numbers and Sn+1 
for all n ÎN. 

 

4 Description of the Proposed Cryptosystem 

In an appropriate level of abstraction, the algebraic 
elements such as groups and fields have similar structures. 
Consequently, many of the cryptosystems based on finite 
groups or finite fields GF(pn) can be translated to systems 
using the symmetric group Sn. The Proposed Cryptosystem 
is described by illustrating the symmetric group analog of 
the Generalized El-Gamal system [17]. However it is 
perfectly practical to also describe other systems such as 
Diffie-Hellman and Massey-Omura [25] based on our 
proposed cryptosystem. Suppose user "A" requires sending 
a message m to user "B". The process of key selection, 
encryption and decryption in the proposed cryptosystem is 
as follows: 

Key Selection: User "B' requires the followings: 
· Select a large n for Sn.  
· Generate an appropriate q ÎSn, which will be the 

generator of Gq .  
· Select a random integer 1 ≤ a ≤ |Gq|-1 and compute 

q a. 
· Publish (q ,q a) as a public key, and keep a as a 

private key  

Encryption: User "A" encrypts the message m as follows:   
· Translate m to m'ÎSn (according to section 3). 
· Select a random integer 1 ≤  k  ≤ n. 
· Compute the pair (q 1=q 

k, q 2= m'.(q 
a)k), and 

transmit to "B". 

Decryption: Now, "B" is able to decrypt the message as 
follows: 

· Compute (q 1)
a=(q 

k) a= q 
k.a, and then be reversed in 

order to obtain ((q 1)
 a)-1 = q 

 -k.a. 
· Compute m' by multiplying q 2 on the right by 

1
aq - .  

· Recover m by computing the integer representation 
of m'.  

At the end of this section, a small example is presented 
which clarifies the above procedure. Here, some technical 
aspects of above scheme are presented. 

· The multiplication in Sn which is the composition of 
mappings can be implemented by just n assignments. 

· There are many optimized methods for exponentiation, 
such as Right to left, k-Ary and Sliding Window [18] , 
which can be used for any multiplicative group 
(commutative/ non-commutative). Therefore, they can 
also be used in symmetric group Sn. 

· The generator q in the above scheme can be generated 
in a very easy and low cost method, so the scheme 
could be arbitrarily is resistant to attacks by algorithms 
such as Pohlig-Hellman. The selection of q  in the 
proposed scheme has the lowest complexity among 
other known schemes.  

· The only disadvantage of this scheme is the relatively 
large memory requirement and organization of 
permutations such as q, requiring large bandwidth for 
the transmission of system parameters.  
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It is noteworthy that despite this disadvantage, the 
proposed system preserves its high security and power in 
its abstract and the theoretical aspects. It can foster new 
ideas; since according to our proposition, working on the Sn 
group can leads to cryptosystems with much closer to 
unconditional security than other existing cryptosystems. 
Also, it could be a framework for comparison and rating 
with other implementable systems. However further 
research are performing in order to reduce the memory 
requirements and make the scheme practical. At present, 
the aim is to prove theoretically the structure of the 
symmetric group Sn is appropriate for employment in 
cryptosystems such as the Generalized El-Gamal. This has 
not been considered till now. The proposed cryptosystem 
has been implemented in JavaÔ (1.6) at an Athlon-64 
(3.2GHz) AMD machine, and also tested on one million 
bits permutations. An average execution time gained for 
the group operation was about 455 microseconds.  

Example: Suppose that user "B" selects n=100 for Sn, and 
generates q  as follows: 
q=(0···22)(23···41)(42···58)(59···71)(72···82)(83···89) 
(90···94)(95 96 97)(98 99). Thus the user has 
|Gq|=223092870 and publishes (q ,q 546584) as the public key 
while keeping a=546584 as the private key. Computation 
of q 546584 is very easy, and can be performed using an 
algorithm such as Right to Left Exponentiation in O(log2a) 
multiplications [18]. User "B" has q 546584 = 
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 0, 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11, 34, 35, 36, 37, 38, 39, 40, 41, 23, 24, 25, 26, 
27, 28, 29, 30, 31, 32, 33, 42, 43, 44, 45, 46, 47, 48, 49, 50, 
51, 52, 53, 54, 55, 56, 57, 58, 71, 59, 60, 61, 62, 63, 64, 65, 
66, 67, 68, 69, 70, 77, 78, 79, 80, 81, 82, 72, 73, 74, 75, 76, 
86, 87, 88, 89, 83, 84, 85, 94, 90, 91, 92, 93, 97, 95, 96, 98, 
99. Suppose "A" requires to send the message m="The 
quick brown fox jumps over the lazy dog" to "B". This 
message is a sequence of bytes, which is interpreted as an 
integer 
m=118157444206647472003590142156110782498740774
18792906203758916158211866334739307190174417697
959789752167. Thus, the factoradic form of m  is: m=13, 
63, 28, 32, 53, 57, 33, 2, 61, 18, 27, 5, 21, 9, 57, 23, 4, 13, 
50, 37, 23, 30, 25, 21, 34, 19, 12, 33, 37, 32, 28, 20, 26, 22, 
23, 31, 20, 28, 24, 29, 18, 26, 16, 13, 10, 0, 13, 16, 22, 12, 
21, 15, 2, 7, 13, 16, 5, 2, 4, 2, 3, 10, 5, 8, 2, 2, 4, 0, 1, 0, 1; 
which is in fact a subexceedant function representation, 
and according to subsection 3.2 it can be transformed by 
the permutation: 
m= 6, 11, 58, 1, 67, 17, 36, 43, 8, 35, 70, 3, 14, 55, 46, 60, 
44, 49, 7, 64, 15, 48, 45, 38, 42, 47, 72, 10, 54, 16, 39, 62, 
29, 24, 41, 40, 31, 51, 22, 26, 20, 69, 68, 52, 65, 12, 19, 34, 
59, 25, 30, 56, 37, 50, 71, 4, 23, 66, 9, 21, 5, 27, 18, 61, 2, 
33, 57, 53, 32, 28, 63, 13, 73, 74, 75, 76, 77, 78, 79, 80, 81, 
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 
98, 99, 0. User "A" selects k=87493 and computes  
(q546584)k=12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 0, 1, 2, 
3, 4, 5, 6, 7, 8, 9, 10, 11, 39, 40, 41, 23, 24, 25, 26, 27, 28, 
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 45, 46, 47, 

48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 69, 70, 71, 59, 60, 
61, 62, 63, 64, 65, 66, 67, 68, 78, 79, 80, 81, 82, 72, 73, 74, 
75, 76, 77, 83, 84, 85, 86, 87, 88, 89, 92, 93, 94, 90, 91, 97, 
95, 96, 98, 99; and m.(q 546584 )k= 18, 0, 58, 13, 64, 6, 33, 
43, 20, 32, 67, 15, 3, 55, 46, 70, 44, 49, 19, 61, 4, 48, 45, 
35, 42, 47, 78, 22, 54, 5, 36, 59, 26, 40, 38, 37, 28, 51, 11, 
23, 9, 66, 65, 52, 62, 1, 8, 31, 69, 41, 27, 56, 34, 50, 68, 16, 
39, 63, 21, 10, 17, 24, 7, 71, 14, 30, 57, 53, 29, 25, 60, 2, 
79, 80, 81, 82, 72, 73, 74, 75, 76, 77, 83, 84, 85, 86, 87, 88, 
89, 92, 93, 94, 90, 91, 97, 95, 96, 98, 99, 12; and q k=1, 2, 
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
21, 22, 0, 40, 41, 23,24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 
34, 35, 36, 37, 38, 39, 53, 54, 55, 56, 57, 58,42, 43, 44, 45, 
46, 47, 48, 49, 50, 51, 52, 62, 63, 64, 65, 66, 67, 68, 69, 70, 
71, 59, 60, 61, 82, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 
84, 85, 86, 87, 88, 89, 93, 94, 90,91, 92, 96, 97, 95, 99, 98. 
Then "A" sends the pair  
 (m.(q 546584 )k, q k ) to "B". User "B" then decrypts the 
message as follows: 
(q k)-546584=11,12,13,14,15,16,17,18,19,20,21,22, 0,1, 
2,3,4,5,6,7,8,9,10,26,27,28,29,30,31,32,33,34,35,36,37,38,
39,40,41,23,24,25,42,43,44,45,46,47,48,49,50,51,52,53,54,
55,56,57,58,62,63,64,65,66,67,68,69,70,71,59,60,61,77,78,
79,80,81,82,72,73,74,75,76,83,84,85,86,87,88,89,93,94,90,
91,92,96,97,95,98,99. 

m.(q 546584 )k.(q k)-546584= 
6,11,58,1,67,17,36,43,8,35,70,3,14,55,46,60,44,49,7,64,15,
48,45,38,42,47,72,10,54,16,39,62,29,24,41,40,31,51,22,26,
20,69,68,52,65,12,19,34,59,25,30,56,37,50,71,4,23,66,9,21
,5,27,18,61,2,33,57,53,32,28,63,13,73,74,75,76,77,78,79,8
0,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,9
9,0. 

 

5 Conclusions 
There exist a variety of commutative and non commutative 
algebraic structures that have been proposed as a basis for 
the public key cryptosystems, and their theoretical 
correctness and security has proven to be related to known 
difficult problems such as DLP or factorization. In this 
paper, a public-key cryptosystem which is based on the 
symmetric group Sn has been proposed. The scheme has 
some important properties such as non commutative, high 
flexibility for selecting keys that makes DLP more resistant 
to known attacks, and added advantages of easy and fast 
implementation. 

The main idea for implementation of this abstract 
scheme is to establish a bijection between elements of Sn 
and natural numbers. Therefore, any data stream with a 
finite length can be represented by a unique q ÎSn for some 
n. The Data encryption and decryption is performed using 
the symmetric group analog of Generalized El-Gamal 
Cryptosystem. Also, the difficulty of solving DLP in the 
context of proposed scheme leads to higher security and 
the system parameters can be selected in an easy and 
flexible way, so that the cryptanalysis of the proposed 
scheme will be fairly difficult than other existing schemes. 
Moreover, from the implementation points of view, the 
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multiplication and inversion in Sn can easily be performed 
in O(n) assignments, which is very fast. The only negative 
point of the system has shown to be the relative large 
memory and bandwidth requirements for storing and 
transmitting permutations. The authors are seeking further 
research in order to reduce this limitation. 
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